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Abstract: Actuators made of dielectric elastomers are used in soft robotics for a variety of applications.
However, due to their mechanical properties, they exhibit viscoelastic behaviour, especially in the
initial phase of their performance, which can be observed in the first cycles of dynamic excitation. A
fully fractional generalised Maxwell model was derived and used for the first time to capture the
viscoelastic effect of dielectric elastomer actuators. The Laplace transform was used to derive the
fully fractional generalised Maxwell model. The Laplace transform has proven to be very useful
and practical in deriving fractional viscoelastic constitutive models. Using the global optimisation
procedure called Pattern Search, the optimal parameters, as well as the number of branches of the
fully fractional generalised Maxwell model, were derived from the experimental results. For the fully
fractional generalised Maxwell model, the optimal number of branches was determined considering
the derivation order of each element of the branch. The derived model can readily be implemented
in the simulation of a dielectric elastomer actuator control, and can also easily be used for different
viscoelastic materials.

Keywords: dielectric elastomer actuator; fully fractional generalised Maxwell model; fractional
derivation; viscoelasticity; creep; optimisation

1. Introduction

Dielectric elastomer actuators, also called DEAs, can have different structures. The first
DEAs had parallel or cylindrical structures [1,2]. From then on, many different structures
were developed: spring roll actuators, helical actuators, and stacked actuators where the
actuators are stacked on top of each other [3–5]. All these actuators have the same basic
structure and activation principle. Thus, regardless of whether the DEAs are parallel or
cylindrical, their activation principle is the same. Their structure is like that of a capacitor.
It has an upper and a lower electrode and an elastic dielectric. Some special rules apply to
both the electrodes and the dielectric. The dielectric must be elastic. The electrodes must
be conductive, and their mechanical structure must be the same or similar to that of the
dielectric [6]. If their mechanical properties are different, the DEA may lose its mobility
and efficiency. Usually, conductive pastes of carbon are chosen for the electrodes.

The material properties of the selected elastomer VHB 4910 are viscoelastic, which
means that the material has both viscous and elastic properties. When the DEA is subjected
to a sinusoidal load, it exhibits sinusoidal creep behaviour. When a high voltage is applied,
coupling occurs between the electrical and mechanical forces. Suo et al. were the first
researchers to describe the electromechanical coupling in detail in a DEA [7]. In the work
of Gu et al. [8], the viscoelastic behaviour was captured using continuum mechanics and
nonequilibrium thermodynamics, where the Helmholtz free energy along with the Gent
model was used to derive the constitutive equations. The work shows a good match
between the experimental and simulation results. However, extensive knowledge in
the above areas is required, and the model cannot be integrated easily into the control
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simulations. The Prandtl–Ishlinskii model and the modified Prandtl–Ishlinskii model are
used in the work of Zuo et al. [9,10]. The work is based on the fourth order polynomial
to describe the asymmetric behaviour, and fixed weights with thresholds of the play
operators are used to describe the rate dependence, while the second order derivative of the
input voltage is introduced into the fourth order polynomial to describe the peak-to-peak
shifts that depend on the frequencies. This is a complex process that results in a good
match between the experimental data and the calculated responses. The Prandtl–Ishlinskii
model can be used as a feedforward compensator. Wissler et al. [11] used the Prony series
theory to model the time dependent viscoelastic behaviour of the elastomer used in soft
actuators. The drawback of this method is the inability to use it in the control simulations.
A standard linear solid rheological model which satisfies the thermodynamic consistency
was also used to capture rate-dependant behaviour of the soft materials in the work of
Zhao et al. [12]. This model could capture the rate dependent mechanical behaviour of soft
materials. However, the introduction of the internal variables in the modelling process
significantly increases the complexity of the proposed constitutive model and the number
of governing equations.

Fractional calculus has proved to be a powerful mathematical tool in the approach
used to modelling the time dependent mechanical behaviour of viscoelastic materials. Its
advantages lie in the remarkable reduction in model parameters where fractional orders
of derivatives are used. This can be especially seen in the field of fractional viscoelasticity,
including soils [13], polymers [14,15] and construction materials [16]. Xu et al. [17] used frac-
tional constitutive models of a fractional Kelvin–Voigt model, a fractional Maxwell model
and a fractional Poynting–Thomson model, which is a springpot connected in series with
two parallel springpots. In the work of Barretta et al. [18], hereditariness and nonlocality of
bending problems were presented with the help of fractional operators. Time-dependent
hereditary behaviour, which is typical of viscoelastic materials, has been modelled with the
help of a springpot, a fractional Kelvin–Voigt and a fractional Maxwell model.

To capture the sinusoidal creep behaviour, the fully fractional generalised Maxwell
model is derived in Section 2. The generalised fractional Maxwell model has already
been used in the work of Luo et al. [19] to determine the storage and loss modulus,
but not with the Laplace transform, nor to derive the governing equation of the DEA.
Our model is the first to describe the material behaviour of the DEA using the Laplace
transform. The fully fractional generalised Maxwell model was used because it does
not require complex knowledge of continuum mechanics and thermodynamics. It can
readily be derived using the Laplace transform to obtain the transfer function of the system.
Using the lsim function in the Matlab software, the excitation voltage with three different
frequencies can be implemented in the transfer function of the system, and the response of
the DEA can be calculated easily. An optimisation procedure using the Pattern Search global
optimisation solver was used to derive the material parameters based on the experimental
results. Section 3 shows the results of the optimisation procedures. Section 4 summarises
the conclusions.

2. Materials and Methods
2.1. Principles of the DEA

The structure of the DEA is similar to that of a capacitor. It has an upper and lower
conductive electrode and an elastic dielectric. The structure of the DEA can be seen in
Figure 1. Usually, elastic materials are chosen for dielectrics, such as VHB tapes. VHB 4910
tape was used in this study [20]. A high voltage DC is required to activate the DEAs. When
the voltage is applied, the electrical force also known as the Maxwell force is generated
between the upper and lower conductive electrodes, causing the DEA to contract vertically
and expand longitudinally, as elastomer is known to be incompressible.



Fractal Fract. 2022, 6, 720 3 of 14

Fractal Fract. 2022, 6, 720 3 of 14 
 

 

between the upper and lower conductive electrodes, causing the DEA to contract verti-
cally and expand longitudinally, as elastomer is known to be incompressible. 

 
Figure 1. Structure of the parallel DEA: (a) initial state and (b) activated state. 

The Maxwell force can be calculated as 

[ ]
2

2
0 1 2 0 1 2

3

  NMax el r r
VF F E l l l l
l

ε ε ε ε
 

= = =  
   

(1) 

0

1 2 3

 absolute permittivity
4.7  relative permittivity

 electric field
 voltage 

, , dimensions of the DEA

r

E
V
l l l

ε
ε

−
= −
−
−

−  
The relative permittivity was chosen as 4.7 according to [8]. A conductive paste was 

chosen from BareConductive® [21]. 

2.2. Derivation of the Fully Fractional Generalised Maxwell Model 
To derive the fully fractional generalised Maxwell model, one needs to use fractional 

derivatives. Fractional derivatives are derivatives that are not restricted to positive inte-
gers, but can be any real number. There are three definitions of fractional derivatives, 
namely, Riemann–Liouville, Caputo, and Gruenwald–Letnikov [22]. The Gruenwald–Let-
nikov definition is used, namely 

0 0
( ) lim ( 1) ( )

m
p p r

a t h r

p
D f t h f t rh

r
−

→ =

 
= − − 

 
  (2) 

,  time limits
 integer order of derivation/integration

0,  derivation
   

0,  integration

a t
m

p
p

p

−
−

> 
− =  <   

because it can handle the fractional derivation and integration easily. It is also suitable for 
the numerical calculation of fractional derivatives. 

The generalised Maxwell model is used to describe constitutive models with viscoe-
lastic effects. It consists of a spring connected in parallel to the branches of the Maxwell 
elements. The Maxwell element consists of a spring connected in series with a dashpot 
[15,16]. To convert this into a fully fractional generalised Maxwell model, all elements are 
replaced by the so-called springpot element [23,24]. The springpot element has two 
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The Maxwell force can be calculated as

FMax = Fel = ε0εrE2l1l2 = ε0εr

(
V
l3

)2
l1l2[N] (1)

ε0 − absolute permittivity
εr = 4.7− relative permittivity
E− electric field
V − voltage
l1, l2, l3 − dimensions of the DEA

The relative permittivity was chosen as 4.7 according to [8]. A conductive paste was
chosen from BareConductive® [21].

2.2. Derivation of the Fully Fractional Generalised Maxwell Model

To derive the fully fractional generalised Maxwell model, one needs to use fractional
derivatives. Fractional derivatives are derivatives that are not restricted to positive integers,
but can be any real number. There are three definitions of fractional derivatives, namely,
Riemann–Liouville, Caputo, and Gruenwald–Letnikov [22]. The Gruenwald–Letnikov
definition is used, namely

aDp
t f (t) = lim

h→0
h−p

m

∑
r=0

(−1)r
(

p
r

)
f (t− rh) (2)

a, t− time limits
m− integer order of derivation/integration

p− =

{
p > 0, derivation
p < 0, integration

}
Because it can handle the fractional derivation and integration easily. It is also suitable

for the numerical calculation of fractional derivatives.
The generalised Maxwell model is used to describe constitutive models with viscoelas-

tic effects. It consists of a spring connected in parallel to the branches of the Maxwell ele-
ments. The Maxwell element consists of a spring connected in series with a dashpot [15,16].
To convert this into a fully fractional generalised Maxwell model, all elements are replaced
by the so-called springpot element [23,24]. The springpot element has two parameters, one
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of which represents the material properties and the other the derivative order. The deriva-
tive order is bounded between 0 and 1, since there is no known physical interpretation
above 1 [24]. Figure 2 shows both models.
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ci,1, ci,2 −material properties of springpot
αi,1, αi,2 − order of derivation
ki − spring constants
m− mass of weight
n− number of branches with the Maxwell element
Fel − electrical force applied
Fg− weight of the mass

The Laplace transform with Laplace operator is used to derive the governing equation
of motion for the DEA using the fully fractional generalised Maxwell model. The Laplace
transform turns the derivative into a multiplication and the integration into a division.
The fully fractional generalised Maxwell model describes the material behaviour. The
electric force is calculated using Equation (1). Since the weight is used to hold the DEA in
the stretched position, its inertia must be included in the governing equation of motion.
All branches of the fully fractional generalised Maxwell model are subject to the same
displacement, as shown in Figure 3.
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Each branch has two displacements because it has two springpots. The electric force
and the force generated by the weight are distributed jointly between the branches of
the fully fractional generalised Maxwell model. The governing equation of motion is
calculated as

F = F1 +
n+1

∑
i=2

Fi + m
..
x. (3)

Displacement of each branch with the fractional Maxwell element is calculated as

x = x2,1 + x2,2
x = x3,1 + x3,2
.
.
.
x = xi,1 + xi,2

n · x =
n+1
∑

i=2
xi,1 +

n+1
∑

i=2
xi,2

(4)

The force in the first branch is calculated as

F1 = c1,1
dα1,1 x
dtα1,1

. (5)

The force in each branch containing two springpots is the same in each springpot, which is
calculated as

F2 = c2,1
dα2,1 x2,1

dtα2,1 = c2,2
dα2,2 x2,2

dtα2,2

F3 = c3,1
dα3,1 x3,1

dtα3,1 = c3,2
dα3,2 x3,2

dtα3,2

.

.

.
n+1
∑

i=2
Fi =

n+1
∑

i=2
ci,1

dαi,1 xi,1
dtαi,1 =

n+1
∑

i=2
ci,2

dαi,2 xi,2
dtαi,2

(6)

Expressing xi,1 and xi,2 from Equation (6) with the fractional integration, one gets

n+1
∑

i=2
Fi =

n+1
∑

i=2
ci,1

dαi,1 xi,1
dtαi,1 / d−αi,1

dt−αi,1

n+1
∑

i=2

d−αi,1 Fi
dt−αi,1

=
n+1
∑

i=2
ci,1xi,1

xi,1 =
n+1
∑

i=2

1
ci,1

d−αi,1 Fi
dt−αi,1

;xi,2 =
n+1
∑

i=2

1
ci,2

d−αi,2 Fi
dt−αi,2

;

(7)

Inserting the results from Equation (7) into Equation (4), one gets

n · x =
n+1

∑
i=2

1
ci,1

d−αi,1 Fi

dt−αi,1
+

n+1

∑
i=2

1
ci,2

d−αi,2 Fi

dt−αi,2
. (8)

Force Fi should be expressed from Equation (8). Laplace transformation is used, since
force Fi is part of the fractional integration with different orders of integration. Performing
Laplace transformation on Equation (8) and expressing Fi, one gets

n+1

∑
i=2

Fi(s) =
n · x(s)

n+1
∑

i=2

(
1

ci,1sαi,1 + 1
ci,2sαi,2

) . (9)
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Performing the Laplace transform on Equation (3) and inserting Equation (9), one gets

F(s) = c1sα1 x(s) +
n · x(s)

n+1
∑

i=2

(
1

ci,1sαi,1 + 1
ci,2sαi,2

) + ms2x(s). (10)

Rearranging Equation (10) to get the transfer function, one gets

x(s)
F(s)

=
1

ms2 + c1,1sα1,1 + n
n+1
∑

i=2

(
1

ci,1s
αi,1 +

1
ci,2s

αi,2

) . (11)

Equation (11) represents the transfer function of the governing equations of motion
for the fully fractional generalised Maxwell model with n branches, where the influence of
the electric force and the force of the weight of the mass 316 g are combined in the equation.
The add-on FOMCON is required to implement Equation (11) in Matlab [25]. Equation (11)
is written in the relation force–displacement. To convert Equation (11) into the relation
stress–strain, one needs to use

E =
σ

ε
=

F · L
A · ∆l

=
k · L

A
→ k =

E · A
L

(12)

and
σ = η · dαε

dtα
→ η =

σ
dαε
dtα

=
F

A
dα( ∆l

L )
dtα

=
F

A 1
L

dα(∆l)
dtα

=
c · L

A
→ c =

η · A
L

. (13)

2.3. Experiments

The elastomer VHB 4910 was used to set up the experiment. The elastomer was cut to
the initial dimensions of 49 mm × 50 mm × 1 mm, with only a 10 mm wide area used to
expand the elastomer to the initial dimension, while the rest was used for clamping. The
initial dimensions for the sinusoidal force excitation were 49 mm × 60 mm × 0.16 mm. The
active area to which the conductive paste was applied was 40 mm × 60 mm.

Three different frequencies with an amplitude of 6 kV DC were used for the sinusoidal
voltage excitation. The three frequencies were F1 = 1

13 Hz, F2 = 1
7 Hz, and F3 = 1

5 Hz. These
frequencies were chosen so that they were not multiples of each other. In this way, the
frequencies are not associated with a common factor. The experiment lasted 155 s to capture
the sinusoidal creep behaviour of the DEA. The displacement of the DEA was measured
using a Wenglor laser sensor [26]. The experimental setup is shown in Figure 4.
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2.4. Optimisation

To obtain the material parameters of the fully fractional generalised Maxwell model,
the experimental results were optimised with the model. For the optimisation procedure,
the global optimisation solver Pattern Search was chosen, which is also known as a direct
search method in Matlab software. The flow of the optimisation procedure is shown
in Figure 5. First, the user must specify the number of branches for the fully fractional
generalised Maxwell model and the initial parameters for the model.
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The electric and mechanical forces are calculated as the sum of the Maxwell force
given by Equation (1) and the weight of the dead mass. In Equation (1), V is replaced
with the calculation of the appropriate voltage regarding the frequency in use. Using the
Matlab function lsim, the response of the transfer function of the fully fractional generalised
Maxwell model to the electric and mechanical forces can be calculated easily. The responses
for all frequencies were calculated and compared with the experimental results using the
least squares method. The efficiency of the fully fractional generalised Maxwell model
with a different number of branches was calculated using the method of the coefficient of
determination, also known as the R2 method, calculated as

R2 = 1− SSres

SStot
. (14)

SStot = ∑
i
(yi − y)2 Total sum of squares.

SSres = ∑
i
(yi − fi)

2 Residual sum of squares.

yi Measured data.
y Average data.
fi Calculated data.

After the optimisation procedure was completed, the best results were recorded and
the final value of R2 was calculated for each frequency. At the end, the average value of
R2 was calculated as R2

mean for the whole frequency range. The number of branches was
chosen to be between 1 and 5. Finally, each frequency was optimised individually for the
model, to compare the results when only one frequency was optimised to the results where
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the whole frequency range was optimised. It was examined which the essential parameters
of the model were for each frequency. Table 1 shows all symbols used in the research.

Table 1. Nomenclature table with SI units.

Symbol Unit Meaning

A m2 Area.

αi,1, αi,2 / Order or fractional derivation of the
springpots.

a, t s Time limits of the fractional derivation.
ci,1, ci,2 N(sαi,1 /m), N(sαi,2 /m) Material properties of the springpots.

E kg/(ms2) Modul of elasticity.
εo F/m Absolute permittivity.
εr / Relative permittivity.
ε 1 Strain.

FMax N Maxwell force.
Fel N Electrical force.
Fi N Force in individual branch.
fi mm Calculated data.
i / Current number of fractional Maxwell element.
k N/m Spring constant.

l1, l2, l3 m Dimensions of the DEA.
L m Initial length.
l m Displacement.
m / Integer order of derivation by the definition.
m kg Mass of weight.
n / Number of fractional Maxwell elements.
η Ns/m2 Viscosity.
p / Fractional order of derivation by the definition.

R2 / Coefficient of determination.
R2

mean / Mean value of coefficient of determination.
s / Laplace operator.

SStot / Total sum of squares.
SSres / Residual sum of squares.

σ N/m2 Stress.
V V Voltage.
xi m Displacement of individual branch.
yi mm Measured data.
y mm Averaged measured data.

3. Results

After the optimisation procedure was set up using Matlab software and the Pattern
Search global optimisation algorithm, the R2

mean values shown in Table 2 were obtained.
As can be seen, the number of branches increased the accuracy of the model, but not
significantly. It can also be seen that adding more than three branches did not affect the
efficiency of the model. The initial parameters used in the optimisation, as well as the
optimal parameters obtained from the optimisation, are shown in Table 3.

Table 2. R2
mean value of the fully fractional generalised Maxwell model for one to five branches.

Fully Fractional Generalised Maxwell Model
Number of Branches R2

mean

n= 1 0.5456
n = 2 0.5489
n = 3 0.5456
n = 4 0.5456
n = 5 0.5456
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Table 3. Initial and optimised parameters of the fully fractional generalised Maxwell model for one
to five branches.

Param. n = 1 α1,1 α2,1 α2,2

Initial 0.2 1 1
Optimised 0.2 0.002 1

Parameters c1,1 c2,1 c2,2
Initial 500 500 500

Optimised 62.952 0.036 0.142

Param. n = 2 α1,1 α2,1 α2,2 α3,1 α3,2
Initial 0.2 1 1 1 1

Optimised 0.2 1 1 0.523 0.046

Param. c1,1 c2,1 c2,2 c3,1 c3,2
Initial 500 500 500 500 500

Optimised 62.740 47.958 173.21 430.381 0.215

Param. n = 3 α1,1 α2,1 α2,2 α3,1 α3,2 α4,1 α4,2
Initial 0.2 1 1 1 1 1 1

Optimised 0.2 1 1 1 0.002 1 1

Param. c1,1 c2,1 c2,2 c3,1 c3,2 c4,1 c4,2
Initial 500 500 500 500 500 500 500

Optimised 62.950 0.267 0.464 0.140 0.088 0.036 0.237

Param. n = 4 α1,1 α2,1 α2,2 α3,1 α3,2 α4,1 α4,2 α5,1 α5,2
Initial 0.2 1 1 1 1 1 1 1 1

Optimised 0.2 0.002 1 0.002 1 1 0.002 1 0.002

Param. c1,1 c2,1 c2,2 c3,1 c3,2 c4,1 c4,2 c5,1 c5,2
Initial 500 500 500 500 500 500 500 500 500

Optimised 62.950 0.103 0.036 0.321 0.036 0.094 0.157 0.036 0.225

Param. n = 5 α1,1 α2,1 α2,2 α3,1 α3,2 α4,1 α4,2 α5,1 α5,2 α6,1 α6,2
Initial 0.2 1 1 1 1 1 1 1 1 1 1

Optimised 0.2 0.002 1 1 1 1 0.002 1 0.002 1 1

Param. c1,1 c2,1 c2,2 c3,1 c3,2 c4,1 c4,2 c5,1 c5,2 c6,1 c6,2
Initial 500 500 500 500 500 500 500 500 500 500 500

Optimised 62.950 0.097 0.315 0.036 0.356 0.036 0.097 0.036 0.095 0.036 0.285

From Table 3, in some branches the order of derivation does not change from the initial
values. The derivation orders of 1 represent dashpot elements, and if both elements of the
branch have the order of 1, they can be combined into one dashpot element. The same
applies for spring elements if the order of derivation equals 0.

Figure 6 shows the experimental and calculated results from the optimised parameters
of the fully fractional generalised Maxwell model for one to five branches. Adding more
than two branches did not improve the efficiency of the model. The best matching between
the data is seen for the middle frequency of 1/7 Hz, where the matching was 88%. For the
frequency of 1/5 Hz, the worst matching was achieved of only 12.9%.

The optimisation of the model for an individual frequency was performed after the
optimisation for the whole frequency range was carried out. From Table 2, it is seen that
two additional branches of the fully fractional Maxwell elements are the most optimised.
In Table 4, the initial and optimised parameters of only two additional branches are shown
for each individual frequency for the fully fractional generalised Maxwell model. Each
frequency demands its own material parameters, as well as different topology of the fully
fractional generalised Maxwell model. Figure 7 shows matching between the experimental
and calculated results if each frequency was optimised individually for the model.
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Table 4. Initial and optimised parameters of the fully fractional generalised Maxwell model for each
individual frequency.

Parameters F = 1/13 Hz
n = 3 α1,1 α2,1 α2,2 α3,1 α3,2

Initial 0.2 1 1 1 1
Optimised 0.1795 1 1 1 1

Parameters c1,1 c2,1 c2,2 c3,1 c3,2 R2

Initial 500 500 500 500 500 0.658
Optimised 51.773 0.002 0.002 0.002 0.002

Parameters F = 1/7 Hz
n = 3 α1,1 α2,1 α2,2 α3,1 α3,2

Initial 0.2 1 1 1 1
Optimised 0.188 0.255 0.046 0.225 0.880

Parameters c1,1 c2,1 c2,2 c3,1 c3,2 R2

Initial 500 500 500 500 500 0.907
Optimised 57.696 569.346 0.003 406.744 0.479

Parameters F = 1/5 Hz
n = 3 α1,1 α2,1 α2,2 α3,1 α3,2

Initial 0.2 1 1 1 1
Optimised 0.2 1 1 1 0.002

Parameters c1,1 c2,1 c2,2 c3,1 c3,2 R2

Initial 500 500 500 500 500 0.665
Optimised 73.133 19.199 188.074 305.285 191.367

R2
mean 0.743
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Figure 7. Responses of individually optimised frequencies with the generalised fractional Maxwell
model.

4. Discussion

The fully fractional generalised Maxwell model was used for the first time to describe
the material behaviour of a DEA. Table 2 shows that the number of branches contributes to
the effectiveness of the model. However, the contribution of each additional branch was
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small. Increasing the number of branches up to two increased the effectiveness. Surprisingly,
adding more branches did not improve the effectiveness of the model. It can be seen from
Table 3 that when adding more than two branches, the optimised parameters were chosen
such that the model could be reduced to the fully fractional generalised Maxwell model
with only two branches. This was possible because the two α parameters within a branch
were 1, which represents dashpots. Dashpots in series can be reduced to one dashpot. The
reduced and rearranged model can be seen in Figure 8.
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Concluding points can be itemized as follow:

• The number of fully fractional Maxwell elements slightly affected the effectiveness of
the model.

• Adding more than two branches did not increase the effectiveness of the model.
• The fully fractional Maxwell model was reduced to the model seen in Figure 8.
• The middle frequency of 1/7 Hz had the best agreement of 0.88 between data.
• Optimising each frequency individually drastically improved the overall agreement

between data to 0.745.
• Optimising each frequency individually has a drawback since each frequency requires

its own material parameters.
• Topology optimisation cannot be included into the Pattern Search algorithm.

The reduced and rearranged model has two springpots. The first springpot has the
order of derivative equal to 0.2 which means it has 80% characteristics of a spring and only
20% characteristics of a damper. The other springpot has the order of derivative equal to
0.52 which means that nearly half of its characteristics are those of a spring, and half those
of a damper.

The fully fractional generalised Maxwell model best describes the frequency of 1/7 Hz,
where the match between the experimental and modelled response was 0.88, which was
a good match. However, at the highest frequency of 1/5 Hz, the match between the data
was the lowest and was only 0.12. The average match between the data over all three
frequency ranges was 0.533, which is less than the methods used in the work of Gu et al. [8]
and Zuo et al. [9] where agreement between data was more than 0.9. If only data from
frequency of 1/7 Hz were compared to the data from the work of Gu and Zuo, then our
method proves very efficient since it is much easier to implement it and use it in the control.

The initial and optimised parameters for the optimisation of the individual frequency
with the fully fractional generalised Maxwell model are listed in Table 3. The match
between the experimental and calculated responses was improved. The average match
increased to 0.745, which is a good match and can be easily compared with the work of Gu
and Zuo. However, the material parameters of the fully fractional generalised Maxwell
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model were different for each frequency, which was a drawback, since one would like to
have universal material parameters for the entire frequency range.

Finding the optimal number of branches for the model cannot be included in the
optimisation, because changing the number of branches changed the number of lower and
upper bounds on the model. This is something that cannot be included in the optimisation
solver for the Pattern Search. This can only be done by observing the material parameters
of the individual branches within the model manually.

5. Conclusions

The match between experimental and calculated results was lower for the whole
frequency range than in the work of others. Observing only the middle frequency, the
method would be easily compared with the work of others. However, the fully fractional
generalised Maxwell model can be derived and implemented easily, and the responses of
the model can be determined quickly. Implementation of the model in simulation control
is straightforward. The proposed method can easily be used on other materials with
viscoelastic behaviour. In future work, topology optimisation could be included into the
optimisation procedure.
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