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Abstract: The success of regional bridge condition assessment, a crucial component of systematic
maintenance strategies, relies heavily on comprehensive, well-structured regional bridge databases.
This study proposes the data extraction, cleaning, and integration method for the construction of such
databases. First, this research proposes an extraction method tailored for unstructured data often
present in inspection reports. Additionally, this paper meticulously outlines a cleaning procedure
designed to rectify two distinct categories of typical errors that are present within the inspection data.
Subsequently, this study takes a holistic approach by establishing integration rules that harmonize
data from various sources, including inspection records, monitoring data, traffic statistics, as well as
design and construction blueprints. The architectural framework of the regional bridge information
database is then meticulously laid out. To validate and demonstrate the effectiveness of the method,
this study applies them to a set of representative highway bridges situated within Shandong Province.
The results show that this approach can be used to successfully establish a functional regional
bridge database. The database plays a pivotal role in harnessing the latent potential of an extensive
range of multi-source information and propels the field of bridge condition assessment forward
by providing a solid basis for informed decision making and strategic planning in the realm of
infrastructure maintenance.

Keywords: regional bridge information database; regional bridge condition assessment; data mining;
bridge inspection reports

1. Introduction

Regular bridge inspections are vital for assessing bridge structures. They provide
detailed records of bridge conditions. Critical bridge monitoring offers additional regional
insights [1]. However, the current system uses a ‘one bridge, one file’ approach. This
means data from each bridge are used only for its own assessment and repair. This method
overlooks possible similar patterns of deterioration in different bridges. It also increases the
complexity and cost of managing bridges. Bridges in a regional network are interconnected,
not isolated [2,3]. Over the years, a vast amount of data has been collected on these bridges.
It is important to integrate and standardize these data into a road network bridge database.
Such integration would enhance the maintenance of the bridge network. It could also help
predict future structural conditions within the network [4,5].

In recent years, global scholars have focused on regional bridge management and
utilization. Precise evaluation is key to effective bridge management. To this end, govern-
ments worldwide have developed various codes for bridge assessment. Italy, for example,
has guidelines for risk classification and bridge safety assessment [6]. Similarly, other regu-
lations include the “Specifications for Maintenance of Highway Bridges and Culverts” [7]
and China’s “Standards for Technical Condition Evaluation of Highway Bridges” [8]. Be-
yond traditional methods, novel machine-learning algorithms are now being used. These
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algorithms detect defects and compute health indices, offering faster and more accurate
evaluations [9–13]. A well-structured Bridge Management System (BMS) is essential for
storing and using these assessment outcomes effectively.

Bridges are managed at two levels: bridge level and network level. In this study, they are
referred to as “single bridge level” and “network level.” Reliance on a single management
model is inefficient, especially for small and medium span bridges. These models often treat
bridges as isolated entities and use disconnected inspection methods [14]. Regional bridges
share attributes, making network-level evaluation and management essential.

Globally, Bridge Management Systems (BMS) are the main methods for managing
multiple bridges. The National Bridge Inventory (NBI) database [15] created by the Federal
Highway Administration (FHWA) in 1968, was the precursor to modern BMS. Originally
developed for data management, the NBI has evolved to include evaluation, prediction,
and decision making due to increased maintenance needs and limited funding [16]. The UK,
Japan, and Denmark have similar systems like NATS [17], J-BMS [18], and DANBRO [19].
China’s development in this area has been slower, mainly using the China Highway and
Bridge Management System (CBMS) and Shanghai’s bridge management system.

The Bridge Management System (BMS) has greatly improved bridge management.
Yet, it has imperfections and practical applications reveal deficiencies. A key BMS function
is recognizing bridge deterioration patterns. This transforms raw data into domain-specific
knowledge, crucial for network-level evaluation [20]. As described in reference [21], this
involves linking structural condition to independent variables.

There are two main approaches to this link: historical health data and probabilistic
reliability models (PRM) [22]. The first predicts future conditions using past deterioration
data. The second forecasts deterioration by analyzing time-varying factors like corrosion.
PRMs have been successful in both stationary and non-stationary process analysis [23–26].
However, PRM is better suited to univariate cases. Multivariate scenarios pose challenges
due to complexity and computational demands. In contrast, historical health data ap-
proaches handle multivariate situations well [27,28]. They use extensive historical data
to track deterioration over a bridge’s life. The accuracy of these models depends on the
amount of available data. Health monitoring systems are costly; therefore, inspection
reports are often the primary data source. However, the quality of these reports can vary,
making data cleaning and integration crucial for future analyses.

To this date, few studies have comprehensively addressed the form, acquisition meth-
ods, integration rules, and information data structure regarding the multi-source informa-
tion pertaining to regional bridges. The demands of network-level evaluation underscore
the need for significant improvements in many aspects.

This paper details integration rules and a data structure for a regional bridge informa-
tion database, designed to maximize the use of extensive multi-source data. It is divided
into three main sections: Section 2 describes the framework for information integration,
covering data sources, key features, expression formats, and rules. Section 3 discusses
methods for extracting and cleaning data from inspection reports, the primary data source
for regional bridges. Finally, Section 4 provides a practical example of this integration,
using data from 812 highway bridges in Shandong Province.

2. Information Integration for Regional Bridges
2.1. Inherent Characteristics of Information Integration

The sources and integration of bridge group information for network-level assessments
exhibit inherent characteristics:

1. Hierarchical decomposition: Both bridges and road networks are intricate systems
composed of various substructures. The database should implement a multi-tiered
decomposition and traceability of the road network, bridges, and components, ensur-
ing the feasibility of retrieval between different levels, thus providing the data logic
foundation for network-level assessments.



Infrastructures 2023, 8, 183 3 of 15

2. Interactions: The deterioration of individual bridge components mutually influences
one another. For instance, cracks in the bridge deck can expedite the deterioration of
primary beams, while damaged bearings can lead to deck impairments. Consequently,
the database should encompass the interactions among these components to unveil
the inherent connections between structural performance and condition changes.

3. Universality and scalability: The database should be designed to meet the current
analytical requirements while ensuring its capacity for future expansion and up-
dates, accommodating the inclusion of new data or integration of novel analysis
methodologies.

4. Representation of time-varying data: Bridge data are commonly categorized into
static data, such as span length and materials, and dynamic time-varying data, such
as bridge age and traffic volume. Dynamic data are often associated with changes in
structural characteristics. Therefore, the database should support dynamic representa-
tion to elucidate the spatiotemporal relationships within the data.

2.2. Data Source

The inspection data serve as the paramount repository of bridge-related information
within a region. Thus, the inspection report stands as the most immediate and relatively
comprehensive historical record of these data, typically archived in the format of a technical
condition assessment sheet. A typical assessment sheet comprises three fundamental
components:

1. The fundamental parameters of bridges encompass key fields, including the affiliated
road section, bridge pier location, bridge length, primary span configuration, span
length, date of construction, and inspection date, among others.

2. Component-level assessment data, including superstructure, substructure, and deck
system, along with corresponding ratings.

3. Overall bridge rating and maintenance records, including the overall assessment of
the bridge’s condition and its maintenance records.

The described data collectively characterize crucial information about the bridge, such
as its structural features, service life, spatial distribution, environmental influences, and
condition assessments. These insights are of paramount significance in understanding the
deterioration process of the inspected structure.

Simultaneously, the transportation network serves the functions of passage and cargo
transportation. From the perspective of structural loading during the service life of bridges,
traffic loads constitute the most prominent external influence. Given that the inspection
reports do not record traffic flow information for the specific road segment where the
inspected bridge is situated, it becomes imperative to incorporate additional data sources.
To address this, the collection of annual average daily traffic volume data from various
traffic monitoring stations along the highway corridor is recommended. These data can
be selected based on the equivalent passenger car unit, which effectively characterizes
the average traffic flow impact on the inspected bridge. Alternatively, dynamic weighing
systems or video monitoring can be employed to obtain information regarding the traffic
flow of the network. Notably, within vehicle classification statistics, the quantity and
proportion of heavy-duty vehicles have a more pronounced impact on the structure and
thus, warrant special attention.

Furthermore, the design and construction blueprints of the bridge can supplement
and validate the fundamental information within the database, including structural design
parameters, lane quantities, and other pertinent details.

2.3. Multi-Source Data Logic Expression

In the case of the aforementioned integrated multi-source data, it is essential to store
and represent this information in an “attribute” format. An attribute comprises an attribute
name, referring to a specific characteristic, and an attribute value, which represents the data
associated with that characteristic. Different attributes may have various data formats, such
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as numerical, ordinal, or nominal. Among these, numerical attributes offer the most intu-
itive and quantifiable means for comparison. Conversely, other formats involve qualitative
expressions. Ordinal attributes, although meaningful for comparison, may pose challenges
in precisely quantifying differences between successive values. Nominal attributes, linked
to specific names or categories, are solely used for categorical representation. In the context
of a road network database, typical attributes and their format definitions are as follows:

1. Region name, route code, bridge code, component code, and bridge pier number
are all nominal attributes, signifying the spatial distribution of bridge entities. The
divisions of the region should align with the specific road network characteristics,
taking into consideration geographical locations and temperature–humidity patterns.

2. Year of construction, inspection date, and bridge age are all numerical attributes,
representing temporal information about the bridge. Bridge age can be derived by
subtracting the year of construction from the inspection date.

3. Bridge type, bridge length, maximum span, cross-sectional dimensions, design code,
and design office: Bridge type, design code, and design office are nominal attributes,
while the others are numerical attributes, indicating the structural characteristics of
the bridge entity.

4. Annual Average Daily Traffic (ADT) and Annual Average Daily Truck Traffic (ADTT)
are both numerical attributes, denoting the traffic flow the bridge accommodates.
ADT is calculated as the total equivalent passenger car units, while ADTT is the sum
of heavy-duty trucks and large passenger vehicles. Because ADTT primarily reflects
the heavy loads that significantly contribute to the deterioration of bridges, it is chosen
to represent the load information of bridges in the multi-source information database.

5. Highway classification, design load, roadbed width, and number of lanes: Highway
classification and design load are ordinal attributes, while the rest are numerical
attributes, illustrating the bridge’s traffic capacity.

6. Overall score, overall rating, superstructure rating, substructure rating, deck rating,
and ratings for various component technical conditions, as well as the deflection
history of the bridge: The scores and the deflection history are numerical attributes,
while the ratings are ordinal, signifying the structural state of the bridge.

Among these attributes, the majority are static in nature. However, inspection date,
bridge age, ADT, ADTT, structural ratings, and scores are dynamic data. These dynamic
data elements are organized as key-value pairs, associated with a temporal dimension.
Each key represents a corresponding time coordinate, and the value corresponds to the
attribute’s value at that coordinate. It is essential to store them in accordance with their
respective formats. For instance, for a bridge with a “year of construction = 2015”, the data
could include “bridge age = {2016:1, 2017:2}” and “overall score = {2016:99, 2017:98}”.

2.4. Data Integration

The specific organization and data structure for information at different hierarchical
levels within the region exhibit distinct characteristics. Drawing upon the principles of
object-oriented programming, we introduce the concepts of “classes” and “instances.”

A class abstracts specific entities, expressing a particular concept. Within the regional
bridge network, there are three levels of classes: component class, bridge class, and route
class. These levels exhibit a hierarchical relationship, with, for example, the route class
encompassing bridge classes and bridge classes containing numerous component classes.
Each class can be distinguished by its name, such as the “primary beam” class and “bearing”
class, each storing distinct information. The attributes defined earlier are systematically
integrated into these classes based on their applicable objects and scope, creating templates
for various components, bridges, and routes.

Correspondingly, instances serve as the carriers of entities within the database. They
are created based on the templates specified by the classes, representing real-world objects,
such as component instances, bridge instances, and route instances, and are populated with
attribute data according to their characteristics and properties. For example, Bridge A and
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Bridge B are both created based on the “beam bridge” category, but they are independent
bridge instances, with the former having a bridge length attribute value of 15 m and
the latter having a length of 30 m. Figure 1 summarizes the integration rules for the
aforementioned dataset.
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However, the integrated results cannot be directly employed for subsequent analysis
and processing due to disparities in the original data quality from various sources. These
disparities manifest as follows: (1) Physical records, with limited preservation periods,
are susceptible to issues like loss and damage, affecting data continuity and accuracy.
(2) Electronic records, influenced by varying management levels and execution practices,
result in challenges in unifying formats and standards. (3) Errors during data entry are
inevitable, leading to issues like missing or inconsistent information. Therefore, it is
imperative to clean the integrated data to eliminate noise and facilitate subsequent pattern
recognition.

3. Inspection Data Extraction and Cleaning Methods
3.1. Storage Format of Existing Inspection Reports

Over the past two decades, bridge inspection in China has been governed by two
key standards: “Specifications for Maintenance of Highway Bridges and Culverts” (JTG
H11-2004) [7] and “Standards for Technical Condition Evaluation of Highway Bridges”
(JTGT H21-2011) [8]. Prior to the introduction of JTGT H21-2011 in 2011, JTG H11-2004
guided bridge inspection practices, with JTGT H21-2011 assuming this role after 2011.

JTG H11-2004 and JTGT H21-2011 employ differing approaches to bridge assessment.
Both standards mandate defect inspections of bridge components. However, JTGT H21-2011
goes a step further by assigning structural condition scores to the inspected components, a
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requirement not present in JTG H11-2004. Disparities also emerge in calculating the overall
bridge structural condition score. In the context of JTG H11-2004, this score is determined
using Equation (1):

Dr = 100 −
n

∑
i=1

RiWi/5 (1)

In Equation (1), Dr represents the overall bridge structural condition score, Ri signifies the
extent of defect in a component, and Wi stands for the weight of the respective component.
In contrast, within JTGT H21-2011, the overall bridge structural condition score is computed
as the weighted average of component structural condition scores, as demonstrated in
Equation (2):

Dr =
n

∑
i=1

DiWi (2)

In Equation (2), Dr denotes the overall bridge structural condition score, Di represents the
structural condition score of a component, and Wi signifies the weight of the correspond-
ing component.

These differing approaches to bridge assessment engender variations in the storage
format of inspection reports. Reports adhering to JTG H11-2004 and JTGT H21-2011
conventions contain inspection data stored within structural condition evaluation forms.
However, as depicted in Figure 2, the structure of these forms diverges significantly. In
the figure, the slash “/” represents a place where information does not need to be filled in.
This happens when a bridge does not have the listed component in the table.
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The divergence observed in inspection reports guided by distinct standards necessi-
tates tailored extraction methods. Furthermore, it underscores the imperative of conducting
thorough data cleaning processes.

3.2. Data Extraction and Storage

Given that inspection information resides within structural condition evaluation
forms within inspection reports, the fundamental approach to data extraction involves
systematically traversing all forms within the inspection report document and extracting
information from forms designated as structural condition evaluation forms.
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The criteria for identifying these forms can vary based on the formatting of the docu-
ments. In this study, the number of columns and rows served as criteria for judgment, with
content in specific table cells also considered, such as cells containing labels like “Disease
name,” which often signifies the presence of disease-related information.

Multiple strategies were proposed for storing the extracted data. Employing a 2D
Table Structure proves beneficial for efficient data storage. While an SQL database offers
more advanced data processing and querying capabilities, for the sake of accessibility and
ease of use, a 2D table structure was adopted for data storage.

The inspection data, originally structured as structural condition evaluation forms
in inspection reports, assumes a table format. During data storage, a structural condition
evaluation form for a specific bridge is compressed to create a corresponding row of data.
Consequently, within the ultimate data storage table, each row signifies the inspection data
for an individual bridge, while columns represent distinct inspection attributes for that
bridge. Data pertaining to different years are segregated into separate tables.

The design of the final 2D table structure for data storage was crafted with ease of
processing in mind, facilitating seamless reading and manipulation by Python’s DataFrame
module. Nonetheless, even users without programming expertise can interact with the
data storage table using common office software like Excel 2016.

3.3. Data Cleaning

There are mainly two types of errors: record errors and mismatched data.

3.3.1. Record Errors Cleaning

Record errors typically stem from clerical mistakes made by maintenance staff when
composing inspection reports. One common type of record error involves typographical
inconsistencies, such as the structural condition score “94.6” being mistakenly entered as
“94..6,” which includes a duplication of decimal points and other similar errors.

To rectify such errors, we leverage the regular expression string matching method,
which enables the identification and correction of these inaccuracies, ensuring the integrity
of the actual information.

Another prevalent type of record error is known as the “Same thing, different names”
error. This error arises when diverse expressions are utilized to denote identical elements.
For instance, while previous inspection reports might refer to cracks as “Crack,” a particular
inspection report might term some of these cracks as “Rift.” To address this issue, we
establish dictionaries containing various expressions used to describe identical items across
inspection reports. During the extraction process, we harmonize these expressions by
standardizing them using the names stored within the dictionaries. This approach mitigates
confusion and guarantees consistency across the data.

3.3.2. Mismatched Data Cleaning

The term “mismatched data” refers to instances where inspection data adhering to
two distinct standards, namely JTG H11-2004 and JTGT H21-2011, do not align. In general,
inspection reports following JTG H11-2004 lack component structural condition scores,
which are indispensable for constructing the deterioration model of regional bridges. To
address this discrepancy and ensure data uniformity, we establish conversion rules to derive
structural condition scores for JTG H11-2004-guided inspection reports using available data.

When dealing with data under JTG H11-2004, the recorded information pertains to
the degree of defect in different components, rather than structural condition scores. Thus,
the initial task involves generating structural condition scores from the degree of defect
under the JTG H11-2004 scoring system. Referring to Equation (1), the degree of defect
corresponds to points deducted from the bridge’s structural condition score. As the sum
of all component weights in Equation (1) equals 100 (as depicted in Equation (3)), the
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component weights must take the value of 100 to ensure consistency when calculating the
component’s structural condition score (as illustrated in Equation (4)).

n

∑
i=1

Wi = 100 (3)

Di = 100 − 100
5

× Ri (4)

In Equation (4), Di denotes the component’s structural condition score, while Ri stands
for the degree of defect in the corresponding component. Consequently, one unit of the
degree of defect translates to a deduction of 20 points from the component’s structural
condition score.

Subsequently, converting the structural condition score from the JTG H11-2004 and
JTGT H21-2011 scoring system becomes necessary. Since the criteria for categorizing
structural conditions remain uniform across both systems, establishing conversion rules
based on equivalent structural condition levels is reasonable. These levels are discrete
functions of the structural condition score, as outlined in Table 1.

Table 1. Comparison of Structural Condition Score Ranges Under Different Scoring Systems.

Structural Condition Level Structural Condition Score
for JTGT H21-2011

Structural Condition Score
for JTG H11-2004

Level 1 [95, 100] [88, 100]
Level 2 [80, 95] [60, 88]
Level 3 [60, 80] [40, 60]
Level 4 [40, 60] [0, 40]
Level 5 [0, 40] \

Let l(x) symbolize this function. However, the discreteness of l(x) introduces inaccu-
racy in describing the actual structural condition. For example, components with scores of
94.9 and 95.1 under the JTGT H21-2011 scoring system would fall into structural condition
levels of class 2 and class 1, respectively, even though their actual structural conditions
exhibit minimal differences. In light of this, a new function L(x), was introduced, creating
a continuous structural condition level. L(x) was devised as a polyline function, interpo-
lating linearly between the left points of each interval in Table 1. The construction of L(x)
under both scoring systems is depicted in Figure 3. In the figure, the red points stand for
the interval endpoint as shown in Table 1.
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The creation of L(x) lays the foundation for score conversion between the two systems
via interpolation. The conversion process involves calculating the continuous structural
condition level of a score under the JTGT H21-2011 scoring system using LSMOHBC(x).
Subsequently, the score under the JTG H11-2004 scoring system is determined based on
the calculated structural condition level using LSTCEOHB(x). For instance, if a score of
70 under the JTGT H21-2011 scoring system corresponds to a structural condition level
of 1.643, then LSTCEOHB(x) yields 85.357 as the converted value under the JTG H11-2004
scoring system. An example of this process is illustrated in Figure 4. In the figure, the red
points still represent the interval end points, and the green points stand for the conversion
example introduced above.
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Figure 4. Example Demonstrating Score Conversion Between Scoring Systems.

The efficacy of these conversion rules is measured by the deviation before and af-
ter score conversion, quantified using the coefficient of deviation (Err) as defined in
Equation (5).

Err =

∣∣levelorig − levelconv
∣∣

5
(5)

In Equation (5), levelorig represents the structural condition level corresponding to the
structural condition score of the bridge before conversion, and levelconv represents the
structural condition level corresponding to the structural condition score of the bridge after
conversion. This coefficient evaluates the reasonability of the conversion rules, with the
normalized absolute deviation of the structural condition level before and after conversion
indicating their effectiveness. Err is employed to assess the rationality of the conversion
rule in the subsequent chapter.

4. Case Study

In this study, a dataset comprising inspection reports and design drawings of 812 main-
highway bridges from three highway routes in Shandong Province from 2010 to 2023 was
collected, as shown in Table 2.

Table 2. Data Description.

Group Number of Bridges Inspection Reports Build Time

1 220 2012, 2014, 2016, 2019 28 December 2008
2 343 2010, 2011, 2014, 2017, 2020 30 April 2007
3 249 2012, 2014, 2015, 2017, 2020 15 December 2007

Total 812 2010–2020 2007–2008
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The data underwent extraction, cleaning, and integration processes, leading to the
formation of a comprehensive regional bridge information database, as illustrated in Table 3.

Table 3. Examples of Bridge Attributes in the Regional Bridge Information Database.

Feature Meaning of the Feature Example Value

Region Name The region where the bridge is
located Beihuan

Bridge Name Name of the bridge K0+975.177 Tangwang
Viaduct

Bridge Length Length of the bridge 8 m
Number of Spans Span number of the bridge 1

Bridge Width Width of the bridge 11.75 m
Structure Type The structure type of the bridge Simply supported beam

Material Material of the bridge Reinforced concrete
Section type The Cross-section type of the girder Slab beam
Bearing Type The type of the bearing Plate rubber bearing

Pier Type The type of the pier Double column pier
Abutment Type The type of the abutment Light abutment

Footing Type The type of the footing Drilling piles
Pavement Type The type of the pavement Asphalt concrete

Expansion Joint Type The type of the expansion joint Maurer expansion joints
Build Time The date when the bridge was built 28 December 2008

Designed code The code that the bridge followed
during the design process

General Code for Design of
Highway Bridges and
Culverts JTG D60-2004

Design load The form and value of the load that
the bridge were designed to bear Highway Level 1

Design office The company responsible for the
design of the bridge

Shandong provincial
communications planning
and design institute group,

Jinan, China
ADTT Annual Average Daily Truck Traffic 2022:23,150

Deflection history Deflection evolution of the bridge Unknown

Initially, inspection data were extracted and cleaned from the inspection report doc-
uments stored in WORD format. The scores and ratings of structural conditions for both
bridges and their individual components were extracted, cleaned, and subsequently stored,
as detailed in Table 4.

Table 4. Sample Extracted Structural Condition Scores for Bridges.

Bridge Name Super Structure Score Substructure Score Deck Score Overall Score Component
Scores

K0+975.177
Tangwang Viaduct 95.5 92.5 98.3 94.9 . . .

To address mismatched data errors present in inspection reports, the cleaning method
described earlier was employed. Following cleaning, the coefficient of deviation was
calculated, as depicted in Figure 5.

Figure 5 showcases the distribution of deviation coefficients defined in Equation (5)
after the conversion of different bridges. The distribution reveals that most bridges exhibit
small deviation coefficients, with nearly 95% having coefficients within 0.05. This distribu-
tion further substantiates the rationality of the cleaning conversion rule proposed earlier.
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This study also delves into exploring and analyzing various useful statistical features
of attributes within the bridge network database. For instance, Figure 6 visually represents
the distribution of span lengths among typical bridges in the region. The observation
deduced from this distribution is that the majority of bridges with a span length of 40 m or
less fall under the category of small and medium span bridges, which often share similar
structural properties.
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Table 5 offers insight into the distribution of bridge types within the regional bridge
dataset. Beam bridges emerge as the dominant structure type among the region’s bridges,
particularly prevalent for small and medium span bridges. Furthermore, Figure 7 illustrates
the prevalent section forms for beam bridges. Among the investigated bridges in Shandong
Province, box girder and slab girder section forms are the most frequently used, aligning
with the span distribution data depicted in Figure 6.

Table 5. Distribution of Bridge Types in the Dataset.

Bridge Type Arch Bridge Culvert Beam Bridge Other

Length 0.048 km 0.021 km 62,045 km 0.120 km
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Given the extensive historical structural health data that have been integrated, it holds
significance to delve into the evolving patterns of structural conditions for regional bridges
over time. Figure 8 serves to illustrate the distribution of structural condition scores for
bridges across different years. As the age of bridges increases, the distribution of structural
condition scores gradually shifts to the left, indicating an ongoing deterioration trend
observed in regional bridges.
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Figure 9, on the other hand, offers insight into the distribution of structural condition
levels for bridges within a specific region. This distribution further underscores the con-
sistent deterioration trend, evident as the proportion of bridges classified under level 1
decreases with increasing bridge age. It is notable that due to regular maintenance efforts,
bridges with structural condition levels below level 2 are quite rare—a trend observed
across most bridges in Shandong Province.
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5. Discussion

This study presents a pioneering approach to the extraction, cleaning, and integration
of data, culminating in the creation of a comprehensive regional bridge database. A key
innovation is the processing of unstructured inspection data from reports, a historically
challenging area in structural condition assessment. Unlike previous research, which
has mostly focused on road pavements [29,30], this study targets bridge inspection data,
implementing systematic procedures to address prevalent errors such as “record errors”
and “mismatched data.” This enhances the reliability and precision of the inspection data.

Incorporating multi-source data, including inspection records, traffic statistics, and
design and construction details, has proven effective in our case study. This integrated
approach has the potential to transform bridge condition assessment, providing a solid
base for informed decision making and strategic planning. The case study emphasizes
the importance of meticulous data cleaning and integration for regional bridges, which is
crucial for successful future data mining initiatives. This study addresses a research gap by
detailing the form, acquisition methods, integration rules, and information data structure
for multi-source regional bridge data.

This study can have worldwide benefits for the following reasons. First, although
the conversion rules of rating scores were validated using data from Shandong province,
its core approach—identifying intersections and invariants between different protocols—
holds universal value. This principle is significant for an international audience, offering a
systematic methodology adaptable to bridge assessment standards worldwide and aligning
with evolving standards.

Beyond just score conversion, the overall vision of this paper encompasses establishing
a comprehensive multi-source information database for regional bridges. The outlined
methods for data extraction, cleaning, and integration are globally applicable. For instance,
the selected attributes for the regional bridge database are relevant to most bridges world-
wide. The identification of Record Errors in inspection reports and the proposed cleaning
methods are universally applicable, providing a valuable toolkit for bridge assessment
professionals globally.

In conclusion, while this study’s immediate application is within the Chinese context,
the strategic approach and data management techniques presented have broad relevance.
They offer valuable insights and reference points for bridge condition assessment protocols
in other regions of China and countries around the world.

However, this study is not without its limitations. The current extraction method
primarily focuses on tabular data within inspection reports and does not account for
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human-generated errors or data manipulation within these reports. Future research could
enhance the robustness of the method by incorporating Natural Language Processing (NLP)
technologies to interpret and comprehend inspection reports more accurately. Additionally,
efforts could be directed toward assessing the authenticity of inspection data and exploring
various avenues for utilizing the data stored in the established database, such as optimizing
maintenance strategies for regional bridges.

6. Conclusions

In the context of assessing the condition of small and medium span bridges within
a region, this paper has thoroughly examined methods for extracting, cleaning, and inte-
grating multi-source information. It further presents the architecture of a regional bridge
information database, which serves as a foundational data structure for subsequent research
endeavors. The key conclusions drawn from this study are as follows:

1. This study presents a groundbreaking method for automatically extracting data from
unstructured bridge inspection reports, such as Word documents. This innovation
is globally relevant, offering a way to efficiently use large amounts of previously
untapped data, improving bridge analysis and infrastructure management worldwide.

2. This study identified and rectified ‘record errors’ and ‘mismatched data’ in bridge
inspection data, which has worldwide relevance. The developed cleaning method-
ologies ensure more accurate and harmonized datasets, applicable globally. Such
advancements in data precision are crucial for effective bridge management and safety
in various regions, transcending local codes and practices.

3. This research introduces a comprehensive data integration approach that encompasses
multiple information sources, including inspection data, traffic data, as well as de-
sign and construction drawings. By creating a unified bridge archive database, it
overcomes the limitations of isolated data at the individual bridge level. This unified
approach is vital for worldwide infrastructure management, as it facilitates advanced
data mining and deterioration modeling applicable to bridges in various regions,
enhancing global bridge safety and maintenance strategies.
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