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Abstract: The generalized Maxwell (GM) constitutive model has been widely applied to characterize
the viscoelastic properties of asphalt mixtures. The parameters (Prony series) of the GM are usually
obtained via interconversion between a dynamic modulus and relaxation modulus, and they are then
input to a finite element model (FEM) as viscoelastic parameters. However, the dynamic modulus
obtained with the common loading mode only provides the compressive and tensile properties of
materials. Whether the compression or tensile modulus can represent the shear properties of materials
related to flow rutting is still open to discussion. Therefore, this study introduced a novel method
that integrates the Kriging model into the genetic algorithm as a surrogate model to determine the
viscoelastic parameters of an asphalt mixture in rutting research. Firstly, a wheel tracking test (WTT)
for AC-13 was conducted to clarify the flow rutting development mechanism. Secondly, two sets
of the AC-13 viscoelastic parameters obtained through the optimization method and the dynamic
modulus were used as inputs into the FEM simulation of the WTT to compare the simulation results.
Finally, a sensitivity analysis of viscoelastic parameters was performed to improve the efficiency of
parameter optimization. The results indicating the viscoelastic parameters obtained by this method
could precisely characterize the development law of flow rutting in asphalt mixtures.

Keywords: asphalt mixture; viscoelasticity; flow rutting; kriging model; parameter optimization

1. Introduction

Rutting is one of the most serious diseases of asphalt pavement, seriously affecting
pavement performance and traffic safety. For the semi-rigid base pavement structure widely
used in China, pavement rutting is mainly caused by asphalt layers over the semi-rigid
base [1].

Research on rutting has become a challenging task due to the uneven and complex
mechanical properties of the asphalt mixture, as well as various external affecting factors [2].
The FEM method is a widely used method in pavement research, and finite element
software such as ANSYS and ABAQUS has been employed by many scholars to investigate
rutting in asphalt mixtures [3]. At the same time, many viscoelastic constitutive models
have been proposed to evaluate high-temperature rutting resistance and predict the rutting
of the asphalt mixture at high temperatures. Among these models, the GM model has
gained widespread acceptance due to its ability to better characterize the viscoelastic
behavior of asphalt mixtures [4]. Rameshkhah et al. applied the GM model to simulate the
viscoelastic behavior of asphalt mixtures and investigated the effects of asphalt material,
surface thickness, and load duration on the deformation of pavement asphalt surface
layers [5]. Alimohammadi et al. used the GM model in FEM viscoelastic simulations in
finite element software to predict rutting in asphalt pavement sections [6]. Sun et al. used a
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GM model to describe the complex mechanical behavior of asphalt mixtures and found
that adding high-modulus modifiers could enhance the high-temperature rutting resistance
of pavements [7]. Fan et al. optimized the practical application of epoxy asphalt concrete
(EAC) based on the GM model, demonstrating that the appropriate utilization of EAC can
reduce pavement rutting disease [8].

In fact, the GM model, in the form of the Prony series, describes the relaxation modulus
of a viscoelastic material [9,10]. However, since the strain must remain constant during
the experiment, it is difficult to directly determine the Prony series coefficients. Therefore,
it is common to determine the Prony series coefficients via interconversion between the
dynamic and relaxation moduli [11–13].

It should be noted that the measurements of a dynamic modulus are influenced by
multiple factors, such as the size, test method, and geometry of the sample [14]. The effect
of size can be characterized in terms of shape and mass; Di Benedetto et al. experimentally
demonstrated that specimen size and mass affect the magnitude of the dynamic modu-
lus [15]. In addition, there are many dynamic modulus testing methods with different
loading modes and different specimen shapes, including uniaxial compression, indirect
tension, four-point bending, etc., [16–18]. Huang et al. conducted dynamic modulus tests
for trapezoid beams and cylinders and found that the dynamic modulus was smaller in
trapezoid beam tests [19]. Ruan et al. reported that the dynamic modulus was larger
under a haversine loading mode than under a bell-shaped loading mode [20]. Qin et al.
comparatively studied two test modes, indirect tension and uniaxial compression, and
found that there were significant differences in the dynamic modulus, phase angle, and
displacement factor of asphalt mixes measured using these two test modes [21]. Cheng
et al. found that the dynamic modulus obtained in the four-point bending test was lower
than those of the uniaxial and indirect tension tests [22]. Therefore, the loading form has an
important influence on the determination of the dynamic modulus. When performing a
mechanical analysis of asphalt pavements, a suitable dynamic modulus test method should
be selected according to the force condition of the asphalt surface.

The deformation of an asphalt mixture as a result of shear failure is the main cause of
rutting [23]. Viscoelasticity parameters are required to characterize the shear resistance of
the material in rutting analysis and prediction. However, the dynamic modulus measured
in the generic loading mode only provides the tensile or compressive properties of the
material [24]. Whether the viscoelastic parameters obtained with the compressive or tensile
modulus can accurately characterize shear resistance or not has not yet been demonstrated.
In addition, dynamic modulus testing requires loading time at different temperatures and
loading frequencies, which places high demands on the accuracy of the equipment and
environment [15]. The wheel tracking test (WTT) has been widely used to evaluate the
high-temperature performance of asphalt mixtures due to its simple operation and easy
execution [25]. If the rutting resistance of an asphalt mixture can be obtained from WTT
while directly obtaining viscoelastic parameters for a rutting simulation and prediction,
efficiency will be effectively improved, and resources and costs will be saved.

In this study, a novel method was proposed to obtain the WTT-based viscoelastic
parameters of an asphalt mixture for rutting simulation and prediction. This method
takes advantage of both the high productivity of the Kriging model and the unique global
optimization properties of genetic algorithms. The GM model was selected to characterize
the viscoelasticity of the asphalt mixture. The rutting depth with loading time in the WTT
was used as base data to obtain the viscoelastic parameters of the asphalt mixture using
the optimization method. Meanwhile, a uniaxial compression loading mode was used
for the dynamic modulus test to obtain another set of viscoelastic parameters. Two sets
of parameters were input into the FEM simulation of the WTT to compare simulation
results. Finally, in order to develop a more efficient optimization scheme, each viscoelastic
parameter was examined in relation to rutting development. The remainder of this paper is
as follows. Section 2 introduces the optimization model and process; Section 3 describes
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the WTT, uniaxial compression test, and FEM models; the simulation results are analyzed
and discussed in Section 4; and Section 5 draws the conclusion.

2. Methodology
2.1. Optimization Objects

Asphalt mixtures are commonly considered as an elastic material, and the mechanical
response of asphalt pavements is analyzed through the multilayer linear elastic method.
However, asphalt mixtures exhibit viscoelastic behaviors under many conditions. Studies
have shown that asphalt mixtures exhibit more viscoelastic behaviors in experimental and
practical engineering applications. The characteristics of asphalt mixtures under traveling
loads are very complex. Therefore, it is more realistic to consider the asphalt mixture
as a viscoelastic material [26]. In general, the viscoelastic behavior of materials can be
characterized by a mechanical model composed of spring and dashpot elements in different
combinations. The stress relaxation behavior can be described by the Maxwell model, which
consists of spring and viscous dashpots in series. In the Kelvin model, the springs and
dashpots form parallel channels and are suitable for describing creep [27]. The long-term
viscoelastic mechanical behavior of asphalt mixtures requires more spring and dashpot
elements. The GM model consists of a linear elastic spring and an N-term Maxwell model
in parallel. Long-term relational behaviors can be captured by the Prony series. The Prony
series components have corresponding physical meanings in the GM model. As shown in
Figure 1, Ei and ηi represent the elasticity modulus of the spring and the damping of the
dashpot in the GM model, respectively.
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The GM model formulation taking the form of the Prony series can be expressed by
Equation (1).

E(t) = E∞ + ∑n
i=1 Eie−(t/τi) (1)

where τi represents the relaxation time of the i Maxwell element, τi = ηi/Ei, E(t) represents
the relaxation modulus, E∞ represents the equilibrium modulus, and n represents the
number of terms in the Prony series.

Previous studies have shown that the viscoelastic properties of materials could be
accurately characterized using a Prony series with n = 5 [28]. In this study, the Prony
series with n = 7 was selected to ensure accuracy. The relaxation time was determined
by the following Equation (2), in which E1~E7 were assumed to be the elastic modulus
corresponding to different relaxation times, and E∞ is the equilibrium modulus. The
physical meaning of the parameters is shown in Table 1.

τi = 10i−4, i = 1, 2, . . . 7 (2)
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Table 1. Prony series parameters.

τi(s) Ei(MPa)

0.001 E1
0.01 E2
0.1 E3
1 E4
10 E5

100 E6
1000 E7

Infinity E∞

Ansys (2021 R1) software was used to examine the Prony series constants for the
viscoelastic material. In addition, the regression parameters that fit the Williams–Landel–
Ferry (WLF) equation were determined, which were assumed to be C1 and C2. Finally,
10 parameters were determined as the optimization objects of this study, including E1~E7,
E∞, C1, and C2.

2.2. Kriging Surrogate Model

Due to the large number of parameters in this optimization model, the direct use
of the methods will lead to a low optimization efficiency. The surrogate modeling was
thus adopted to reduce the difficulties and improve the efficiency of calculation [29]. The
essence of surrogate modeling is to replace complex calculations with simple mathematical
models to save time and computation resources spent on numerical simulations. The
Kriging model proposed by Krige in 1951 is one of the multiple surrogate models [30]. The
Kriging model has demonstrated a superior capacity to combine global modeling with local
modeling. It shows a better efficiency in determining the output values than the numerical
method and converges faster and stably compared to artificial neural networks [31]. Zhang
et al. used the Kriging model instead of numerical simulations to quickly and accurately
predict the parameters of the bilinear cohesion zone model [32].

DACE (design and analysis of computer experiments) is a MATLAB toolbox to deal
with Kriging approximations of computer models. This software is typically used to
construct a Kriging approximation model based on the computer experimental data, and
takes this approximation model as a surrogate for computer models. In this study, the
DACE toolbox (Version 2.0) in MATLAB was utilized to construct the Kriging model, and
the model structure was briefly described to select appropriate model parameters. For a
given sample set S = [s1 · · · sm]

T(si ∈ IRn) and its response Y = [y1 · · · ym](yi ∈ IRq), it
was assumed that it meets the positive normalization condition, and then for the response
y(x) ∈ IRq of an unknown point, its predicted value by the Kriging model can be expressed
in Equation (3):

ŷ(x) = F(β:,l , x) + zl(x), l = 1, · · · , q (3)

where F(β:,l , x) is a polynomial regression model obtained from p-selected linear combina-
tion functions. It can be calculated as:

F(β:,l , x) = β1,l f1(x) + · · · βp,l fp(x) = f (x)T β:,l (4)

where (x)T =
[

f1(x) · · · fp(x)
]
, fn : IRn 7→ IR , βn,l represents the coefficient of the n poly-

nomial.
Notably, zl(x) in Equation (3) is a random function, and its expected mathematical

value was assumed to be 0. The covariance between any two points z(w) and z(x) can be
expressed by Equation (5):

E(
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where σl is the variance of the l component of the response set. In the covariance model
R(θ, w, x), θ is the random variable. The covariance model can be expressed by Equation (6):

R(θ, w, x) = ∏j
n=1 R(θ, wn − xn) (6)

In the DACE toolbox, there are six types of covariance models and three types of
polynomial regression models. In this study, the second-order polynomial and Gaussian
covariance models were used to construct the Kriging surrogate model, which was utilized
as a substitute for numerical simulation to predict the mechanical response under different
combinations of asphalt mixture viscoelastic parameters.

2.3. Optimal Algorithm

An optimal algorithm was used to determine the viscoelastic parameters in this study.
The genetic algorithm (GA) is an efficient search and optimization tool based on the
principle of survival of the fittest, and its research focuses on selecting the best fitness in
a randomized population [33]. In contrast to other optimization methods, GA performs
crossover and variation in each iteration, so that the stochastic aggregate covers the full
range of possibilities for each parameter and avoiding local minima. It makes GA more
capable of searching for the global optimal solutions [34]. The optimization objective
function in this study is shown in Equation (7). Referring to previous studies [35,36], a
reasonable range of values for each viscoelastic parameter was determined, as shown in
Table 2.

min f [E1−7, E∞, C1−2] = ∑n
i |D(E1−7, E∞, C1−2, ti)− D(ti)| (7)

where D(ti) is the rutting depth at time ti in the WTT, and D(E1−7, E∞, C1−2, ti) is the
rutting depth at time ti in the FEM simulation of the WTT. The optimization objective ( f )
is the sum of absolute error (SAE) between the test measurement points and the simulated
curve. As mentioned in Section 2.1, the optimization variables in Equation (7) are the
optimization objects, including E1~E7, E∞, C1, and C2.

Table 2. The range of optimized parameter values.

Viscoelastic Parameters Minimum Value Maximum Value

E1 0 15,000 MPa
E2 0 10,000 MPa
E3 0 8000 MPa
E4 0 5000 MPa
E5 0 3000 MPa
E6 0 2000 MPa
E7 0 1000 MPa
E∞ 0 100 MPa
C1 10 30
C2 10 300

GA is a global optimization algorithm that requires iterations [37]. Calculation of
the objective function requires repeated numerical simulations to obtain the rutting depth
curves for different viscoelastic parameters. In order to save time and improve optimization
efficiency, the Kriging model was used as a surrogate model instead of the FEM to predict
the objective function values under different viscoelastic parameters.

As shown in Figure 2, the optimization process consists of a series of steps. It is worth
noting that the size of the data volume is important for the accuracy of the optimization. In
order to improve accuracy and optimization efficiency, the Latin hypercube sampling (LHS)
method was used to generate enough sample points to establish the initial Kriging surrogate
model. Each point was chosen with equal probability randomly in its corresponding
subrange [32]. The initial population of GA and initial Kriging model were then constructed
by pairing each point with the true response calculated from finite element simulations. The
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possible optimal solutions predicted by the GA, i.e., the viscoelastic parameters, were input
into the FEM of WTT to obtain their corresponding SAE. The possible optimal solutions
predicted by the GA, i.e., the viscoelastic parameters, were input into the FEM of WTT to
obtain their corresponding SAE. The possible optimal solutions in combination with their
corresponding SAE were then added to the Kriging sample points to form a new sample
set. This process was repeated until it reached the convergence condition to obtain the
desired viscoelastic parameters.
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The Kriging surrogate model can predict the values of unknown points in N-dimensional
space by spatial interpolation, and the prediction results can combine with the original
N-dimensional space to form a “response surface”. During this process, the role of GA is to
search for the lowest point in this surface, and this lowest point is the optimal solution [32].
Therefore, the whole optimization step was divided into the following four parts:

(1) According to the constraints in the optimization model, the initial sample points
selected randomly using the LHS method are used to establish the initial Kriging
“response surface”.

(2) Genetic algorithms are utilized to obtain the optimal solution in this “response sur-
face”.

(3) The true values of the optimization results are calculated using the FEM simulations
and this set of true values is added to the initial sample points to renew the Kriging
“response surface”.

(4) The second and third steps are looped until the difference between the optimization
results SAE of the two adjacent ones is less than 1.

In this study, the mutation rate was set to 0.09 and the number of generations was
set to 6000. In each optimization iteration of GA, the initial population of the GA was the
sample points that construct the Kriging surrogate model.
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3. Materials and Experiment

In order to obtain the variation in rutting depth over time and the base data for
parameters’ optimizations, the WTT was conducted on the AC-13 asphalt mixture. Then,
the dynamic modulus test of AC-13 was carried out under the uniaxial compression loading
mode, and the interrelationship between the complex modulus and the relaxation modulus
for the FEM simulation of the WTT was analyzed to determine the viscoelastic parameters
of the material.

3.1. Material Properties

In this study, SBS-modified asphalt was selected as the binder, and its basic physical
properties are shown in Table 3. Limestone was chosen as the aggregate of the mixture and
limestone fines were selected as the filler. The designed gradation is shown in Table 4. The
asphalt content is 4.30%.

Table 3. Physical properties of the SBS-modified asphalt.

Items Penetration
(25 ◦C, 0.1 mm)

Ductility
(25 ◦C, cm)

Softening Point
(◦C)

Viscosity
(135 ◦C, Pa·s)

SBS-modified asphalt 69 >150 81.5 2.263

Table 4. The gradation of aggregate in the AC-13 asphalt mixture.

Sieve size/mm 16.0 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075

Passing rate/% 100.0 95.0 76.5 53.0 37.0 26.5 19.0 13.5 10.0 6.0

3.2. Wheel Tracking Test

The wheel tracking test (WTT) was conducted according to the Chinese test specifica-
tion [38]. A slab specimen of 300 mm × 300 mm × 50 mm was made by a wheel-milling
machine. The WTT test was conducted at 60 ◦C in the laboratory. Loading with a pressure
of 0.7 MPa was applied on the slab specimen through a rubber wheel with a width of
50 mm. During the test, the specimen underwent 42 times per minute by the rubber wheel
for 60 min. The rutting depth of the specimen and the dynamic stability (DS) were recorded
during the test. Figure 3 shows the process of the WTT.
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Figure 3. The WTT of AC-13.

The WTT results are listed in Table 5 and the curve of rutting depth over time is shown
in Figure 4. It can be observed that the rutting depth grows faster at the beginning of
loading, mainly due to the relatively large porosity of the specimen. The specimen was
densified over time by the loading, and eventually, pressure-dense rutting was formed.
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After the loading was applied to the specimen for 1000 s, the rutting depth growth rate
decreased significantly and stabilized. This was mainly attributed to the shear stress on the
asphalt mixture exceeding its shear strength in the post-loading phase. The vertical dis-
placement was mainly caused by the flow rutting from shear damage. The rutting growth
rate remained stable at this point, indicating that the linear viscoelastic characteristics of
asphalt mixtures are suitable for characterization by the GM model. Therefore, the vertical
displacement occurring between 1000 s and 3600 s was defined as the relative rutting
depth (RRD) to reflect the rutting resistance of the asphalt mixture itself. For viscoelastic
parameter optimization, the rutting deformation during the period from 1000 s to 3600 s
was fitted as the base data.

Table 5. WTT test results.

Materials Relative Rutting Depth (mm) Rutting Depth (mm) DS (Times/mm)

AC-13 0.355 1.328 7875
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3.3. Uniaxial Compression Test

In this study, the dynamic modulus of AC-13 was measured by a uniaxial loading
mode, and the viscoelastic parameters of the material GM model were determined by the
interrelationship between the complex modulus and relaxation modulus. If the relaxation
modulus of the material is described in the form of the Prony series, the complex modulus
of the material in the uniaxial compression test can be obtained according to the linear
viscoelastic theory as shown in Equation (8):

E∗(ω) = E∞ + ∑n
i=1 Ei·[iωτi/(1 + iωτi)] (8)

Cylindrical specimens with a diameter of 150 mm and a height of 170 mm were
prepared using a rotary compaction machine of Superpave. Then, a standard cylindrical
specimen with a diameter of 100 mm and a height of 150 mm was obtained by coring
and cutting. The complex modulus test was conducted according to the AASHTO’s T
342–11 standard [39] under a uniaxial compress mode. The experimental temperatures
were set as 5 ◦C, 15 ◦C, 30 ◦C, and 50 ◦C, and the half-sine shape load with frequencies of
25 Hz, 10 Hz, 5 Hz, 1 Hz, 0.5 Hz, and 0.1 Hz was applied at each temperature, as shown in
Figure 5. To ensure the test accuracy, the test followed a sequential procedure, commencing
with lower temperatures and progressing towards high temperatures. Simultaneously, the
frequency was gradually reduced from high values to low values.
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Figure 5. Determination of dynamic modulus of materials by uniaxial compression.

After determining the complex modulus, the dynamic modulus measured at different
temperatures (T) could be shifted into the reference temperature (T0) based on the-time-
temperature superposition principle in Equation (9):

E∗(ω, T) = E∗(αTω, T0) (9)

where αT is the shift factor, which satisfies the Williams–Landel–Ferry function [40], as
shown in Equation (10).

lgαT = −[C1(T − T0)/(C2 + T − T0)] (10)

where C1 and C2 are regression coefficients, related to material properties, T0 is the reference
temperature of the master curve, and T0 was set to 20 ◦C.

The dynamic modulus master curve at the reference temperature was plotted to fit the
modified Havriliak–Negami (MHN) function by the least squares method [41]. Figure 6
shows the dynamic modulus master curve at the reference temperature of 20 ◦C. In addition,
C1 was 21.6, C2 was 172.7, and the corresponding Prony series parameters were solved by
setting up a system of nonlinear equations by Equation (8). The relaxation time series was
determined by Equation (2). The results of Ei are listed in Table 6.
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Table 6. Prony series parameters of AC-13.

τi(s) Ei(MPa)

0.001 10,445.190
0.01 7307.682
0.1 4157.773
1 1697.304
10 825.104

100 158.589
1000 203.613

Infinity 40.232

4. Results and Discussion
4.1. Finite Element Model Simulation of WTT
4.1.1. Elements Division

The finite element model (FEM) was utilized to numerically simulate the WTT. The
dimensions of the developed model reflect the real specimen sizes used in the WTT, i.e.,
300 mm × 300 mm × 50 mm. ANSYS (2021 R1) was used to generate the model, and
Solid185 was employed as a modeling unit. A coordinate system was established to
describe the FEM, as shown in Figure 7a. The X-axis direction is the direction of wheel
travel. The region in proximity to the load underwent fine meshing. Specifically, the farther
the distance from the center of the load, the coarser the mesh. This division not only
ensured the accuracy of the finite element calculation, but also improved the calculation
efficiency. In total, the FEM consisted of 5600 elements and 6786 nodes.
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4.1.2. Loading Mode and Boundary Conditions

In pavement design and mechanical analysis, wheel loads are usually simplified to
circular and vertical uniform loads. However, it has been shown that the actual shape of
the contact between the vehicle tire and the road surface consists of a rectangle and two
semicircles. For modeling convenience, the load contact shape was simplified to a rectangle
as shown in Figure 8. The dimensions of the simplified rectangle were determined by
Equation (11) [3]:

L′ =
√

F/0.5227p = 56.98 mm (11)

where F is the wheel load in WTT, 1.2 kN; p is the tire pressure, 0.707 MPa. Therefore,
the length of the equivalent rectangular load is L = 0.8712L′ = 49.64 mm and the width of
equivalent load is B = 0.6L′ = 34.19 mm. In order to enable a more convenient meshing, the
load area was further reduced to a rectangular loading area with a length of 50 mm and a
width of 35 mm.
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Then, the dynamic load was applied to the slab in the WTT. For improving the
calculation efficiency, the dynamic load was converted into a static load according to the
load time accumulation principle [42]. The static load was applied at the center with a
magnitude of 0.7 MPa and a loading time of 600 s.

In order to simulate the actual situation of the WTT, the boundary conditions of the
FEM simulation were set according to the real situation of the WTT. The three directions of
freedom on the bottom surface of the model were constrained, and the two sides parallel to
the X-axis were constrained in the Y-axis direction, and the other two sides were constrained
in the X-axis direction. The loading and boundary conditions of the FEM simulation are
shown in Figure 7b.

4.2. Implementation of the Proposed Method

This section introduces the implementation process of the optimization method of
viscoelastic parameters of the asphalt mixture. Firstly, the Latin hypercube method was
used to obtain the random initial sample points according to the range of values of each
variable in Table 2. The extracted values were fed into the FEM simulation of the WTT to
obtain the simulation results of the rutting depth curve at different times. On that basis,
the corresponding SAE between the simulated result and the experimental result was
determined. Table 7 lists the first 25 sets of initial sample points.

Table 7. Specifics of the 25 sets of initial sample points.

E1
(MPa)

E2
(MPa)

E3
(MPa)

E4
(MPa)

E5
(MPa)

E6
(MPa)

E7
(MPa)

E∞
(MPa) C1 C2

SAE
(mm)

14,234.66 7921.82 4879.95 2146.03 877.61 214.35 346.29 48.03 14.53 177.45 69.4
5714.47 9778.50 5249.52 1326.61 1647.28 312.91 73.13 37.44 10.49 252.92 21.0
9962.96 6257.96 3831.73 1882.12 1630.42 275.32 203.61 49.45 21.14 181.13 190.3

11,330.95 5723.03 4463.77 1236.60 1051.13 322.64 62.64 49.49 21.12 197.10 28.0
6474.03 7112.44 4693.83 2387.69 995.12 142.90 1.71 49.54 11.33 130.31 59.2
7902.77 1769.87 4880.03 3252.78 877.61 214.24 94.37 43.20 11.24 230.81 26.6
5452.40 5737.01 4754.71 1066.52 1256.93 493.06 102.91 34.63 21.01 270.39 57.6

11,707.55 7383.45 5049.70 2427.01 1462.02 364.57 41.73 51.06 15.31 229.41 32.1
13,779.47 6259.29 4879.95 2145.98 1078.85 111.75 255.83 51.37 11.24 135.03 71.1
6155.02 9163.47 3339.41 1472.47 1579.49 430.89 398.18 25.78 15.81 290.35 186.9
7033.77 6666.79 4879.95 2005.77 1152.97 189.89 75.64 52.89 17.59 176.57 45.8
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Table 7. Cont.

E1
(MPa)

E2
(MPa)

E3
(MPa)

E4
(MPa)

E5
(MPa)

E6
(MPa)

E7
(MPa)

E∞
(MPa) C1 C2

SAE
(mm)

11,919.99 5439.85 3735.72 2981.71 763.80 173.23 216.89 53.08 16.85 182.77 47.6
14,437.67 8353.78 4880.32 2126.11 877.61 214.29 89.85 54.17 10.01 133.81 82.0
7459.34 5357.24 3782.13 1389.79 1929.09 101.98 157.03 55.37 12.57 107.72 190.0
7658.08 7921.82 3018.70 2327.11 1293.32 232.09 199.00 56.18 24.75 263.28 51.6
5879.70 8965.31 4879.95 2146.03 877.61 110.91 249.12 57.54 10.76 130.31 29.7
7943.79 6229.67 3966.84 2617.61 835.60 168.14 86.23 59.18 19.32 157.79 104.3
9677.71 6152.51 4879.95 2146.03 1265.92 232.09 198.99 59.20 21.20 169.10 193.6

10,383.75 9718.84 3134.27 1497.97 788.03 386.57 139.89 31.41 12.44 122.27 27.9
13,369.45 9963.37 3884.26 2757.35 637.19 357.26 279.93 43.97 13.81 294.36 149.8
14,636.83 7818.66 4936.38 2894.79 587.86 411.26 131.82 39.96 23.08 137.14 32.8
13,326.93 5172.03 5783.64 1212.75 1818.82 328.38 307.02 49.05 13.89 280.14 93.8
11,445.29 7796.16 5774.63 2227.54 1788.96 157.95 445.18 51.95 13.13 240.10 23.4
7344.10 7338.86 4693.83 2389.09 690.83 335.25 93.48 22.07 12.03 232.62 22.6

The viscoelastic parameters were optimized following the steps in Figure 2. The
difference of less than 1 mm between the SAE of two adjacent optimization iterations
was the convergence condition for the optimization process. In this study, the first 66 sets
of sample points were randomly extracted using the Latin hypercube sampling method
to construct the initial Kriging model, and the parameter optimization process started
from the 67th iteration. The SAE for each iteration is shown in Figure 9. Although the
optimization curve fluctuates greatly, it generally shows a downward trend.
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Figure 9. Optimization iteration convergence curve.

The optimization process ended at the 234th iteration and the convergence criterion
was reached at an SAE of 6.03 mm. From Table 8, E1 shows the maximum modulus of
10,133.326 MPa, while the equilibrium modulus is the minimum at 41.208 MPa.

Table 8. Optimized results.

E1
(MPa)

E2
(MPa)

E3
(MPa)

E4
(MPa)

E5
(MPa)

E6
(MPa)

E7
(MPa)

E∞
(MPa) C1 C2

SAE
(mm)

10,133.33 7753.27 4879.95 2147.25 877.58 214.29 255.64 41.21 11.1 129.2 6.03
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4.3. Comparison of Simulation Results

In order to verify the effectiveness of the method proposed in this paper, the WTT
data were used as the reference data, and the accuracy of the optimized parameters (OP)
and the experimental parameters (EP) were compared using the FEM of the WTT test.
Since rutting due to the compaction behavior of the asphalt mixture dominated the pre-test
period, the trend of rutting depth in the pre-test period could not be characterized in
terms of viscoelasticity. Thus, the relative rut depth changes of the test and simulation
were compared. The simulation and test results are shown in Table 9. The relative rutting
depth and dynamic stability of the FEM simulations using the OP were 0.366 mm and
7756 times/mm, and the error rates were 3.1% and 1.5%, respectively, which were lower
than those of FEM simulations using the EP.

Table 9. Comparison between simulation and test results.

Items Relative Rutting
Depth (mm) DS (Time/min) Error Rate of Relative

Rutting Depth (%) Error Rate of DS (%)

WTT 0.355 7875 - -
Simulation of OP 0.366 7756 3.1 1.5
Simulation of EP 0.339 6033 4.5 23.4

After loading for 1000 s, we compared the trends of rutting depth between the simula-
tion and tests, as shown in Figure 10. It can be seen that the rutting depth curves over time
simulated by OP show a good agreement with the curve from the WTT data, and the result
was more consistent with the development of flow-type rutting formed by shear action.
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Figure 10. Comparison of rut depth variation trend between simulation and experiment.

The vertical shear stress distribution in the X = 0 plane at the end of loading is shown
in Figure 11. It can be seen that the shear stress within the loading area was significantly
greater than that in other areas, and the vertical shear stress gradually decreased with
increasing depth. The maximum shear stress was 1.43 MPa, and the shear strength of the
SBS-modified AC-13 asphalt mixture was generally 1.5–1.7 MPa [43], indicating that the
shear action on the asphalt mixture caused the deformation and eventually induced rutting.
This was consistent with the formation mechanism of flow-type rutting.
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In addition, the values of C1 and C2 differed greatly with regard to the two sets
of parameters. Studies have shown that C1 and C2 are closely related to the intrinsic
activation energy and the temperature sensitivity of the material, and changing the reference
temperature will lead to large changes in C1 and C2 simultaneously [44]. In this study, the
viscoelastic parameters of the material were obtained by two methods, and the reference
temperature in the WLF equation was set to 20 ◦C, which avoided the influence of the
reference temperature. Therefore, the difference between C1 and C2 might be related to the
inherent activation energy of the asphalt mixture, and the reason for the difference might
be the way to form the specimens and the loading mode.

The comparison results in Table 9 showed that the material viscoelastic parameters
obtained by the optimization method could effectively characterize the rutting resistance of
the material and were more accurate in simulating and predicting the flow-type rutting.
Therefore, the FEM simulation of WTT and the prediction of flow-type rutting were imple-
mented by using only the WTT, and the simulation accuracy was higher than the simulation
results using the EP. In short, the optimization method can replace the dynamic modulus
measurement method when utilizing the FEM to analyze and predict the flow-type rutting
of the asphalt mixture, which not only can improve the accuracy of the simulation results
but also save resources and increase efficiency.

4.4. Sensitivity Analysis of Viscoelastic Parameters

Due to the large number of optimization variables in this study, different parameters
have distinct sensitivities to SAE in the optimization process. By analyzing the sensitivity
of each parameter to SAE, a better optimization strategy could be determined to reduce
the number of iterations and improve the optimization efficiency. Spearman correlation
analysis was performed on the viscoelastic parameters and SAE, and the results of the
analysis are shown in Table 10.

Table 10. Correlation analysis between viscoelastic parameters and SAE.

Items E1 E2 E3 E4 E5 E6 E7 E∞ C1 C2

Correlation
coefficient −0.022 0.105 −0.046 −0.034 0.245 0.222 −0.414 0.394 0.427 0.359

p-value 0.731 0.099 0.475 0.597 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

p-value less than 0.05 indicates a significant correlation with SAE.

According to the p-value, the parameters E1 ∼ E4 had no significant correlation with
SAE, while the rest were significantly correlated with SAE. The correlation coefficient
shows that as the relaxation time increases, the correlation between its corresponding
modulus of elasticity and SAE also gradually increases. In addition, C1 and C2 were
significantly correlated with SAE. They were used as material-related regression parameters,
and the reasons for the variation in them have been analyzed in the previous section.
Therefore, the sensitivity analysis of the material constants was not analyzed in this study,
whereas the sensitivity analysis of E5 ∼ E7 and E∞ indicated a more significant correlation
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with SAE. The values of E1 ∼ E4, C1, and C2 were obtained through optimization and
remained consistent. According to the different parameter combinations shown in Table 11,
FEM simulation was conducted to analyze the influence of each parameter on the rutting
resistance of the asphalt mixture. In combination with the SAE listed in Table 11, the
curves of relative rutting depth with loading time and SAE for different combinations of
viscoelastic parameters in Table 11 were plotted, as shown in Figure 12.

Table 11. The viscoelastic parameter combinations and the corresponding error rate of SAE.

Items E5
(MPa)

E6
(MPa)

E7
(MPa)

E∞
(MPa)

SAE
(mm) Error Rate of SAE (%)

Basic
parameters 877.58 214.29 255.64 41.21 6.03 -

Increscent E5 1755.15 214.29 255.64 41.21 6.66 10.45
Reductive E5 438.79 214.29 255.64 41.21 7.04 16.75
Increscent E6 877.58 428.58 255.64 41.21 7.18 19.07
Reductive E6 877.58 107.15 255.64 41.21 7.08 17.41
Increscent E7 877.58 214.29 511.28 41.21 6.68 10.78
Reductive E7 877.58 214.29 127.82 41.21 9.80 62.52
Increscent E∞ 877.58 214.29 255.64 82.42 101.01 1575.12
Reductive E∞ 877.58 214.29 255.64 20.60 191.58 3077.11
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From Figure 12, it can be seen that the modulus of elasticity corresponding to a larger
relaxation time is more likely to affect SAE, and its influence on SAE increases as the
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relaxation time increases. The most significant parameter affecting the SAE was E∞, and
the increase or decrease in E∞ would result in SAE error rates of 1575.12% and 3077.11%,
respectively. In addition, E∞ has the most significant effect on both the rutting deformation
rate and the rutting depth. The larger the E∞, the smaller the rutting deformation rate and
the rutting depth. E∞ is the equilibrium modulus of the material, which represents the
modulus when the time is infinite, and represents the recoverable modulus of elasticity as
well. The higher the equilibrium modulus, the higher the stiffness of the material and the
smaller the deformation rate and permanent deformation under the same loading mode.
The sensitivity analysis of these parameters concluded that E5~E7, E∞, and the material
constants C1 and C2 had significant effects on the rutting deformation rate and deformation
depth. For the subsequent optimization of other viscoelastic parameters of asphalt mixtures,
only these six parameters can be optimized under the premise of ensuring the accuracy of
the optimization results to improve the optimization efficiency.

5. Conclusions

In this study, a novel method distinct from the traditional test method for determining
the viscoelastic parameters of asphalt mixtures was proposed. Kriging models were used
in the GA to determine the viscoelastic parameters in the generalized Maxwell model of the
asphalt mixture based on the WTT data, in order to characterize the rutting development
pattern. The viscoelastic parameters of the asphalt mixture were measured by uniaxial
compression tests. The FEM of the WTT was utilized to compare the accuracy of the
two sets of parameters. Finally, sensitivity analysis was performed on the viscoelastic
parameters. The following conclusions were drawn from this study:

• The generalized Maxwell model used in the finite element models could accurately
reflect the rutting development of asphalt mixtures under high temperatures. The
rutting depth variation curves obtained from the finite element models using the
optimized parameters were in a high agreement with the WTT curve, showing that the
proposed method could determine the viscoelastic parameters of the asphalt mixture
for rutting study and prediction.

• Compared with experimental parameters, the optimized parameters could more
accurately simulate the trend of the flow-type rutting depths and reflect the rutting
resistance of the asphalt mixture compared to parameters from the experiment. In
addition, there was a large error in the simulation of the rutting deformation with the
viscoelastic parameters obtained under the uniaxial compression loading mode. This
might be related to the inability of this loading mode to reflect the shear properties of
the material.

• Among the 10 parameters mentioned above, the dynamic modulus corresponding
to a larger relaxation time was more sensitive to the mechanical response of the as-
phalt mixture. The equilibrium modulus had the most significant influence on the
growth rate and rutting depth. Therefore, the number of parameters can be appropri-
ately reduced to improve the optimization efficiency in the subsequent parameters’
optimization.
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