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Abstract: The present study evaluated the impacts of powdered Astragalus membranaceus extract
(AME) on the growth, physiological responses, and serum immunity of Pangasianodon hypophthalmus
juveniles. Four test diets were formulated to include varying AME levels as 0.0 (control), 1.5 (AME1.5),
3.0 (AME3.0), and 4.5 (AME4.5) g/kg. Fish weighing approximately 11.50 g were stocked into four
triplicate groups and hand-fed on the test diets three times daily for two months. At 60 days post-
feeding, the growth performance, including weight gain and the specific growth rate, was increased
quadratically (R2 > 0.90) with increasing AME inclusion levels. An improvement in the feed intake
and feed conversion ratio were also noticed in groups fed at different AME levels. The whole-body
and amino acid composition were unaffected by the test diets. A significant quadratic trend in the
digestive enzymes (lipase, α-amylase, and protease) was found along with increasing AME inclusion
levels. Liver enzymes associated with liver functions were improved by AME dietary inclusion
levels. Meanwhile, the blood urea nitrogen, uric acid, and creatinine values were unaffected by AME
dietary inclusion. On the other hand, serum immunity (lysozyme and total Igs) was elevated with a
significant quadratic trend along with increasing AME dietary inclusion levels. Liver MDA levels
decreased with increasing AME levels. Liver CAT, GPx, and SOD enzyme activities demonstrated a
significant increasing trend along with dietary AME inclusion. The aforementioned effects of dietary
AME on P. hypophthalmus health underpinned the potentiality of AME to be used as a phyto-additive
to improve the functionality of aquafeed.

Keywords: herbal medicines; growth; digestive enzymes; striped catfish; immunity

1. Introduction

Pangasianodon hypophthalmus is generally known as striped catfish, pangas catfish, or
pangasiid catfish. It is a freshwater fish popularly farmed in several Asian countries [1,2].
Its high tolerance to environmental conditions, along with its higher growth rate, lower
operational expenditures, and relatively higher economic returns, make it a favorable
candidate for finfish aquaculture in several countries [3,4]. This fish is usually cultivated in
high stocking density [2], which may increase its susceptibility to various infectious agents,
especially bacterial pathogens [5]. However, to achieve the intensification of production,
researchers have engaged, in recent years, to find novel immunostimulants to enhance
the immunity of cultured species and support antibiotic- and chemotherapeutic-free and
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disease-resistant sustainable aquaculture. Using plant herbal extracts as immunostimulants
has been considered a common practice to improve the aquafeed’s functionality [6–8].
Several researchers have assessed a variety of plant- or herbal extract-based diets to promote
the growth and immunity of P. hypophthalmus. For example, Zingiber officinale, Euphorbia
hirta, Phyllanthus amarus, Azadirachta indica, and Allium sativum were proven to be potential
immunostimulants for P. hypophthalmus [9,10]. Moreover, Andrographis paniculata extract
also improved the immune responses and disease resistance of juvenile pangas catfish [11].
Our recent study also reported the positive impacts of Silybum marianum extract on the
growth, immune performance, antioxidant condition, and intestine morphometry of this
valuable fish species [8].

Astragalus membranaceus (AM) is a frequently used medicinal plant in China. It has
well-known immunostimulatory, antioxidant, general tonic, and hepato-protective prop-
erties due to its phyto-components of Astragalus polysaccharides, flavonoids, phenolics,
alkaloids, and saponins [12–14]. There is a plethora of studies on the beneficial roles
and applications of AM as a functional feed supplement in several finfish and shellfish
aquaculture. For example, feeding Oreochromis niloticus on a diet supplemented with
0.1% powdered AME extract increased its resistance to Aeromonas hydrophila [15]. Dietary
AM plants also promoted the growth performance, antioxidant responses, immunity, and
increased stress tolerance of yellow perch (Perca flavescens) [16]. Furthermore, dietary
application of AM (1.5, 3, and 4.5%) promoted growth and antioxidative status, as well as
modulated cold water stress tolerance in bluegill sunfish (Lepomis macrochirus) [17]. Dietary
supplementation with a dried AM plant (0.25% and 0.5%) also enhanced the growth, im-
munity, and antioxidant status of Litopenaeus vannamei [18]. However, a recently published
study demonstrated that dietary supplementation with 0.1–0.8% AM root extract did not
improve the growth, hepatic morphology, or immunity of hybrid groupers (Epinephelus
lanceolatus ♂× E. fuscoguttatus ♀) [19].

Astragalus polysaccharides (ASP) are dietary supplements that are the subject of exten-
sive research and recent publications in finfish and shrimp species. Diet supplementation
with 0.05% and 0.10% ASP promoted growth, digestive enzyme activities, and intesti-
nal morphology of larval large yellow croaker (Larimichthys crocea) [20]. Dietary ASP
(50 and 150 mg/kg) ameliorated the growth, antioxidant activity, and immunity of tur-
bot (Scophthalmus maximus) [21]. In addition, dietary ASP obtained from dried roots of
A. membranaceus (100 mg/kg) enhanced the growth and immunity of Carassius auratus juve-
niles [22]. Moreover, dietary 0.01% ASP improved the growth, gut health condition, and
anti-viral immunity of Danio rerio [23]. Furthermore, dietary ASP (1 g/kg) also enhanced
the immunity, intestinal microbiota, and disease resistance of Ctenopharyngodon idella [24].
It was recently reported that dietary ASP (100, 200, and 300 mg/kg) significantly improved
the growth, antioxidant responses, and immunity of Catla catla [25]. In addition, dietary
supplementation with ASP obtained from dried sliced roots of A. membranaceus (30 g/kg)
also promoted the growth and improved disease resistance of L. vannamei [26]. Lately, it
has been demonstrated that dietary 0.15% ASP and 0.30% ASP significantly improved the
immunity, disease resistance and attenuated toxicity signs in Nile tilapia [27,28].

Various reports regarding emerging issues have jeopardized the aquaculture industry,
such as the elaboration of antibiotic- and therapeutics-resistant bacteria and the deposition
of antibiotic and chemotherapeutic compounds in the aquaculture products [29]. These con-
cerns have led to efforts to find suitable, effective, economic, and eco-friendly alternatives
such as dietary herbal extracts [6–8]. Herein, though several researchers have conducted
several experimental trials on P. hypophthalmus after its introduction in Egypt [4,8], there are
no known reports on the effects of AME as a feed additive for striped catfish juveniles. Con-
sequently, this study was intended to assess the supplementing impacts of powdered AME
on the growth performances, serum immunity, hepato-renal functions, and antioxidant
responses of P. hypophthalmus juveniles to test its suitability for improving the functionality
of striped catfish diets and maintaining sustainable aquaculture.
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2. Materials and Methods
2.1. Herbal Extract and Analysis of Its Bioactive Constituents

Powdered Astragalus membranaceus extract (AME) was procured from Free Trade
Egypt Co., Alexandria, EGY. The GC-MS method analyzed the bio-active constituents in the
ethanolic extract of AME, as illustrated by Gomathi et al. [30]. Bioactive components were
characterized and identified by mass spectral and relative retention time (RT) comparisons
with the WILEY 09 and NIST14 Mass Spectral databases and libraries. The flavonoid
compounds in AME were determined by HPLC analysis following Mattila et al. [31],
whilst the phenolic content of AME ethanolic extract was measured in accordance with the
methods outlined by Öztürk et al. [32].

2.2. Fish and Adaptation Conditions

At a fish hatchery in Borg El Arab, Alexandria, EGY, three hundred juvenile healthy
P. hypophthalmus were raised in spherical black fiberglass tanks with 1000 L of water capacity
for fifteen days before starting the experiments (for adaptation). During this period, fish
were fed daily on a well-balanced reference diet (30% crude protein (CP), Aller Aqua Co.,
October City, Egypt). The feed ingredients of this diet were formulated to contain all the
nutritional necessities for rearing the fish in accordance with NRC guidelines [33] (Table 1).

Table 1. Ration elements, nutrients, and chemical composition (% on dry matter (DM) basis) of the
reference diet.

Ration Elements % DM Basis

Fish meal (FM; 72% CP) 1 10.0
Soybean meal (SBM; 46% CP) 2 34.0

Corn gluten meal (CGM; 60% CP) 3.5
Rice bran 14.0

Yellow corn meal 15.0
Wheat bran 9.0
Wheat flour 13.0

Sunflower oil 0.70
Vitamin and Mineral premix 3 0.30

Di-calcium phosphate 0.50
Total 100

Chemical composition (% on DM basis)
Dry matter (DM) 90.19

Crude protein (CP) 30.82
Ether extract (EE) 6.93

Ash 6.59
Crude fiber (CF) 8.81

Nitrogen-free extract (NFE) 4 46.85
Gross energy (GE; KJ/g diet DM) 5 18.06
Protein to energy ratio (P/E ratio) 6 17.06

Formerly published in our study [8].1 Danish FM (contains 72.0% CP), procured from TripleNine Fish Protein,
DK-6700 (Esbjerg, Denmark).2 Egyptian soybean flour (contains 46.0% CP), procured from Cargill Trading Egypt
Co. (Katameya, Cairo, Egypt).3 AGRI-VET CO. for manufacturing Vitamins and Feed additives (10th of Ramadan
City A2, Egypt). The vitamin premix mixture (contains per 1 kg): Vitamin A (17,000 IU); Vitamin D3 (2400 IU);
Vitamin E (240 mg); Vitamin K3 (11 mg); Vitamin B1 (24 mg); Vitamin B2 (52 mg); Vitamin B3 (275 mg); Vitamin
B6 (25 mg); Vitamin B12 (0.05 mg); Vitamin C (220 mg); Folic acid (15 mg); Calcium d–pantothenate (55 mg);
Biotin (1.5 mg); Inositol (125 mg), and Choline chloride (2500 mg). The mineral mixture (contains per 1 kg) is
composed of the following: Iron (74.50 mg/kg); Copper (12.5 mg/kg); Manganese (200 mg/kg); Zinc (80 mg/kg);
Iodine (2 mg/kg); Selenium (0.330 mg/kg), and Cobalt (1.5 mg/kg).4 NFE = 100 − (CP + EE + CF + Ash). 5 GE
was estimated on the basis of 23.60, 39.40, and 17.20 kJ/g of CP, EE, and NFE, respectively following NRC
guidelines [33].6 P/E ratio was estimated as mg crude protein/KJ.

2.3. Formulation of AME-Based Diets

The powdered AME was fully blended with the reference diet at varying inclusion
levels of 0.0, 1.5, 3.0 and 4.5 g/kg diet to make 4 experimental diets termed AME0.0 (control),
AME1.5, AME3.0, and AME4.5, respectively. For 15 min, we thoroughly combined and
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pulverized all of the feed ingredients. A suitable amount of sunflower oil and warm distilled
water (20.0 ◦C) were added to the feed ingredients to make a dough. The formulated feed
pellets of 2.0 mm in diameter and 2.0 mm in length were produced by passing the dough
through a meat mincer. The prepared experimental diets were subjected to the sun to dry,
then preserved in Ziplock bags, labeled with the group names, and stored in the refrigerator
(−18 ◦C) until used for feeding the fish groups during the feeding trial.

2.4. Fish Rearing and Experimental Design

Juvenile striped catfish with an initial body weight of (11.50 ± 0.5 g) were allocated
into four triplicate groups and were cultivated into twelve rectangular glass aquaria. Each
glass aquarium was sized 1.0 m × 0.90 m × 0.75 m with a 100 L water capacity. There
were 30 individuals per group (10 fish per aquarium). Throughout the duration of the
experiment, fish were raised in these aquariums for two months. The lighting schedule
was configured to a 12 h cycle of light and dark, whereas fish reared in the day sunlight
for 12 h and reared in the night for 12 h using Medium Bi-Pin Fluorescent Lamps with a
Power of 36.0 Watt. Two air stones attached to the air pumps supported each aquarium
to maintain enough aeration. On the previously formulated test diets, fish were hand-fed
three times a day (6:00 a.m., 1:00 p.m., and 8:00 p.m.) with 3% of their wet body weight.
Equal meals were given to each group during each feeding time. Every two days, the water
column in each replica was exchanged, and well-aerated water was used (for around 33%
of the water column). Fecal matter and remaining food particles were siphoned off during
water exchange to avoid deterioration of the water quality parameters.

2.5. Water Quality Measurements

Using the HI9829 multiparameter equipment (HANNA instruments, EGY), the daily
evaluation of dissolved oxygen (DO) and pH values was performed. A water thermometer
measured the water’s temperature (◦C). A pH meter was used to check the pH levels
(HANNA 8424, Hungary). A DREL portable spectrophotometer 2000 was used to measure
the amounts of nitrite (NO2; mg/L) and unionized ammonia (NH3; mg/L) (HACH Co.,
Loveland, CO, USA). DO, water temperature, pH, NO2, and NH3 values were kept at
6.6 ± 0.4 mg/L, 29.0 ± 1 ◦C, 8.0 ± 0.05, 0.03 ± 0.01, and 0.02 ± 0.01 mg/L, respectively.

2.6. Determination of Growth, Feed Utilization, and Survival Rates

The final fish weight (FW) was determined by dividing the total fish weight in each
aquarium by their number. The following equations were used to estimate the growth, feed
utilization and fish survival:

Weight gain (WG; g) = Final weight (FW) − Initial weight (IW);
Weight gain percentage (WG%) = 100 × (FW − IW)/IW;
Specific growth rate (SGR; %/day) = [Ln FW − Ln IW] × 100/60 (experiment period

in days);
Feed intake (FI; g feed/fish/day) = The total amount of diets used by fish all over the

whole feeding period;
Feed conversion ratio (FCR) = FI (g)/WG (g);
Fish survival rates (SR; %) = [Fish number per group after the feeding trial/their initial

number] × 100.

2.7. Proximate Composition of the Whole-Body and Amino Acid Retention

After the end of the feeding trial, three fish per replicate (9 fish per group) were
frozen at −20 ◦C then transferred to the laboratory to analyze the whole-body proximate
chemical analysis and amino acid retention. According to AOAC procedures, the proximate
chemical composition of the entire fish body, including crude protein (CP), moisture (%),
ether extract (EE), and ash (%), was assessed [34]. The composition analysis of the essential
amino acids (EAAs) and non-essential amino acids (% of total amino acid) retention in the
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whole-body of the treated fish was conducted using Amino Acid Analyzer (SupNIR-2700
series) following the guidelines provided by the manufacturer.

2.8. Sampling Procedures

All fish groups fasted for one day after the feeding trial so that blood and liver samples
could be taken at a uniform time. Clove oil (50 µL/L; Algomhuria company, Alexandria,
Egypt) was used to induce anesthesia. The serum was separated from blood samples. Liver
samples and homogenates were taken from fish in a sterile environment.

Serum Collection and Preparation of Tissue Homogenates

Nine fish were sampled for each group. Blood was sampled from their caudal ves-
sels into sterile Eppendorf tubes without using anticoagulant. Blood was centrifuged at
3000 rpm for 10 min at 4 ◦C, and then the serum samples were kept at −20 ◦C until used.
The liver samples (9 per group) were sampled aseptically and kept on ice. Liver samples
were homogenized, centrifuged for 15 min at 5000 rpm at 4 ◦C, and then supernatants were
collected in sterile test tubes and stored at −20 ◦C until they were used to measure liver
antioxidants, while sediments were discarded.

2.9. Serum Biochemical Assays

Specific diagnostic kits (Biodiagnostic Co., Cairo, Egypt) were used to measure enzy-
matic tests at a wavelength of 540 nm for enzymes such as aspartate transaminase (AST),
alanine transaminase (ALT), and alkaline phosphatase (ALP) according to the protocols
outlined in [35,36]. The digestive enzymes were assessed in serum samples by diagnostic
kits (Cusabio Biotech Co. Ltd., Wuhan, China) following the procedures provided by
the supplier. Amylase, lipase, and protease enzyme activities were determined by the
methods represented in [37–39]. Following the protocols outlined, blood urea nitrogen,
creatinine, and uric acid levels were measured using diagnostic kits (Biodiagnostic Co.,
Cairo, Egypt) [40–42].

2.10. Serum Immunity Parameters

Serum lysozyme (LZ) activity was measured using a turbidimetric technique with
a Micrococcus lysodeikticus suspension (Sigma-Aldrich, St. Louis, MI, USA) [43]. LZ ac-
tivities in serum were determined using a standard curve established from LZ extracted
from chicken egg white (Sigma-Aldrich, USA). The serum samples’ total immunoglobulin
content was measured following the manufacturer’s instructions of the diagnostic kits
(Cusabio Biotech Co. Ltd., China) [44,45].

2.11. Hepatic Antioxidant Biomarkers

Diagnostic kits were used to check the levels of the hepatic antioxidant enzymes as cata-
lase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) (MyBioSource
Inc., San Diego, CA, USA) following the manufacturer’s guidelines [46–48]. Malondialde-
hyde (MDA; the lipid peroxidation marker) was measured in liver homogenate using the
thiobarbituric acid (TBA) technique at OD 532 nm [49,50].

2.12. Statistical Analysis

Results were analysed as a function of dietary supplementation of AME using complex
regression models. Best-fitted models were applied with checking inbuilt options for the
normality od residuals using the D’Agostino–Pearson Omnibus Test. Adjusted R squares < 0.2
were rejected in favour of simpler models.

3. Results
3.1. The Phyto-Components, Flavonoids, and Phenolics Present in AME Supplement

GC-MS spectra of AME showed the peaks that exhibited the main constituents of
AME as identified by GC-MS analysis (Supplementary Materials). GC-MS chromatogram
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signifies the separated bioactive constituents of AME. The compounds have been found
and cross-referenced with their counterparts in the WILEY 09 and NIST14 mass spectrum
databases. The compound names, retention time (RT), Area %, molecular formula, and
molecular weight are described in detail (Supplementary Materials). Table 2 shows the
HPLC analysis of the concentration (µg/mL), and RT of phenolics and flavonoids detected
in the AME feed supplement. An ample number of flavonoids (such as rutin, catechin,
quercetin, kaempferol, luteolin, chrysoeriol, naringin, and apigenin) and phenolic com-
pounds (such as syringic acid, caffeic acid, ferulic acid, protocatechuic acid, gallic acid,
ellagic acid, p-coumaric acid, resveratrol, vanillic acid, and gentisic acid) have been found
in the AME that has been used in the present experiment (Table 2).

Table 2. HPLC results of the flavonoids and phenolics present in Astragalus membranaceus extract
(AME) used in the present study.

Phytochemicals RT (min) Concentration (µg/mL)

Flavonoids
Rutin 4.6 5.23

Catechin 12.01 4.14
Quercetin 6.9 9.21

Kaempferol 8.1 4.05
Luteolin 9.0 6.09

Chrysoeriol 15.0 19.08
Naringin 5.2 4.12
Apigenin 10.0 12.45
Phenolics

Syringic acid 3.0 8.69
Caffeic acid 4.7 3.22
Ferulic acid 6.8 5.66

Protocatechuic acid 7.8 3.31
Gallic acid 9.0 3.77
Ellagic acid 11.0 6.33

p-Coumaric acid 4.0 6.14
Resveratrol 13.8 7.01
Vanillic acid 14.6 6.79
Gentisic acid 2.0 6.55

3.2. Growth Performance, Feed Utilization, and Survival Rates

The growth performance, including WG (Figure 1A) and SGR (Figure 1B) of juvenile
P. hypophthalmus, were increased linearly (R2 > 0.90) with increasing AME inclusion levels,
as determined by second-order polynomial regression analysis. A significant linear increase
in FI (Figure 1C) and decrease in FCR (Figure 1D) following quadratic regression were
found in fish fed with all AME inclusion levels compared to the AME0.0 diet. Interestingly,
after the end of the feeding experiment, the fish survival rates (SR%) were not considerably
altered between the experimental and the CONT groups. It was found that the SR% was
100% in all groups including the CONT group.

3.3. Whole-Body Proximate Analysis and Amino acid Composition

At the end of the trial, AME dietary supplementation did not influence the body
composition, including moisture, CP, EE, and ash of juvenile P. hypophthalmus, manifested
by no statistically significant variation and linear trend (Table 3). The effects of AME-
based diets on the essential and non-essential amino acid retention in the whole-body of
juvenile P. hypophthalmus are exemplified in Table 4. Results showed that none of the tested
diets influenced the essential and non-essential amino acid composition, manifested by no
statistically significant variations (Table 4).
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Figure 1. Growth performance including weight gain (WG) (A) and specific growth rate (SGR) (B) and
feed utilization including feed intake (FI) (C) and feed conversion ratio (FCR) (D) of P. hypophthalmus
fed diets with different AME inclusion levels. Data lines denote best fit models for the data. Equations
and R square in the figures demonstrates the relationship between the measured parameters and
AME inclusion levels. Individual marker indicates the number of technical replicates (n = 3).

Table 3. Whole body composition analysis of striped catfish juveniles fed diets supplemented with
AME inclusion of levels after 2 months feeding trial.

Parameters AST0.0 AST1.5 AST3.0 AST4.5

Moisture (%) 73.20 ± 0.20 73.55 ± 0.71 74.47 ± 0.75 73.69 ± 0.64
Crude protein (%) 14.24 ± 0.21 14.68 ± 0.21 14.58 ± 0.29 14.63 ± 0.52
Ether extract (%) 4.60 ± 0.17 4.62 ± 0.24 4.66 ± 0.20 4.54 ± 0.21

Ash (%) 3.10 ± 0.03 3.17 ± 0.03 3.15 ± 0.02 3.17 ± 0.03
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Table 4. Effects of dietary AME levels on the amino acid composition (% of total amino acids)
retention in the whole-body of striped catfish juveniles.

Amino Acid Content
Experimental Groups

AME0.0 AME1.5 AME3.0 AME4.5

Essential amino acids (% of total amino acids)

Threonine 2.86 ± 0.82 2.07 ± 0.01 2.11 ± 0.06 2.16 ± 0.03
Valine 3.11 ± 0.69 2.56 ± 0.02 2.54 ± 0.07 2.65 ± 0.08

Methionine 1.00 ± 0.06 1.10 ± 0.01 1.12 ± 0.05 1.16 ± 0.08
Phenylalanine 1.67 ± 0.14 1.84 ± 0.03 1.93 ± 0.10 2.00 ± 0.19

Lysine 3.25 ± 0.11 3.33 ± 0.03 3.42 ± 0.12 3.51 ± 0.13
Leucine 3.18 ± 0.07 3.27 ± 0.02 3.35 ± 0.11 3.46 ± 0.11

Histidine 0.99 ± 0.04 1.14 ± 0.04 1.11 ± 0.04 1.12 ± 0.01
Arginine 3.41 ± 0.02 3.44 ± 0.01 3.53 ± 0.07 3.52 ± 0.01

Tryptophan 0.31 ± 0.01 0.34 ± 0.003 0.36 ± 0.04 0.41 ± 0.04

Non-essential amino acids (% of total amino acids)

Aspartic Acid 4.55 ± 0.04 4.68 ± 0.03 4.70 ± 0.10 4.77 ± 0.04
Alanine 3.63 ± 0.61 4.25 ± 0.02 4.23 ± 0.02 4.22 ± 0.11

Isoleucine 1.63 ± 0.09 1.72 ± 0.02 1.81 ± 0.08 1.87 ± 0.15
Serine 2.20 ± 0.10 2.08 ± 0.04 2.15 ± 0.03 2.16 ± 0.07

Glutamate 6.67 ± 0.10 6.50 ± 0.10 6.62 ± 0.10 6.76 ± 0.17
Glycine 5.76 ± 0.15 5.58 ± 0.02 5.71 ± 0.04 5.52 ± 0.14
Tyrosine 1.32 ± 0.06 1.23 ± 0.03 1.31 ± 0.04 1.29 ± 0.03
Proline 2.81 ± 0.11 2.70 ± 0.01 2.79 ± 0.03 2.75 ± 0.07

Cysteine 0.40 ± 0.01 0.40 ± 0.01 0.42 ± 0.01 0.45 ± 0.02
Values are depicted as means ± standard error of means of three technical replicates.

3.4. Digestive Enzymes

The effect of different supplemental AME levels on the different serum digestive
enzymes of juvenile P. hypophthalmus, including lipase E, α-amylase E, and protease E,
is presented in Figure 2. Lipase E (Figure 2A), α-amylase E (Figure 2B), and protease E
(Figure 2C) activities have been increased with a significant quadratic trend in fish fed diets
supplied with different AME inclusion levels when compared with the AME0.0 group.

3.5. Serum Biochemical Variables

A panel of serum biochemistry in juvenile P. hypophthalmus fed diets with different
AME inclusion levels is presented in Figure 3. Liver enzymes (AST, ALT, and ALP) (Fig-
ure 3A–C) were improved by the dietary AME inclusion levels, manifested by a significant
quadratic decreasing trend in the levels of those enzymes in fish fed with different AME
levels. Meanwhile, there was no relationship between the blood urea nitrogen (Figure 3D),
uric acid (Figure 3E), and creatinine (Figure 3F) and the AME inclusion levels.
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Figure 2. Serum lipase E (A), α-amylase E (B), and protease E (C) of juvenile P. hypophthalmus fed
diets with different AME inclusion levels over the feeding trial period of 56 days. Data lines denote
best fit models for the data. Equations and R square in the figures demonstrate the relationship
between the measured parameters and AME inclusion levels. Individual marker indicates the number
of technical replicates (n = 3). Individual marker is the mean of two biological replicates.



Fishes 2022, 7, 319 10 of 18
Fishes 2022, 7, x FOR PEER REVIEW 10 of 18 
 

 

 

Figure 3. Serum biochemistry including AST (A), ALT (B), ALP (C), blood urea nitrogen (D), uric 

acid (E), and creatinine (F) of juvenile P. hypophthalmus fed diets with different AME inclusion levels 

over the feeding trial period of 56 days. Data lines denote best fit models for the data. Equations and 

R square in the figures demonstrate the relationship between the measured parameters and AME 

inclusion levels. Individual marker indicates the number of technical replicates (n = 3). Individual 

marker is the mean of two biological replicates. 

3.6. Serum Immunity and Hepatic Antioxidant Activity 

The impacts of dietary AME on serum immune response and antioxidant activity of 

juvenile P. hypophthalmus is demonstrated in Figure 4. Serum immunity, including lysozyme 

(Figure 4A) and total Igs (Figure 4B), has been elevated considerably with a strong quadratic 

trend in fish fed with different AME levels when compared with the control. Hepatic MDA 

levels (Figure 4C) were decreased with increasing AME levels. Hepatic CAT (Figure 4D) and 

SOD (Figure 4E) have been increased with a quadratic trend with the inclusion of AME in fish 

diets. Hepatic GPx (Figure 4F) activity showed a similar result. 

Figure 3. Serum biochemistry including AST (A), ALT (B), ALP (C), blood urea nitrogen (D), uric
acid (E), and creatinine (F) of juvenile P. hypophthalmus fed diets with different AME inclusion levels
over the feeding trial period of 56 days. Data lines denote best fit models for the data. Equations and
R square in the figures demonstrate the relationship between the measured parameters and AME
inclusion levels. Individual marker indicates the number of technical replicates (n = 3). Individual
marker is the mean of two biological replicates.

3.6. Serum Immunity and Hepatic Antioxidant Activity

The impacts of dietary AME on serum immune response and antioxidant activity of
juvenile P. hypophthalmus is demonstrated in Figure 4. Serum immunity, including lysozyme
(Figure 4A) and total Igs (Figure 4B), has been elevated considerably with a strong quadratic
trend in fish fed with different AME levels when compared with the control. Hepatic MDA
levels (Figure 4C) were decreased with increasing AME levels. Hepatic CAT (Figure 4D)
and SOD (Figure 4E) have been increased with a quadratic trend with the inclusion of AME
in fish diets. Hepatic GPx (Figure 4F) activity showed a similar result.
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Figure 4. Serum immune responses (lysozyme and total Ig) (A,B) and hepatic antioxidant activity
(C–F) of juvenile P. hypophthalmus fed diets with different AME inclusion levels over the feeding
trial period of 56 days. Data lines denote best fit models for the data. Equations and R square in the
figures demonstrate the relationship between the measured parameters and AME inclusion levels.
Individual marker indicates the number of technical replicates (n = 3). Individual marker is the mean
of two biological replicates.

4. Discussion

The observed enhancement in the growth performance, in terms of WG and SGR, in ju-
venile P. hypophthalmus in response to AME-based diets was the result of the improvements
recorded in the FI and FCR values. The growth and feed utilization results were concomi-
tant with digestive enzymes observations, suggesting the ability of AME to improve the
functionality of diets. The growth-stimulating effects of dietary AM were also confirmed
in Nile tilapia [51] and bluegill sunfish [17]. Dietary supplementation with Astragalus
polysaccharides (ASP) also supported the growth performance of several finfish species
such as Schizothorax prenanti [52], Nile tilapia [28,53], turbot [21], large yellow croaker [20],
largemouth bass juveniles [54], crucian carp juveniles [22], and Zebrafish [23]. Differently,
in a recently published paper by Sun et al. [19], AME in the diet was shown to have no
discernible effect on hybrid grouper’s weight increase or feed efficiency. Variations in fish
species, diet, experiment design, time spent feeding, or other factors may all play a role
in these disparities. The growth-promoting effects of dietary AME may be attributed to
the presence of functional bioactive constituents in the AME, such as phenolic acids and
flavonoids, as presented in Table 2. These important phytochemicals have already proven to
increase the voluntary feeding intake and feed efficiency and improve protein retention [55].
These functional bioactive compounds could also positively enhance nutrient digestibility,
which may, in turn, help improve feed utilization [56]. As reported in our current study,
dietary ASP could also improve digestive enzyme activities, which subsequently helped to
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increase nutrient digestibility [53]. Dietary ASP has been described to be improved the gut
health of fish by boosting the intestinal mucosal barrier functions [20] and the abundance
of several gut-beneficial microbial communities [23,24], which were not considered in the
present study, thus deserving further studies. One hundred percent survival rates across
groups at the end of the feeding trial suggested that the treated fish suffered no hazardous
effects from receiving AME in their diets. A possible explanation for these results involves
the functional bioactive phytochemicals included in the AME, which have potent growth-
promoting, hepatoprotective, antioxidant, and immunostimulant properties [55,57,58].

The whole-body composition, including moisture, CP, EE, and ash and amino acids
composition, was unchanged by the test diets, suggesting that AME supplementation
did not affect the assimilation of whole-body and amino acid composition. Similarly,
it was found that diets supplemented with Yucca schidigera or Quillaja saponaria did not
significantly affect the whole-body composition of P. hypophthalmus [59,60]. Moreover,
dietary AME did not considerably alter CP, moisture, EE, and ash in the hybrid grouper’s
whole body and muscles [19]. Our findings were also in harmony with Sun et al. [21],
who found that ASP-supplemented diets did not substantially change the whole-body
composition of turbot. Farag et al. [28] also found that ASP-based diets did not significantly
influence the whole-body proximate composition of Nile tilapia. However, our findings did
not correspond to those reported by Liu et al. [20], who found that dietary supplementation
with ASP at a dose rate of 0.10 or 0.15% significantly increased the whole-body CP content in
large yellow croaker larvae. Several factors may be responsible for the obvious differences
in the findings, as mentioned earlier, including different supplementation doses, fish
species, experimental setup, feeding duration, and others. Conversely, our results also
showed that none of the tested diets had influenced the essential and non-essential amino
acid composition. This result is linked to non-significant changes in CP content among
experimental groups. The reasons for the insignificant differences in body proximate
composition and amino acid composition of groups fed AME-supplemented diets and
those fed the control diet are ill-defined and require additional investigation.

It is well-documented that enhancement in the fishes’ digestive enzyme activities is
associated with improving the digestibility and availability of nutrients for fish [61]. A sig-
nificant improvement in lipase, α-amylase, and protease enzyme production in juvenile
P. hypophthalmus fed with different AME inclusion levels indicated that AME-based diets
might have positively enhanced the nutrient digestibility and promoted nutrient absorption
capacity, underpinning the growth-promoting effects of AME. This was proven by a study
in which 0.1% of AST supplementation improved intestinal metabolisms by stimulating
intestinal mucosal barrier function and beneficial bacteria [62]. Similarly, supplementation
with Eleutherine bulbosa, a medicinal herb, improved the intestinal digestive enzymes in
P. hypophthalmus [63]. Several previously published studies reported the functional ability
of ASP to enhance the digestive enzymes in several other finfish species. For instance, the
intestinal protease, amylase, and lipase enzyme activities are elevated in crucian carps fed
ASP-based diets [22]. A similar reflection was observed in the intestinal trypsin enzymatic
activity in large yellow croaker larvae [20] and intestinal protease and amylase activities
in Catla when fed ASP-based diets [25]. Furthermore, dietary ASP (0.10–0.2%) increased
the midgut digestive enzymes, for instance, protease and lipase activities in Asian seabass
(Lates calcarifer) compared with those fed the reference diet [64]. However, a recent study
showed no variations in α-amylase and protease enzyme activities in Nile tilapia-fed ASP-
enriched diets associated with the controls [28]. These inconsistencies may be attributable
to variables such as dietary supplementation dose and experiment design.

Fish liver enzymes such as AST and ALT are used as indications of liver health [65],
and the increases in these enzymes in sera are considered a potential indicator of liver injury,
causing leakage of these enzymes into the blood circulation from the hepatocytes [66]. Liver
health was improved in P. hypophthalmus juveniles fed AME-based diets, manifested by a
considerable decrease in liver enzymes (AST, ALT, and ALP) in fish fed diets with different
AME levels compared to those provided with the reference diet. These data may suggest the
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hepatoprotective impacts of dietary AME, suggesting the potential application of AME as a
functional additive to prevent negative impact on the liver caused by intrinsic or extrinsic
factors. This could be further strengthened by the study of Jia et al. [67], who observed
potential hepatoprotective effects of ASP against CCl4-induced hepatic injury in common
carp by inhibiting the elevation of AST, ALT, and lactate dehydrogenase (LDH) enzymes in
the hepatocytes. Another study found a similar dietary effect of ASP on the serum ALT
and AST enzyme levels in crucian carp juveniles [22]. The functional flavonoids in AME
might have potential effects on the improvement in liver functions of P. hypophthalmus
juveniles. These flavonoids conferred effective hepatoprotective functions [68]. Moreover,
an earlier study also reported that A. membranaceus root had potent hepato-protective
effects and protected hepatic cells from pathological injuries [69]. Several other reports
have demonstrated the potential hepatoprotective effects of polysaccharides in A. mem-
branaceus [13,67,70]. Another theory showed that AM has potent antioxidant constituents
such as astragalosides, flavonoids, and polysaccharides, effectively preventing tissue injury
via their antioxidant mechanisms [71]. Jin et al. have reviewed that ASP could increase the
enzymatic antioxidant activities, which helps to limit and eliminate oxidative stress caused
by free radicals and oxygen radicals [13].

Similar to liver enzymes, blood urea nitrogen, an indicator of the occurrence of renal
damage and gill dysfunction [72], was improved by dietary AME, indicating the optimistic
impacts of dietary AST supplementation on the kidney functions of the treated fish with
no renal injuries. As far as we know, there were no previous reports on the effects of
AME on the fish’s kidney functions. A. membranaceus root has been described as used
in treating kidney diseases in Chinese medicine [73]. It also has renal protective effects
against nephropathy via the modulation of kidney function biomarkers in the blood [74]. In
animal models, the positive renal protective effect of A. membranaceus root has been closely
associated with the presence of astragalosides (astragalus saponins); they are most well-
known for their ability to protect renal tubules from damage caused by free radicals [75].
However, our previously published study showed that kidney function markers such as
creatinine, uric acid, and blood urea nitrogen were not significantly altered in common
carp fingerlings fed diets supplemented with Origanum vulgare essential oil [65]. Apart
from the beneficial effect of AME on enzymes associated with liver and kidney function,
further research should consider the histological microstructure of the liver and kidney in
relation to stress-relevant gene expression to better understand the actual modes of action
of phytochemicals present in AME.

Lysozyme, a mucolytic enzyme excreted by leukocytes, can activate leukocytes and
macrophages to lyse the bacterial cell walls [76,77]. Total Igs are a major part of the fish’s
humoral immunity playing a significant role in the fish’s immune system defense and
are deemed a biomarker of the fish’s adaptive immune responses [44]. Improved serum
immunity, including lysozyme activity and total Igs in P. hypophthalmus groups fed diets
with different AME levels compared with the CONT, suggested the immunostimulatory
roles of dietary AME. It is well documented that plant herbal extracts can stimulate the
immune response of P. hypophthalmus. For instance, it was found that dietary supplemen-
tation with Euphorbia hirta extract for one month considerably increased serum lysozyme
and total Igs content in P. hypophthalmus [9]. Correspondingly, supplementing diets with
Psidium guajava and Phyllanthus amarus extracts also improved the serum lysozyme and
total Igs in P. hypophthalmus [10]. The immunomodulatory effects of dietary AME or ASP
have been described in several studies in other finfish species. Ardó et al. [15] found that
dietary A. membranaceus-based diets significantly increased serum lysozyme and total Igs in
Nile tilapia. Serum lysozyme pursuits were also increased in Nile tilapia-fed ASP-enriched
diets [53]. Furthermore, ASP liposome-based diets significantly increased nitric oxide
production and boosted the phagocytic activities of head kidney macrophages as well as
serum lysozyme activity in large yellow croaker [78]. It was reported that polysaccharides,
saponins, and water decoction of AME significantly increased phagocytic activity and
serum lysozyme activities of spotted maigre (Nibea albiflora) [79]. It was recently reported
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that dietary ASP significantly increased serum lysozyme and total Igs in Nile tilapia [27].
The immunostimulatory functions of AME might be associated with the functional phyto-
chemicals such as polyphenols, flavonoids, and phenolic acids, as mentioned above [55,80].
In addition, astragalosides present in A. membranaceus possess immune-boosting, anti-
inflammatory, and immune-regulatory effects [81]. Further challenge trials considering the
immune response at a different post-challenge time should be conducted to understand the
immunostimulatory effects of AME.

The enzymatic endogenous antioxidant enzymes such as CAT, SOD, and GPx can
safeguard the host against oxidative stress [82,83]. MDA is a biomarker of the lipid per-
oxidation process [84]. An elevation in the hepatic production of CAT, GPx, and SOD
enzymes coupled with the lower production of MDA in P. hypophthalmus fed AME-based
diets with regard to those reared in the AME0.0 group suggested the antioxidant effects
of dietary AME. A study by Wu et al. [51] observed similar responses in SOD, GPx, CAT,
and MDA enzyme activities to low-temperature stress in the liver of Nile tilapia when
fed AME powder. In a similar pattern, dietary AME increased the enzymatic antioxidant
capacity (via increased SOD, GPx, and CAT enzyme activities) of bluegill sunfish exposed
to cold-water stress [17]. Astragalus polysaccharides also modulated the antioxidant activity
of several finfish species, such as Nile tilapia [53], large yellow croaker [20], and turbot [21].
Furthermore, it was reported that ASP significantly modulated CCl4-induced oxidative
stress through increasing SOD enzyme activity and total antioxidant capacity (T-AOC) and
decreasing MDA concentrations in the liver of common carp [67]. The antioxidant effects of
dietary AME may be associated with ASP, which has potential efficacy in increasing antiox-
idant enzyme activities and counteracting the negative impacts of free radicals and reactive
oxygen species [85]. Notably, the HPLC analysis of AME used in the present study found
many flavonoids and phenolics, compounds with strong antioxidant properties [55,86–88].
We hypothesize that these phytochemicals can positively enhance the antioxidative capacity
of juvenile P. hypophthalmus.

5. Conclusions and Prospects

In summary, feeding AME-supplemented diets for two months improved the growth
performance of juvenile P. hypophthalmus. This was supported by improvement in feed
utilization with concurrent elevated levels of digestive enzymes. In addition, inclusion
of AME in feed improved immunity and antioxidant activity without impacting liver
and kidney functions. The overall improvement in fish health might be attributed to the
phytochemicals (flavonoids and phenolic acids) found in the AME used in the present
study. In addition, dietary supplementation of 1.0–4.5 g AME/kg diet could be regarded
as a promising phyto-additive to promote the health condition and welfare of farmed P.
hypophthalmus in addition to potentially being used as a functional additive to maintain
hepatorenal functions. It may also prevent liver and kidney damage caused by intrinsic
and extrinsic factors. Nevertheless, more in-depth experiments and investigations are
still necessary to decipher the existent roles of the phytochemicals in AME in influencing
the gut health, intestinal histomorphology, and gene expression analysis of the examined
fish species.
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