
Citation: Wibawa, F.; Catak, F.O.;

Sarp, S.; Kuzlu, M. BFV-Based

Homomorphic Encryption for

Privacy-Preserving CNN Models.

Cryptography 2022, 6, 34.

https://doi.org/10.3390/

cryptography6030034

Academic Editor: Cheng-Chi Lee

Received: 13 May 2022

Accepted: 29 June 2022

Published: 1 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cryptography

Article

BFV-Based Homomorphic Encryption for Privacy-Preserving
CNN Models
Febrianti Wibawa 1, Ferhat Ozgur Catak 1,* , Salih Sarp 2 , Murat Kuzlu 3

1 Department of Electrical Engineering and Computer Science, University of Stavanger,
4021 Rogaland, Norway; f.febrianti@gmail.com

2 Department of Electrical and Computer Engineering, Virginia Commonwealth University,
Richmond, VA 23284, USA; sarps@vcu.edu

3 Batten College of Engineering and Technology, Old Dominion University, Norfolk, VA 23529, USA;
mkuzlu@odu.edu

* Correspondence: f.ozgur.catak@uis.no

Abstract: Medical data is frequently quite sensitive in terms of data privacy and security. Federated
learning has been used to increase the privacy and security of medical data, which is a sort of machine
learning technique. The training data is disseminated across numerous machines in federated learn-
ing, and the learning process is collaborative. There are numerous privacy attacks on deep learning
(DL) models that attackers can use to obtain sensitive information. As a result, the DL model should
be safeguarded from adversarial attacks, particularly in medical data applications. Homomorphic
encryption-based model security from the adversarial collaborator is one of the answers to this
challenge. Using homomorphic encryption, this research presents a privacy-preserving federated
learning system for medical data. The proposed technique employs a secure multi-party computation
protocol to safeguard the deep learning model from adversaries. The proposed approach is tested in
terms of model performance using a real-world medical dataset in this paper.

Keywords: medical data; homomorphic encryption; deep learning

1. Introduction

Machine learning (ML) is a widely used technique in almost all fields, where a com-
puter system can learn from data to improve its performance. This technique is widely used
in many application areas such as image recognition, natural language processing, and
machine translation. Federated learning is a machine learning technique where the training
data is distributed across multiple machines, and the learning process is performed in a
collaborative manner [1]. This technique can be used to improve the privacy and security
of medical data [2].

Medical data is highly sensitive and is often subject to data privacy and security
concerns [3]. For example, a person’s health information is often confidential and can
be used to identify the person. Thus, it is essential to protect the privacy and security
of medical data. The Health Insurance Portability and Accountability Act (HIPAA) (US
Department of Health and Human Services, 2014) and General Data Protection Regulation
(GDPR) (The European Union, 2018) strictly mandate personal health information privacy.
There are various methods to safeguard the private information. Federated learning is one
of the techniques that can be utilized for the protection of sensitive data during multi-party
computation tasks. This technique can be used to improve the privacy and security of
medical data by preventing the data from being centralized and vulnerable.

Keeping the data local is not sufficient for the security of the data and the ML model.
However, there are several privacy attacks on deep learning models to get the private
data [4,5]. For example, the attackers can use the gradient information of the deep learning

Cryptography 2022, 6, 34. https://doi.org/10.3390/cryptography6030034 https://www.mdpi.com/journal/cryptography

https://doi.org/10.3390/cryptography6030034
https://doi.org/10.3390/cryptography6030034
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://orcid.org/0000-0002-2434-9966
https://orcid.org/0000-0001-6674-2590
https://orcid.org/0000-0002-8719-2353
https://doi.org/10.3390/cryptography6030034
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography6030034?type=check_update&version=1


Cryptography 2022, 6, 34 2 of 14

model to get the sensitive information. Thus, the deep learning model itself should be pro-
tected from the adversaries as well. One of the solutions for this problem is homomorphic
encryption-based model protection from the adversary collaborator. Homomorphic encryp-
tion is a technique where the data can be encrypted, and the operations can be performed
on the encrypted data [6]. This technique can be used to protect the deep learning model
from the adversaries.

This paper proposes a privacy-preserving federated learning algorithm based on a
convolutional neural network (CNN) for medical data using homomorphic encryption.
The proposed algorithm uses a secure multi-party computation protocol to protect the
deep learning model from the adversaries. We evaluate the proposed algorithm using a
real-world medical dataset and show that the proposed algorithm can protect the deep
learning model from the adversaries. We limited our work to binary classification. In our
subsequent work, we plan to use multi-class approaches in the literature [7,8].

The main contributions of this paper are as follows:

• A recent European Data Protection Board (EDPB) Public Consultation stated the use of Se-
cure Multi-Party Computation as an additional measure to the General Data Protection Reg-
ulation’s (GDPR) Article 46 transfer tools. Here, we provide a method to implement prac-
tically secure multi-party computation in federated learning to improve the privacy and
security of medical data (https://edpb.europa.eu/sites/default/files/webform/public_
consultation_reply/inpher-_edpb_supplementary_measures_comment.pdf (27 June 2022)).

• A homomorphic encryption-based federated learning algorithm is proposed to protect
the confidentiality of the sensitive medical data.

• A secure multi-party computation protocol is proposed to protect the deep learning
models from the adversaries.

• A real-world medical dataset is used to evaluate the proposed algorithm. The experi-
mental results show that the proposed algorithm can protect the deep learning model
from the adversaries.

The rest of the paper is organized as follows: Section 2 describes related work,
while Section 3 describes the preliminaries, including homomorphic encryption and fed-
erated learning. Section 4 provides detailed information of the proposed system model.
Sections 5 and 6 discuss the results, while Section 7 concludes the paper.

2. Related Work

Data-driven ML models provide unprecedented opportunities for healthcare with the
use of sensitive health data. These models are trained locally to protect the sensitive health
data. However, it is difficult to build robust models without diverse and large datasets
utilizing the full spectrum of health concerns. Prior proposed works to overcome this
problem include federated learning techniques. For instance, the studies [9–11] reviewed
the current applications and technical considerations of the federated learning technique
to preserve the sensitive biomedical data. The impact of federated learning is examined
through the stakeholders, such as patients, clinicians, healthcare facilities, and manufactur-
ers. In another study, the authors in [12] utilized federated learning systems for brain tumor
segmentation on the BraTS dataset, which consists of magnetic resonance imaging brain
scans. The results show that performance is decreased by privacy protection costs. The
same BraTS dataset is used in [13] to compare three collaborative training techniques, i.e.,
federated learning, institutional incremental learning (IIL), and cyclic institutional learning
(CIIL). In IIL and CIIL, institutions train a shared model successively, where CIIL adds a
cycling loop through organizations. The results indicate that federated learning achieves
similar Dice scores to that of models trained by sharing data. It outperforms the IIL and
CIIL methods since these methods suffer from catastrophic forgetting and complexity.

Medical data is also safeguarded by encryption techniques such as homomorphic
encryption. In [14], authors propose an online secure multi-party computation sharing
patient information to hospitals using homomorphic encryption. Bocu et al. [15] proposed
a homomorphic encryption model that is integrated with a personal health information sys-

https://edpb.europa.eu/sites/default/files/webform/public_consultation_reply/inpher-_edpb_supplementary_measures_comment.pdf
https://edpb.europa.eu/sites/default/files/webform/public_consultation_reply/inpher-_edpb_supplementary_measures_comment.pdf


Cryptography 2022, 6, 34 3 of 14

tem utilizing heart rate data. The results indicate that the described technique successfully
addressed the requirements for secure data processing for the 500 patients with expected
storage and network challenges. In another study by Wang et al. [16], a data division
scheme based on homomorphic encryption for wireless sensor networks was proposed.
The results show that there is a trade-off between resources and data security. In [17], the
applicability of homomorphic encryption is shown by measuring the vitals of the patients
with a lightweight encryption scheme. Sensor data such as respiration and heart rate are
encrypted using homomorphic encryption before transmitting to the non-trusting third
party, while encryption takes place only in a medical facility. The study in [18] devel-
oped an IoT-based architecture with homomorphic encryption to combat data loss and
spoofing attacks for chronic disease monitoring. The results suggest that homomorphic
encryption provides cost-effective and straightforward protection of the sensitive health
information. Blockchain technologies are also utilized in cooperation with homomorphic
encryption for the security of medical data. Authors in [19] proposed a practical pandemic
infection tracking tool using homomorphic encryption and blockchain technologies in
intelligent transportation systems using automatic healthcare monitoring. In another study,
Ali et al. [20] developed a search-able distributed medical database on a blockchain using
homomorphic encryption. The increase need to secure sensitive information leads to the
use of various techniques together. In the scope of this study, a multi-party computation
tool using federated learning with homomorphic encryption is developed and analyzed.

3. Preliminaries
3.1. Homomorphic Encryption

The definition of the homomorphic encryption (HE) scheme is given in [21] as follows:

Definition 1 (Homomorphic Encryption). A family of schemes {Ek}k∈Z+
is said to be homo-

morphic with respect to an operator ◦ if there exist decryption algorithms {Dk}k∈Z+
such that for

any two ciphertexts c1, c2 ∈ C, the following equality is satisfied:

Dk(Ek(m1, r1) ◦ Ek(m2, r2)) = m1 ◦m2, ∀m1, m2 ∈ M, (1)

where r1, r2 ∈ R are the corresponding randomness.

A homomorphic encryption scheme is a pair of algorithms, Enc and Dec, with the
following properties:

• Enc takes as input a plaintext m ∈ ZN , and outputs a ciphertext c such that c is a
homomorphic image of m, i.e., Dec(c) = m;

• Dec takes as input a ciphertext c, and outputs a plaintext m such that m is a homomor-
phic image of c;

• Enc and Dec are computationally efficient.

There are two types of homomorphic encryption: additively homomorphic and multi-
plicatively homomorphic.

Additively homomorphic encryptionconsists of a pair of algorithms Enc and Dec
such that, for all m1, m2 ∈ ZN , c1 = Enc(m1),c2 = Enc(m2), and c3 = c1 + c2, we have
Dec(c3) = m1 + m2.

Multiplicatively homomorphic encryption consists of a pair of algorithms Enc and
Dec such that, for all m1, m2 ∈ ZN , c1 = Enc(m1),c2 = Enc(m2), and c3 = c1c2, we have
Dec(c3) = m1m2.

Partially homomorphic encryption is a variant of homomorphic encryption where
homomorphism is only partially supported, i.e., the encryption scheme is homomorphic
for some operations while not homomorphic for others.

Somewhat homomorphic encryption is a variant of fully homomorphic encryption
where homomorphism is only limited supported, i.e., the encryption scheme is homomor-
phic for all operations for a limited number of operations.



Cryptography 2022, 6, 34 4 of 14

Fully homomorphic encryption (FHE) is a variant of homomorphic encryption which
allows for homomorphism over all functions, i.e., the encryption scheme is homomorphic
for all operations. In other words, an FHE scheme consists of a pair of algorithms Enc and
Dec such that, for all m1, m2 ∈ ZN , c1 = Enc(m1),c2 = Enc(m2), and c3 = c1c2, we have
Dec(c3) = m1m2.

Table 1 shows a summary of the major homomorphic encryption schemes.

Table 1. Major homomorphic encryption schemes.

Scheme Key-Size Additive/Multiplicative Partially/Somewhat/Fully

Paillier 2048 bits Additive Partially
ElGamal 1024 bits Additive Partially

BFV 2048 bits Additive, Multiplicative Somewhat
CKKS 2048 bits Multiplicative Somewhat

FV 2048 bits Multiplicative Somewhat

3.2. Brakerski–Fan–Vercauteren (BFV) Scheme

Since the work of Brakerski, Fan, and Vercauteren (BFV), the somewhat homomor-
phic encryption (SHE) scheme has become one of the most important research topics in
cryptography. In this section, we give the definition of this scheme.

Definition 2 (BFV scheme). An SHE scheme E is said to be in the BFV family of schemes if it
consists of the following three algorithms:

• Key generation algorithm: It takes the security parameter k as input, and outputs a public key
pk and a secret key sk.

• Encryption algorithm: It takes the message m ∈ M, a public key pk, and a randomness r ∈ R
as inputs, and outputs a ciphertext c ∈ C.

• Decryption algorithm: It takes a ciphertext c ∈ C, a secret key sk, and an integer i ∈ Z+ as
inputs, and outputs a message m ∈ M.

Remark 1. In the above definition, the integer i is called the decryption index. It is introduced
to allow for efficient decryption of ciphertexts that are the result of homomorphic operations. For
example, when the ciphertext c1 is the result of homomorphic operations on ciphertexts c2 and c3,
that is, c1 = c2 ◦ c3, then c1 can be decrypted by taking the decryption index i = 2.

In the following, we give a brief description of the BFV scheme.
The key generation algorithm of the BFV scheme consists of the following two steps.

1. Let t be the security parameter. For a positive integer t, define a number n = bb(t)c
and a positive integer p where b : Z+ → Z+ is a polynomial, and p is a prime number
satisfying p > 2n.

2. Let d be a positive integer such that d < p. Choose a monic polynomial f (x) of degree
d with f (x) ≡ x− ã (mod p) for some ã ∈ Zp. Let T(x) = xn f (x) (mod p). Choose
a quadratic nonresidue b of Zp, and let L(x) = T(x)bx

n
2 (mod p).

Let q = 2nL(0). The secret key sk is chosen to be a nonnegative integer s less than q.
The public key pk is chosen to be the sequence (p, T(x), L(x), n, q).

The encryption algorithm of the BFV scheme consists of the following three steps.

1. Let pk = (p, T(x), L(x), n, q) be the public key. Choose a random polynomial R(x) ∈
Zp[x] of degree less than d.

2. Given a message m ∈ Zp, compute u(x) = m + 1
2 R(x)2L(x)−1 (mod p).

3. Choose a random integer t̃ ∈ Zp, and output the ciphertext c = (t̃, u(x)).

The decryption algorithm of the BFV scheme consists of the following two steps.

1. Let sk = s be the secret key. Compute v(x) = L(x)−1(s + 1
2 T(x)2b−1xn) (mod p).



Cryptography 2022, 6, 34 5 of 14

2. Given a ciphertext c = (t̃, u(x)), compute m = u(x)− 1
2 v(x)2 (mod p).

Remark 2. In the BFV scheme, the message space isM = Zp.

3.2.1. Homomorphic Operations
Additive Homomorphism

In the BFV scheme, the additive homomorphism is defined as follows:

Definition 3 (Additive homomorphism). Let c1 = (t̃1, u1(x)) and c2 = (t̃2, u2(x)) be two
ciphertexts. The additive homomorphism is defined to be the ciphertext c1 + c2 = (t̃1 + t̃2, u1(x) +
u2(x)).

Remark 3. In the BFV scheme, the standard polynomial addition algorithm implements the additive
homomorphism.

Multiplicative Homomorphism

In the BFV scheme, the multiplicative homomorphism is defined as follows:

Definition 4 (Multiplicative homomorphism). Let c1 = (t̃1, u1(x)) be a ciphertext and
m ∈ Zp be a message. The multiplicative homomorphism is defined to be the ciphertext c1 ·m =
(t̃1 ·m, u1(x) ·m).

Remark 4. In the BFV scheme, the standard polynomial multiplication algorithm implements the
multiplicative homomorphism.

Remark 5. The multiplicative homomorphism is sometimes called the “plaintext multiplication”
or the “scalar multiplication”.

3.2.2. Relinearization

Relinearization is a homomorphic operation used in the BFV scheme to reduce the
number of ciphertexts generated by homomorphic operations. In the following, we give
the definition of this operation.

Definition 5 (Relinearization). Let c1 = (t̃1, u1(x)) and c2 = (t̃2, u2(x)) be two cipher-
texts. The relinearization homomorphism is defined to be the ciphertext c1 + c2T(x) = (t̃1 +
t̃2T(x), u1(x) + u2(x)T(x)).

Remark 6. In the BFV scheme, the relinearization homomorphism is implemented by the standard
polynomial addition and multiplication algorithms.

3.2.3. Rotation

Rotation is a homomorphic operation used in the BFV scheme to implement the power
operation efficiently. It can be used to implement a large class of homomorphic operations
on encrypted data. In the following, we give the definition of this operation.

Definition 6 (Rotation). Let c = (t̃, u(x)) be a ciphertext. The rotation homomorphism is defined
to be the ciphertext cr = (t̃, u(x)r), where r is an integer.

Remark 7. In the BFV scheme, the rotation homomorphism is implemented by the standard
polynomial multiplication algorithm.

Remark 8. The rotation is sometimes called the “power operation”.



Cryptography 2022, 6, 34 6 of 14

3.3. Federated Learning

In this section, we briefly describe the federated learning (FL) framework. We refer
to [22,23] for more details.

Definition 7 (FL model). Let N be a positive integer, and X be a probability space. Let m be a
positive integer such that m < N, and P = {p1, p2, . . . , pm} be a collection of random variables
on X with pi ∈ L1(X ) for i = 1, 2, . . . , m. The FL model consists of the following four algorithms:

• Initialization algorithm: It takes the security parameter k as input, and outputs the global
model w0 ∈ Rn, where n is the number of free parameters in w0.

• Local training algorithm: It takes the global model wt ∈ Rn, a local dataset Di ∈ D, and a
positive integer t as inputs, and outputs a local model wi

t+1 ∈ Rn.
• Upload algorithm: It takes the local model wi

t ∈ Rn, and a positive integer t as inputs, and
outputs a vector vi

t ∈ Rn.
• Aggregation algorithm: It takes a set of vectors vi

t ∈ Rn, and a positive integer t as inputs,
and outputs the global model wt+1 ∈ Rn.

In the above definition, the integer t is called the training round. The global model wt
is a function of the training round t. The global model wt is trained by the local models wi

t,
which are trained on the local datasets Di. The global model wt is trained on the aggregated
dataset ∪m

i=1Di. The global model wt is initialized to be the global model w0.

Remark 9. In the FL model, the local training algorithm, upload algorithm, and aggregation
algorithm can be implemented by any machine learning algorithm.

Remark 10. The global model wt can be trained on the aggregated dataset ∪m
i=1Di using any

machine learning algorithm.

Remark 11. In the FL model, the global model wt is shared among all the participating clients, and
the local models wi

t are not shared among the clients.

4. System Model

This section gives a high-level system overview of the proposed BFV crypto-scheme-
based privacy-preserving federated learning COVID-19 detection training method. The
proposed privacy-preserving scheme is a two-phase approach: (1) local model training
at each client and (2) encrypted model weight aggregation at the server. In the local
model training phase, each client builds their local CNN-based DL model using their
local electronic health record dataset. The clients encrypt the model weights matrix using
the public key. In the second step, the server aggregates all clients’ encrypted weight
matrices and sends the final matrix to the clients. Each client decrypts the aggregated
encrypted weight matrix to update the model weights of their DL model. Figure 1 shows
the system overview.

Figure 1. Overall system overview of the proposed method.



Cryptography 2022, 6, 34 7 of 14

Figure 2 shows the CNN-based COVID-19 detection model used in the experiments.

64 32 64 32 64 32

64 64 64 51
2

64 51
2

1 12
8

fc1

1 64

fc2

1 2

fc3

Figure 2. CNN-based COVID-19 detection model.

4.1. Notations

• Boldface lowercase letters show the vectors (e.g., x);
• JWK shows the ciphertext of a matrix W;
• ⊕ shows the homomorphic encryption-based addition, ⊗ homomorphic encryption-

based multiplication;
• (keypub, keypriv) shows public/private key pairs.

4.2. Client Initialization

Algorithm 1 shows the overall process in the initialization phase. Each client trains
the local classifier, hi, with their private dataset Di. The trained model’s weight matrix, W,
is encrypted, JWK, and shared with the server

Algorithm 1 Model training in each client

Require: The dataset at client c: Dc = {(x, y)|x ∈ Rm, y ∈ R}m
i=0, public key: Keypub

1: Xtrain, Xtest, ytrain, ytest ← train_test_split(D)
2: h← global_model
3: h. f it(Xtrain, ytrain)
4: W ← ∅ // Create an empty matrix for the encrypted layer weights
5: for each layer ∈ h do
6: JWK← encrypt_ f ractional(layer.weights, keypub) // Encrypt the layer weights (layer.weights ∈

Rm) with public key.
7: end for
8: Return JWK // The encrypted weight matrix

4.3. Model Aggregation

The server collects all encrypted weight matrices, {JWK0, · · · , JWKc}, from the clients.
It calculates the average weight value of each neuron in the encrypted domain. Algorithm 2
shows the overall process in the aggregation phase.



Cryptography 2022, 6, 34 8 of 14

Algorithm 2 Model aggregation at the server

Require: public key: Keypub, the number of clients: c, client model weights: H = {JWKi}c
i=0

1: JWKaggr ← ∅
2: for each h ∈ H do
3: for each JrowK ∈ h do
4: JWKaggr ← JWKaggr ⊕ JrowK // Homomorphic addition
5: end for
6: end for
7: for each JrowK ∈ JWKaggr do
8: JrowK← JrowK⊗ c−1 // Homomorphic multiplication.
9: end for

10: Return JWKaggr // Return the aggregated weight matrix in the encrypted domain

4.4. Client Decryption

The last step is client decryption in which each client decrypts the aggregated and
encrypted weight matrix, JWKaggr, and updates their local model, h. Algorithm 3 shows the
overall process in the client decryption phase.

Algorithm 3 Client decryption

Require: private key: Keypriv, encrypted aggregated weights: JWKaggr
1: h← global_model
2: for each layer ∈ h do
3: JrowK← JWKaggr(layer) // Get the corresponding row for layer
4: layer ← decrypt_ f ractional(JrowK, keypriv) // Decrypt the row and update the layer weights
5: end for
6: h.save_model(global_model) // Save the aggregated model as global_model at client.

5. Results
5.1. Dataset

In this work, a COVID-19 radiography dataset collected in previous works related to
a COVID-19 detection model [24,25] was used. The dataset contains X-ray lung images
with four different classifications, which are COVID, Lung_OPACITY, Normal, and Viral
Pneumonia. In this work, we utilized two classifications, which are COVID and Normal,
focusing only on the COVID-19 detection machine learning process.

Samples of the dataset are depicted in Figures 3 and 4.

Figure 3. COVID-19 positive X-ray image dataset samples.

From the original dataset, we obtained the first 1000 records from each classification, with
80% of the sample used for the training set and the remaining 20% as the test set. The training
dataset was further split with 10% of the dataset as the train-validation dataset.

We obtained 1000 records for each classification with 800 records used as the training
dataset and 200 records used as the test dataset.



Cryptography 2022, 6, 34 9 of 14

Figure 4. COVID-19 negative X-ray image dataset samples.

5.2. Preprocessing

Data preprocessing performed in the work consists of data augmentation and rescal-
ing for the training dataset, while only data rescaling was applied for the test dataset.
Data augmentation was necessary in order to provide data variety in the training dataset.
The dataset was rescaled by multiplying the pixel value with 1/255. This was aimed to
transform the pixel value range from [0, 255] to [0, 1] so that pixels were treated in the same
way.

6. Implementation
6.1. Experimental Setup

Table 2 shows the CNN model used to predict COVID-19 detection.

Table 2. Model summary.

Layer (Type) Output Shape No. of Parameters

conv2d (Conv2D) (None, 254, 254, 32) 896
max_pooling2d (MaxPooling2D) (None, 127, 127, 32) 0
conv2d_1 (Conv2D) (None, 125, 125, 32) 9248
max_pooling2d_1 (MaxPooling 2D) (None, 62, 62, 32) 0
conv2d_2 (Conv2D) (None, 60, 60, 32) 9248
max_pooling2d_2 (MaxPooling 2D) (None, 30, 30, 32) 0
conv2d_3 (Conv2D) (None, 28, 28, 64) 18,496
max_pooling2d_3 (MaxPooling 2D) (None, 14, 14, 64) 0
conv2d_4 (Conv2D) (None, 12, 12, 64) 36,928
max_pooling2d_4 (MaxPooling 2D) (None, 6, 6, 64) 0
conv2d_5 (Conv2D) (None, 4, 4, 128) 73,856
max_pooling2d_5 (MaxPooling 2D) (None, 2, 2, 128) 0
flatten (Flatten) (None, 512) 0
dense (Dense) (None, 128) 65,664
dense_1 (Dense) (None, 64) 8256
dense_2 (Dense) (None, 2) 130

Total params: 222,722. Trainable params: 222,722. Non-trainable params: 0.

The implementation was developed with Python 3.8.8, using existing libraries. There were
standard libraries used, such as Keras and Tensorflow, which were used in the machine learning
processes; Numpy, which was used to process weight arrays and data structures; pickle, to
serialize exported weights; and most importantly, Pyfhel, which is used for homomorphic
encryption. Pyfhel [26] is basically a Python wrapper for Microsoft SEAL, which provides the
same functionalities as the Microsoft Simple Encrypted Arithmetic Library (SEAL).

Microsoft SEAL is a homomorphic encryption library developed by Microsoft, which was
released in 2015. The SEAL library implements both Brakerski–Fan–Vercauteren (BFV) [27,28]
and Cheon–Kim–Kim–Song (CKKS) [29] homomorphic encryption schemes and provides
standard SHE functions starting from encoding, key generation, encryption, decryption, additive,
multiplicative, and relinearization functions.



Cryptography 2022, 6, 34 10 of 14

In the Pyfhel library implementation, we implemented the BFV scheme and used pre-
defined default values in the HE context parameters, but with exception to parameter sec.
Parameter sec is used to determine the bit-wise security level provided. At the time of writing,
there are two possible values—128 and 192. We experimented with these values and observed
the overall model performance in terms of time and accuracy. The parameter sec determines the
length of coefficient modulus (q) based on polynomial degree (n) parameter, as described in
the below Table 3 [30].

Table 3. Default pairs (n, q) for 128-bit and 192-bit security levels.

Bit-Length of Default q.

n 128-bit Security 192-bit Security

1024 27 19
2048 54 37
4096 109 75
8192 218 152

16,384 438 300
32,768 881 600

We have implemented our proposed protocols and the classifier training phase in Python
by using the Keras/Tensorflow libraries for the model building and the Microsoft SEAL library
for the somewhat homomorphic encryption implementation. To show the training phase time
performance of the proposed protocols, we tested the COVID-19 X-ray scans public dataset with
different numbers of clients and the ciphertext modulus, q = {128, 192}, which determines
how much noise can accumulate before decryption fails. Table 4 shows the dataset details.

Table 4. Dataset description.

Dataset Rows Label

Training 800 Negative
800 Positive

Test 200 Negative
200 Positive

The dataset is arbitrarily partitioned among each client (c ∈ {2, 3, 5, 7}), and then the
prediction performance results in the encrypted-domain are compared with the results of the
plain-domain.

6.2. Experimental Results

We first experimented with the COVID-19 detection model with no encryption and
federated learning. In this case, there is only one client observed. Table 5 shows the model
performance scores, and the running time was 599.169577s.

Table 5. Prediction result without federated learning.

Precision Recall F1 Score Accuracy

0.868924 0.840000 0.836801 0.840000

We then applied federated learning in the model and observed the model performance
based on evaluation matrices. Table 6 shows the performance results of federated learning
without encryption.



Cryptography 2022, 6, 34 11 of 14

Table 6. Performance measurements: federated learning without encryption.

Number of Clients 2 3 5 7

Precision 0.872128 0.865112 0.859288 0.850277
Recall 0.845000 0.837500 0.835000 0.827500

F1 Score 0.842123 0.834369 0.832164 0.824649
Accuracy 0.845000 0.837500 0.835000 0.827500

We then continued our observation by adjusting the hyperparameter secbetween
values 128 and 192.

Table 7 shows the performance measurements of federated learning with encryption
level is 128.

Table 7. Performance measurements: federated learning with encryption sec = 128.

Number of Clients 2 3 5 7

Precision 0.867337 0.857293 0.853925 0.869584
Recall 0.837500 0.840000 0.830000 0.852500

F1 Score 0.834132 0.838040 0.827078 0.850776
Accuracy 0.837500 0.840000 0.830000 0.852500

Table 8 shows the performance measurements of federated learning with encryption
level is 192.

Table 8. Performance measurements: federated learning with encryption sec = 192.

Number of Clients 2 3 5 7

Precision 0.866735 0.868924 0.855624 0.86800
Recall 0.840000 0.840000 0.832500 0.84500

F1 Score 0.837030 0.836801 0.829732 0.84254
Accuracy 0.840000 0.840000 0.832500 0.84500

Apart from measuring the model performance with evaluation matrices, we also
measured total processing time, starting from model training at clients until the end of
the federated learning process, and prediction result using the aggregated model. Table 9
shows the processing time in federated learning with various numbers of clients.

Table 9. Running time in seconds.

Number of Clients Without Encryption Encryption (sec = 128) Encryption (sec = 192)

2 594.165448 4333.672333 4765.874634
3 647.963712 5124.841524 7504.239611
5 720.175786 6777.249099 10,518.012003
7 948.704833 9223.281346 13,277.904182

Below are histograms by evaluation matrices, accuracy, precision, recall, F1 score to
visualize influence of encryption and encryption key length to model performance. Figure 5
the prediction performance score with different metrics.

From the histograms above, we see that homomorphic encryption and its key length
variations do not have much influence to model performance.

We also used histogram to visualize running time growth against homomorphic
encryption and its key length variations. From Figure 6, it shows that running time
increased quite significantly with homomorphic encryption implemented. It also shows
that running time was also influenced by encryption length—the longer the key, the longer
the execution time.



Cryptography 2022, 6, 34 12 of 14

2 3 5 7
Number of clients

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sc
or

e

No encryption
HE, s=128
HE, s=192

2 3 5 7
Number of clients

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sc
or

e

No encryption
HE, s=128
HE, s=192

(a) (b)

2 3 5 7
Number of clients

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sc
or

e

No encryption
HE, s=128
HE, s=192

2 3 5 7
Number of clients

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sc
or

e

No encryption
HE, s=128
HE, s=192

(c) (d)

Figure 5. Prediction performance score with different metrics. (a) Precision. (b) Recall. (c) F1.
(d) Accuracy.

One last thing we observed was that the pickle file size of encrypted weights was
around 7 GB regardless of execution time.

2 3 5 7
Number of clients

2000

4000

6000

8000

10000

12000

14000

Sc
or

e

No encryption
HE, s=128
HE, s=192

Figure 6. Running time in seconds.

7. Conclusions

Privacy-preserving has become an essential practice of healthcare institutions as
both the EU, and we, mandate it. Federated learning and homomorphic encryption will
play a critical role in maintaining data security and model training. By benefiting from
both techniques, the proposed model achieves competitive performance while there is a
significant trade-off for the execution time and the number of clients. In some cases, where
privacy-preserving is very crucial, for instance, in healthcare fields, the trade-off is very
acceptable.



Cryptography 2022, 6, 34 13 of 14

The classification metrics, i.e., accuracy, F1, precision, and recall, reached over 80%
using both encrypted and plain data for each federated learning case, which means that
homomorphic encryption, in this case, SHE, does not deteriorate model performance.

Privacy attacks will cause immense damage to the security and privacy of patient
information. This will hinder the advancement in healthcare using data-driven models.
Therefore, it is indispensable to take crucial steps to strengthen the safety of the information,
and the way data is processed. This study demonstrated that federated learning with
homomorphic encryption could successfully enhance data-driven models by eliminating
and minimizing the share of sensitive data. It is envisioned that this study could be helpful
for the scientists and researchers working on sensitive healthcare data in multi-party
computation settings.

Author Contributions: Conceptualization, F.W. and F.O.C.; methodology, F.W.; software, F.W.; vali-
dation, F.W. and F.O.C.; formal analysis, S.S. and M.K.; writin—original draft preparation, F.W. and
F.O.C.; writing—review and editing, F.W., F.O.C., S.S. and M.K.; visualization, F.W.; supervision,
F.O.C.; All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset used in this simulation is publicly avaliable COVID-19
dataset https://github.com/ieee8023/covid-chestxray-dataset accessd on 1 April 2022.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kairouz, P.; McMahan, H.B.; Avent, B.; Bellet, A.; Bennis, M.; Bhagoji, A.N.; Bonawitz, K.; Charles, Z.; Cormode, G.; Cummings,

R.; et al. Advances and open problems in federated learning. Found. Trends Mach. Learn. 2021, 14, 1–210. [CrossRef]
2. Şahinbaş, K.; Ozgur Catak, F. Secure Multi-Party Computation based Privacy Preserving Data Analysis in Healthcare IoT Systems.

arXiv 2021, arXiv:2109.14334.
3. Abouelmehdi, K.; Beni-Hssane, A.; Khaloufi, H.; Saadi, M. Big data security and privacy in healthcare: A Review. Procedia

Comput. Sci. 2017, 113, 73–80. [CrossRef]
4. Catak, F.O.; Aydin, I.; Elezaj, O.; Yildirim-Yayilgan, S. Practical Implementation of Privacy Preserving Clustering Methods Using

a Partially Homomorphic Encryption Algorithm. Electronics 2020, 9, 229. [CrossRef]
5. Özgür Çatak, F.; Mustacoglu, A.F. CPP-ELM: Cryptographically Privacy-Preserving Extreme Learning Machine for Cloud

Systems. Int. J. Comput. Intell. Syst. 2018, 11, 33–44. [CrossRef]
6. Alloghani, M.; Alani, M.M.; Al-Jumeily, D.; Baker, T.; Mustafina, J.; Hussain, A.; Aljaaf, A.J. A systematic review on the status and

progress of homomorphic encryption technologies. J. Inf. Secur. Appl. 2019, 48, 102362. [CrossRef]
7. Molina-Carballo, A.; Palacios-López, R.; Jerez-Calero, A.; Augustín-Morales, M.C.; Agil, A.; Muñoz-Hoyos, A.; Muñoz-Gallego,

A. Protective Effect of Melatonin Administration against SARS-CoV-2 Infection: A Systematic Review. Curr. Issues Mol. Biol. 2022,
44, 31–45. [CrossRef]

8. Checa-Ros, A.; Muñoz-Hoyos, A.; Molina-Carballo, A.; Muñoz-Gallego, A.; Narbona-Galdó, S.; Jerez-Calero, A.; del Carmen
Augustín-Morales, M. Analysis of Different Melatonin Secretion Patterns in Children With Sleep Disorders: Melatonin Secretion
Patterns in Children. J. Child Neurol. 2017, 32, 1000–1008. [CrossRef]

9. Xu, J.; Glicksberg, B.S.; Su, C.; Walker, P.; Bian, J.; Wang, F. Federated learning for healthcare informatics. J. Healthc. Inform. Res.
2021, 5, 1–19. [CrossRef]

10. Rieke, N.; Hancox, J.; Li, W.; Milletari, F.; Roth, H.R.; Albarqouni, S.; Bakas, S.; Galtier, M.N.; Landman, B.A.; Maier-Hein, K.; et al.
The future of digital health with federated learning. NPJ Digit. Med. 2020, 3, 1–7. [CrossRef]

11. Antunes, R.S.; da Costa, C.A.; Küderle, A.; Yari, I.A.; Eskofier, B. Federated Learning for Healthcare: Systematic Review and
Architecture Proposal. ACM Trans. Intell. Syst. Technol. (TIST) 2022, 13, 1–23. [CrossRef]

12. Li, W.; Milletarì, F.; Xu, D.; Rieke, N.; Hancox, J.; Zhu, W.; Baust, M.; Cheng, Y.; Ourselin, S.; Cardoso, M.J.; et al. Privacy-
preserving federated brain tumour segmentation. In Proceedings of the International Workshop on Machine Learning in Medical
Imaging; Springer: Berlin/Heidelberg, Germany, 2019; pp. 133–141.

13. Sheller, M.J.; Reina, G.A.; Edwards, B.; Martin, J.; Bakas, S. Multi-institutional deep learning modeling without sharing patient
data: A feasibility study on brain tumor segmentation. In Poceedings of the International MICCAI Brainlesion Workshop; Springer:
Berlin/Heidelberg, Germany, 2018; pp. 92–104.

https://github.com/ieee8023/covid-chestxray-dataset
http://doi.org/10.1561/2200000083
http://dx.doi.org/10.1016/j.procs.2017.08.292
http://dx.doi.org/10.3390/electronics9020229
http://dx.doi.org/10.2991/ijcis.11.1.3
http://dx.doi.org/10.1016/j.jisa.2019.102362
http://dx.doi.org/10.3390/cimb44010003
http://dx.doi.org/10.1177/0883073817726680
http://dx.doi.org/10.1007/s41666-020-00082-4
http://dx.doi.org/10.1038/s41746-020-00323-1
http://dx.doi.org/10.1145/3501813


Cryptography 2022, 6, 34 14 of 14

14. Kumar, A.V.; Sujith, M.S.; Sai, K.T.; Rajesh, G.; Yashwanth, D.J.S. Secure Multiparty computation enabled E-Healthcare system
with Homomorphic encryption. In Proceedings of the IOP Conference Series: Materials Science and Engineering; IOP Publishing:
Bristol, UK, 2020; Volume 981, p. 022079.

15. Bocu, R.; Costache, C. A homomorphic encryption-based system for securely managing personal health metrics data. IBM J. Res.
Dev. 2018, 62, 1:1–1:10. [CrossRef]

16. Wang, X.; Zhang, Z. Data division scheme based on homomorphic encryption in WSNs for health care. J. Med. Syst. 2015, 39, 1–7.
[CrossRef] [PubMed]

17. Kara, M.; Laouid, A.; Yagoub, M.A.; Euler, R.; Medileh, S.; Hammoudeh, M.; Eleyan, A.; Bounceur, A. A fully homomorphic
encryption based on magic number fragmentation and El-Gamal encryption: Smart healthcare use case. Expert Syst. 2022 ,
39, e12767. [CrossRef]

18. Talpur, M.S.H.; Bhuiyan, M.Z.A.; Wang, G. Shared–node IoT network architecture with ubiquitous homomorphic encryption for
healthcare monitoring. Int. J. Embed. Syst. 2015, 7, 43–54. [CrossRef]

19. Tan, H.; Kim, P.; Chung, I. Practical homomorphic authentication in cloud-assisted vanets with blockchain-based healthcare
monitoring for pandemic control. Electronics 2020, 9, 1683. [CrossRef]

20. Ali, A.; Pasha, M.F.; Ali, J.; Fang, O.H.; Masud, M.; Jurcut, A.D.; Alzain, M.A. Deep Learning Based Homomorphic Secure
Search-Able Encryption for Keyword Search in Blockchain Healthcare System: A Novel Approach to Cryptography. Sensors 2022,
22, 528. [CrossRef]

21. Gentry, C. Fully Homomorphic Encryption Using Ideal Lattices. In Proceedings of the Forty-First Annual ACM Symposium on
Theory of Computing, Bethesda, MD, USA, 31 May–2 June 2009; pp. 169–178. [CrossRef]

22. Brendan McMahan, H.; Moore, E.; Ramage, D.; Hampson, S.; Agüera y Arcas, B. Communication-Efficient Learning of Deep
Networks from Decentralized Data. arXiv 2016, arXiv:1602.05629.

23. Konečný, J.; Brendan McMahan, H.; Yu, F.X.; Richtárik, P.; Theertha Suresh, A.; Bacon, D. Federated Learning: Strategies for
Improving Communication Efficiency. arXiv 2016, arXiv:1610.05492.

24. Chowdhury, M.E.H.; Rahman, T.; Khandakar, A.; Mazhar, R.; Kadir, M.A.; Mahbub, Z.B.; Islam, K.R.; Khan, M.S.; Iqbal, A.; Emadi,
N.A.; et al. Can AI Help in Screening Viral and COVID-19 Pneumonia? IEEE Access 2020, 8, 132665–132676. [CrossRef]

25. Rahman, T.; Khandakar, A.; Qiblawey, Y.; Tahir, A.; Kiranyaz, S.; Abul Kashem, S.B.; Islam, M.T.; Al Maadeed, S.; Zughaier,
S.M.; Khan, M.S.; et al. Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images.
Comput. Biol. Med. 2021, 132, 104319. [CrossRef] [PubMed]

26. Ibarrondo, A.; Viand, A. Pyfhel: Python for homomorphic encryption libraries. In Proceedings of the 9th Workshop on Encrypted
Computing & Applied Homomorphic Cryptography, Seoul, Korea, 15 November 2021.

27. Brakerski, Z. Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP. In Advances in Cryptology—
CRYPTO 2012; Safavi-Naini, R., Canetti, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 868–886.

28. Fan, J.; Vercauteren, F. Somewhat Practical Fully Homomorphic Encryption. Cryptology ePrint Archive, Report 2012/144, 2012.
Available online: https://ia.cr/2012/144 (accessed on 15 March 2022).

29. Cheon, J.H.; Kim, A.; Kim, M.; Song, Y. Homomorphic Encryption for Arithmetic of Approximate Numbers. In Advances
in Cryptology—ASIACRYPT 2017; Takagi, T., Peyrin, T., Eds.; Springer International Publishing: Cham, Switzerland, 2017;
pp. 409–437.

30. Laine, K. Simple Encrypted Arithmetic Library 2.3.1. Available online: https://www.microsoft.com/en-us/research/uploads/
prod/2017/11/sealmanual-2-3-1.pdf (accessed on 15 March 2022).

http://dx.doi.org/10.1147/JRD.2017.2755524
http://dx.doi.org/10.1007/s10916-015-0340-1
http://www.ncbi.nlm.nih.gov/pubmed/26490146
http://dx.doi.org/10.1111/exsy.12767
http://dx.doi.org/10.1504/IJES.2015.066141
http://dx.doi.org/10.3390/electronics9101683
http://dx.doi.org/10.3390/s22020528
http://dx.doi.org/10.1145/1536414.1536440
http://dx.doi.org/10.1109/ACCESS.2020.3010287
http://dx.doi.org/10.1016/j.compbiomed.2021.104319
http://www.ncbi.nlm.nih.gov/pubmed/33799220
https://ia.cr/2012/144
https://www.microsoft.com/en-us/research/uploads/prod/2017/11/sealmanual-2-3-1.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2017/11/sealmanual-2-3-1.pdf

	Introduction
	Related Work
	Preliminaries
	Homomorphic Encryption
	Brakerski–Fan–Vercauteren (BFV) Scheme
	Homomorphic Operations
	Relinearization
	Rotation

	Federated Learning

	System Model
	Notations
	Client Initialization
	Model Aggregation
	Client Decryption

	Results
	Dataset
	Preprocessing

	Implementation
	Experimental Setup
	Experimental Results

	Conclusions
	References

