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Abstract: Safety researchers increasingly recognize the impacts of task-induced fatigue on vehicle
driving behavior. The current study (N = 180) explored the use of a multidimensional fatigue measure,
the Driver Fatigue Questionnaire (DFQ), to test the impacts of vehicle automation, secondary media
use, and driver personality on fatigue states and performance in a driving simulator. Secondary media
included a trivia game and a cellphone conversation. Simulated driving induced large-magnitude
fatigue states in participants, including tiredness, confusion, coping through self-comforting, and
muscular symptoms. Consistent with previous laboratory and field studies, dispositional fatigue
proneness predicted increases in state fatigue during the drive, especially tiredness, irrespective of
automation level and secondary media. Similar to previous studies, automation slowed braking
response to the emergency event following takeover but did not affect fatigue. Secondary media
use relieved subjective fatigue and improved lateral control but did not affect emergency braking.
Confusion was, surprisingly, associated with faster braking, and tiredness was associated with
impaired control of lateral position of the vehicle. These associations were not moderated by the
experimental factors. Overall, data support the use of multidimensional assessments of both fatigue
symptoms and information-processing components for evaluating safety impacts of interventions for
fatigue.

Keywords: fatigue; driver behavior; driving simulator; automation; media use; alertness; vehicle
control

1. Introduction

Parts of the data reported in this article have previously been published as a confer-
ence proceedings paper [1]. This article reports substantial new findings on individual
differences in fatigue response and performance. The safety impacts of driver fatigue are
substantial and well-known. Cognitive fatigue induced by prolonged driving can lead to
impairments in attention and performance during the daytime, beyond impacts of sleep
loss and circadian rhythms [2,3]. Professional drivers, including truck and taxi drivers,
report prolonged driving time as a major influence on fatigue [4]. Task-induced driver
fatigue has been highlighted because of interest in vehicle automation. At SAE Level 3
automation [5], the driver may be required to resume control following an extended period
of automated driving. Even short periods of full automation can induce large magnitude
increases in fatigue and loss of alertness prior to resuming manual driving [6], raising
safety concerns. This article addresses individual differences in susceptibility to fatigue
states resulting from automation. We report a study that investigated trait predictors of
multiple state fatigue dimensions during automated driving and state correlates of driver
performance.
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1.1. Individual Differences in Fatigue: Traits and States

Individual differences are expressed in both the driver’s stable disposition to become
fatigued, and the immediate experience of transient fatigue states. Traits associated with
fatigue-proneness interact with situational factors, including drive duration, cognitive
workload, and monotony, to produce fatigue states [7]. Research has often used scales for
sleepiness to assess fatigue, but it is important to distinguish mental fatigue produced by the
task from sleepiness; these two states differ in their causes and in behavioral or symptomatic
outcomes [8]. Task-induced state fatigue can be characterized within the multidimensional
model of stress that differentiates task engagement, distress, and worry [9]. Both driving
simulator and on-road studies show that longer drives tend to elicit lower task engagement
and higher distress. Prolonged driving also increases some aspects of worry, including
cognitive interference from concerns about task performance [10]. There is an important
distinction between active fatigue, associated with cognitive overload, and passive fatigue,
associated with boredom when workload is low [11,12]. Both active and passive fatigue are
associated with tiredness and task disengagement that escalates over time, whereas active
fatigue additionally provokes emotional distress [6].

More fine-grained analyses of fatigue state dimensions have been conducted in occu-
pational and clinical contexts [13,14]. Tiredness is the most salient feature of the state, but
fatigued individuals also commonly experience loss of motivation, distraction, concerns
about performance, and bodily discomfort [15–17]. Hitchcock and Matthews (2005) [18] dif-
ferentiated four distinct conceptual aspects of driver fatigue, summarized in Table 1. First,
there are core emotional–motivational symptoms including tiredness, task disengagement,
and effort-minimization. Second, physical symptoms include muscle fatigue, eyestrain and
other somatic disturbances. Third, fatigue may be associated with cognitive disturbances
including loss of alertness, distractibility, confused thinking, and metacognitive awareness
of impairment. Fourth, drivers attempt to cope with adverse states through a variety of
behavioral and self-regulative strategies [19,20]. In the case of fatigue, these strategies
include maintaining personal comfort by minimizing task effort and trying to elevate
arousal through strategies such as playing music or blasting cold air. Building on an earlier
effort [21], Hitchcock and Matthews (2005) [18] developed the Driving Fatigue Scale (DFS)
to assess multiple fatigue dimensions within each conceptual category.

Table 1. Four conceptual elements of driver fatigue states.

Conceptual Category Symptoms Performance Impact Safety Implications

Core affective-
motivational

symptoms

Tiredness, sleepiness,
de-motivation

Loss of attentional
resources, slowed
response, reduced

on-task effort

Impaired attention to
traffic environment

Physical

Muscle stiffness and
discomfort, visual

disturbance,
headache

Source of distraction
Direct impact of

distraction on safety
unknown

Cognitive

Mind-wandering,
confusion, intrusive

thoughts,
performance concerns

Cognitive
interference

associated with loss
of working memory

and resources

Impaired attention to
traffic environment

Coping
Self-arousal, comfort

seeking, mental
withdrawal

Mixed–depends on
strategy

Mixed–depends on
strategy

There is an extensive literature on personality trait correlates of fatigue, across multi-
ple contexts. Studies based on the Five Factor Model of personality [22] have found that,
overall, neuroticism is associated with higher fatigue, whereas extraversion, conscientious-
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ness, openness, and agreeableness are related to lower fatigue [23]. In task performance
contexts, low conscientiousness is the most consistent predictor of acute fatigue states [24].
However, standard personality measures do not adequately capture driving-specific traits
that influence the driver’s state responses to the challenges of operating a vehicle [25].

The Driver Stress Inventory (DSI) was developed to address this limitation and assess
traits specific to the driving context [26]. The DSI assesses five driving trait dimensions as-
sociated with dislike of driving, aggression, thrill-seeking, hazard monitoring, and fatigue-
proneness. These scales correlate with various safety-relevant stress and performance
criteria in both laboratory and field studies [19,27,28]. For example, the fatigue-proneness
scale consistently predicts symptoms of state fatigue and task disengagement [10]. Other
DSI factors related to vulnerability to negative mood states, including aggression and
dislike of driving, also predict elevated fatigue [10,21]. Furthermore, the transactional
model of driver stress and fatigue [19] proposes that trait factors influence state fatigue
through biasing cognitive stress processes, i.e., appraisal and coping. In general, drivers
who use avoidant coping in preference to task-focused coping are more vulnerable to task
fatigue. In contrast, appraising the driving task as a stimulating challenge tends to counter
development of fatigue states [6]. In this context, trait fatigue-proneness may influence
whether the driver’s style of appraisal and coping during prolonged driving tends to
exacerbate or mitigate fatigue [29].

1.2. Fatigue and Vehicle Automation

Driver fatigue issues have been highlighted in relation to safety in automated vehicles.
At higher levels of automation [5], the driver’s role changes from active vehicle operation
to monitoring vehicle status and maintaining readiness to resume manual control. The task
underload and monotony associated with automation monitoring elevates driver passive
fatigue and threatens the driver’s ability to manage resumption of normal driving [12,30].
Studies of automation impacts show effects on both subjective fatigue [31,32] and perfor-
mance indices, including loss of vigilance [33,34], slowed secondary task reaction time [31]
and delayed manual takeover [35].

The authors’ previous studies [36] used a driving simulator to investigate the build-up
of subjective fatigue during automated driving, and the impact of automation on speed
of response to an emergency event soon after manual takeover. Saxby et al. (2013) [6]
compared the effect of full vehicle automation (passive fatigue) with an active fatigue
manipulation that exposed the driver to frequent, strong wind gusts. Both active and
passive fatigue manipulations lowered task engagement (more strongly for passive fatigue),
but only active fatigue elevated distress and workload. Passive but not active fatigue was
associated with slowed braking response to the emergency event of a slow-moving van
pulling out in front of the driver. Drivers given voluntary control over automation use
remained fatigued and were slow to respond to the emergency event, highlighting the
adverse safety impact of full vehicle automation [37].

Additional tasks secondary to driving may counter fatigue associated with the under-
load states that result from monotonous driving. Gershon, Ronen, Oron-Gilad and Shinar
(2009) [38] had drivers complete a monotonous 140 min simulated drive during which
variability in lane position and speed increased with time on task, suggesting progressive
impairment in vehicle control over time. They developed an interactive trivia game that
mitigated performance deficits. Aspects of the driving task itself, such as speed regulation,
can also be gamified to counteract fatigue [39]. Similarly, two studies [40,41] showed that
an additional word-association task enhanced lane-keeping and reduced fatigue effects.
A simulated interaction with a virtual digital assistant improved subjective energy and
multiple aspects of performance [42]. A subsequent study using this method suggested
benefits were greater for drivers more actively engaged with the assistant [43].

Studies of countermeasures designed specifically to counteract automation-induced
fatigue are few. A simulator study of automated driving [30] compared the impacts of a quiz
game and a monotonous monitoring task on manual takeover, both requiring touchscreen
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responses to visual stimuli. The more engaging quiz task speeded initial braking response
to a crashed vehicle in the driver’s lane. The additional task manipulation had no effect
on subjective sleepiness. Neubauer, Matthews and Saxby [44] found that both texting and
engaging in spoken conversation during the automated phase of a drive were effective in
preventing slowed braking to an emergency event following manual takeover. However,
engaging in a phone conversation immediately following takeover had no impact on
braking speed in the same paradigm [45]. Secondary media use is promising for mitigating
automation-induced fatigue, as for fatigue in general, but its impacts appear to vary with
modality of stimuli and scheduling of media use across automated and manual phases of
driving [36].

1.3. Decomposing Fatigue Processes

A further challenge for understanding fatigue impacts in the automated vehicle is
the multiplicity of paths through which fatigue states may impair performance. Much
task-induced fatigue research, especially in vigilance paradigms, shows temporal deterio-
ration in attention consistent with an attentional resource model [46] that poses a threat
to automated vehicle operation [33,34]. Supporting the resource model, fatigue-related
impairments are most prevalent when cognitive workload is high [47]. Psychophysiologi-
cal studies of fatigue and vigilance using hemodynamic [48] and electroencephalographic
(EEG) measures [49,50] show temporal declines in brain activity consistent with the work-
load/resource model.

However, the role of temporal resource depletion in driver fatigue impairments is
uncertain, especially in states of passive fatigue that are associated with low workload.
If workload is low, resource availability may be sufficient to maintain performance even
if the resource pool becomes depleted. An alternative hypothesis is that the fatigued
driver becomes reluctant to exert effort [51]. Fatigue leads to a lowering of performance
standards and task strategies that minimize effort, such as responding reactively rather than
proactively [16]. Matthews and Desmond (2002) [52] tested resource depletion and effort-
minimization hypotheses against one another in a driving simulation study of induced
fatigue. Results decisively supported the effort-minimization account of performance
deficits, which were seen only in lower workload conditions. Thus, in passive fatigue
states, failure to exert sufficient effort may have stronger safety impacts than lack of
resources. Other possible mechanisms for fatigue effects include mind-wandering [53] and
impairment in visual search [54].

Safety in the automated vehicle may be affected by multiple fatigue processes acting
simultaneously. Consistent with this suggestion, studies have shown dissociations between
different fatigue responses. Both Atchley et al. (2014) [41] and Neubauer et al. (2012c) [44]
found that additional tasks improved performance in the fatigued driver, but they did not
mitigate loss of subjective task engagement, a primary state fatigue symptom. Additionally,
Saxby et al. (2013) [6] found that passive fatigue, provoked by automation, lengthened
reaction time to an emergency event but did not reduce variability of lateral position in
the interval immediately prior to the event. That is, quality of vehicle control was not
diagnostic of alertness. There is similar ambiguity over the role of individual difference
factors. Task engagement may index both resource availability, as demonstrated in vigilance
studies [24,47,55], and task-directed effort, as evidenced by less neglect of potential targets
in a multi-UAV simulation [56].

1.4. Study Aims

The overall aim of the study was to investigate influences on individual differences in
fatigue states in the automated vehicle, and their associations with driving performance.
The study used a driving simulator that was configured to contrast driving with full
automation and normal driving under manual control [6,44,45]. The current study also
added a partial automation condition in which speed was automated to test generalization
of results, given evidence for fatigue-related impacts of partial automation [57]. The levels
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of automation thus corresponded to SAE Levels 0 (manual), 1 (partial: brake/acceleration
support), and 3 (full). In addition, two forms of secondary media were manipulated to
test the impact of additional tasks on fatigue. One group of participants answered trivia
questions at two stages of the drive, similar to [38], while a second group engaged in a cell
phone conversation. A third control group had no exposure to secondary media.

In all conditions, vehicle control reverted to manual in the last five minutes of the
drive. In this interval, drivers were required to respond to an unexpected hazard, a slow
vehicle pulling out in from of them. Multiple factors influence braking speed when the
driver takes over control following a period of automated driving including distraction
from non-driving tasks, hazard criticality, traffic complexity, and design features of the
automation [58–60]. The effects of these factors on braking response time are mediated by
multiple physical, visual, and cognitive processes, including gaze redirection, situation
evaluation, and action selection and execution [61,62]. The present study aimed to test
how automation and secondary media impacted emergency braking speed in a simple,
controlled scenario; differentiating component processes was beyond the current scope.

The DSI [26] was used to assess driver traits including fatigue proneness, and the
DFQ [18,63] assessed driver fatigue and stress states. This design supported investigation
of the following research issues.

1.4.1. Influences on Driver Fatigue States

We tested the impact of the experimental manipulations on multiple fatigue state
dimensions, and whether these effects were moderated by individual differences in fatigue
proneness. Based on our previous studies (e.g., [6]), we expected that automation would
elevate driver fatigue, with full automation having a stronger effect than partial automation.
Previous studies show that secondary media can mitigate driver fatigue [31,38] and so we
anticipated that both the trivia game and cell phone conversation would reduce subjective
fatigue. We expected that the trivia game would have stronger benefits for subjective state,
because gamification has been shown to benefit driver engagement [39,64].

1.4.2. Individual Differences in State Fatigue Response

We expected that the DSI fatigue proneness dimension would be associated with
a stronger fatigue response across all conditions, as in previous studies (e.g., [10]). At
the trait level, fatigue proneness is linked to the tendency to use avoidant coping strate-
gies [26]. Automation-induced fatigue increases avoidance and is associated with reduced
task-focused coping [6]. Based on these findings, we hypothesized that fatigue-prone
drivers would be especially vulnerable to automation fatigue and, therefore, would show
larger benefits from secondary media use that elevates cognitive workload. We tested for
differences in DSI predictors of the multiple aspects of fatigue assessed by the DFQ on an
exploratory basis.

1.4.3. Automation and Media Influences on Driver Performance

Our previous simulation studies showed that automation-induced fatigue reliably
slows braking response to an emergency event occurring soon after manual takeover [6,37].
We tested for replication of this effect and its generalization to partial automation. We
also found that the fatigue effect is mitigated by responding to texts during a period of
automated driving [44]. Thus, we anticipated that the secondary media, especially the
trivia game, would speed response to the emergency event, following manual takeover.

In normal driving, with full manual control, induced driver fatigue impairs lateral
control of the vehicle, especially under low workload [52]. We assessed the standard
deviation of lateral position (SDLP) during two phases of the first 40 min of the drive in
manual and partial automation conditions. We anticipated that secondary media would
mitigate fatigue effects and reduce SDLP, similar to previous studies [38,40–42].
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1.4.4. Individual Differences in Driver Performance

Subjective fatigue states, including low task engagement, have been linked to both
reduced resource availability [55] and reduced task-directed effort [56]. We anticipated
that subjective fatigue states would be associated with slowed emergency braking, as well
as higher variability in lateral position in manual and partial automation conditions. The
diagnosticity of fatigue states for performance impairment may vary with task demands,
but it is hard to tease apart the roles of resource availability and effort-regulation. Therefore,
we tested, on an exploratory basis, whether fatigue state–performance associations were
moderated by secondary media and vehicle automation manipulations.

2. Method
2.1. Participants

Participants were 180 fully licensed drivers (71 males, 109 females) recruited from the
University of Cincinnati Introductory Psychology student research pool. The participant
pool roughly reflects the ratio of male to female students at the University. Participants
ranged in age from 18–30 years (M = 20 years, SD = 3.5). They were required to have normal
or corrected-to-normal vision.

2.2. Design

A 3 × 3 (Automation × Secondary media) between-subjects design was utilized.
Automation conditions included manual, partial, and total automation. Media conditions
included control (no media), trivia, or cell phone conversation. 20 participants were
assigned at random to each of the nine task conditions thus defined. The ratio of males to
females was similar in each group; a χ2 test for differences in the frequencies of each gender
across conditions was non-significant. In addition, a 3 × 3 (Automation × Secondary
media) Analysis of Variance (ANOVA) with DSI fatigue proneness as the dependent
variable showed no significant effects of the experimental factors, i.e., participant groups in
each condition were equally fatigue-prone.

2.3. Apparatus
2.3.1. Simulator

Drives differing in automation level were configured for a Systems Technology, Inc.,
STISIM Model 400 simulator, version 2.08.10. The traffic environment was displayed via a
42” Westinghouse LCD flat screen television. The participants were seated in an adjustable
car seat and controlled the vehicle via gas and brake pedals and a Logitech MOMO Racing
Force Feedback Wheel which provided speed-sensitive “steering feel” feedback via a
computer-controlled torque motor (see Figure 1).

2.3.2. Secondary Media

Participants in the cell phone condition were provided with an LG Rumor 2 cellu-
lar telephone, together with a JABRA Bluetooth headpiece, which supported hands-free
communication with the experimenter.

2.4. Questionnaires

Driver Stress Inventory (DSI: [26]). The first section of the DSI assesses demographic
variables, driver experience, accident involvement, and traffic law convictions. The second
section comprises 48 questions about the driver’s typical emotional reactions, habits,
and preferences, answered on 0–10 Likert scales. Responses are scored to compute five
dimensions that characterize driver stress vulnerability: aggression, dislike of driving,
hazard monitoring, thrill seeking and fatigue proneness. Sample items included “Driving
brings out the worst in people” (aggression), “I feel tense and nervous when passing
another vehicle” (dislike of driving), “I make a special effort to be alert even on roads I
know well” (hazard monitoring), “I like to raise my adrenaline levels while driving” (thrill
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seeking), and “When driving for several hours, I become more drowsy or sleepy” (fatigue
proneness). Scale reliabilities (alpha coefficients) range from 0.73–0.87 [26].
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Driver Fatigue Questionnaire (DFQ): [18,63]. The DFQ includes 42 items that require
the respondent to rate how much they feel various acute fatigue symptoms, answered on
0–5 Likert scales anchored by “not at all” and “very much”. It is scored on seven dimensions
of fatigue states. Here, to simplify data reporting, we focus on four 6-item scales that are
representative of the four conceptual elements of driver fatigue states previously identified.
Physical fatigue was represented by muscular fatigue. Sample symptoms are “muscles
ache” and “shoulders are stiff”. Core fatigue symptoms were represented by tiredness,
e.g., “over-tired”, “half-awake”. Cognitive symptoms were represented by confusion, e.g.,
“easily distracted”, “daydreaming”. Coping was represented by comfort-seeking, e.g.,
“need to rest and relax”, “want to take things easy”. Alpha coefficients for these scales
range from 0.89–0.94.

Participants also completed the Dundee Stress State Questionnaire (DSSQ: [65]) as a
general assessment of task stress, but results from the DSSQ are not reported here, in order
to focus on the DFQ state fatigue dimensions.

2.5. Procedure

Following an informed consent interview, participants completed the DSI and pre-
task versions of the DSSQ and DFQ. Participants were then given instructions for the
experimental condition to which they were assigned. They completed a 3-min practice
drive in order to familiarize themselves with the simulator. They were instructed to obey all
traffic signals and signs, including speed limit signs, stop signs, and red lights. Participants
in the cell phone condition received a practice call at approximately 1:30 min to confirm
their ability to use the Bluetooth device.

Participants next completed a 45 min drive on a two-lane highway, with occasional
oncoming traffic, pedestrian crossings, and intersection stops. The scenery was varied
throughout the drive and transitioned between rural (small town) and city (urban) scenery
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approximately every 5 min, similar to previous studies [6,37,44]. In the manual driving
condition, participants were asked to keep to speed limits shown on signs. Speed limits
ranged from 40–50 mph in rural environments, and 50–60 mph in city driving.

The timeline of the drive is shown in Figure 2. During the first 40 min, the participant’s
level of control of the vehicle was set at the beginning of the drive according to automation
condition. In manual conditions, participants used the wheel and pedals as in normal
driving. In partial automation conditions, speed was controlled by the simulation, and
the participant steered the vehicle. Under full automation, both speed and steering were
controlled by the simulation. In both automation conditions, participants were instructed
to monitor for an automation failure, in order to keep their attention on the display. Au-
tomation function was indicated by two red diamonds positioned at the upper left- and
righthand corners of the screen. Approximately every 10 min, one of the red diamonds
was replaced by a downward pointing triangle indicating “automation failure”. In this
event, participants were instructed to press the turn signal when they detected the failure
in order to reset the automation. There was, in fact, no interruption of automation until the
automation was switched off at 40 min, requiring the participant to take over full vehicle
control.
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Figure 2. Timeline for simulated drive, by experimental condition.

The secondary media manipulation was implemented as follows. Secondary media
were delivered during two 10-min periods (between 5–15 min and 30–40 min during the
drive). In the trivia condition, the experimenter sat out of view of the participant and
communicated by speech, in a neutral tone. Based on Gershon et al.’s (2009) [38] procedure,
participants first selected one of five categories-food, movies, sports, current events, and
general knowledge and informed the experimenter of their choice. The experimenter then
referred to a list of questions for that category and asked the participant the next question
on the list. Following the participant’s spoken answer, the experimenter stated “correct” or
“incorrect”. The trivia game was performed during two separate 10-min periods, as shown
in Figure 1. In the cell phone condition, the experimenter conducted two conversations by
phone during these 10-min intervals. Conversations consisted of a general introduction
followed by the recollection of a more in depth “close call” experience of the participant,
following Saxby et al.’s (2017) [45] methodology. The close call method is considered
engaging to the participant and representative of a naturalistic conversation [66]. In the
control condition, there was no communication between experimenter and participant.
Standard deviation of lateral position (SDLP) was logged during mins 8–12 and 33–37,
providing measures of control early and late in the drive, concurrent with secondary tasks
where provided.

In the final 5 min of the drive (i.e., 40–45 min), all participants reverted to full manual
control, with no secondary media. After 42 min, an emergency event was triggered by the
experimenter. A van suddenly appeared at the side of the road and followed the same
scripted trajectory for all participants. After 3 s the van pulled out in front of the driver at
slow speed (see Figure 3), requiring the participant to brake or swerve to avoid collision.
Braking response time (RT) was logged, as well as whether the participant actually collided
with the van. The van pulled back on to the right shoulder 30 s after the event was triggered.
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Following termination of the drive, participants completed post-task versions of the DFQ
and DSSQ, followed by debriefing.
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3. Results
3.1. Overview of Data Analysis

Data were analyzed as follows. First, we ran mixed-model ANOVAs to test the effects
of the automation and secondary media on fatigue states, assessed by the DFQ. These anal-
yses confirmed that the drive was generally fatiguing and identified impacts of automation
and media on specific dimensions of fatigue. Second, we conducted correlational and
regression analyses to investigate relationships between predisposition to driver stress and
fatigue, assessed by the DSI, and DFQ fatigue states. These analyses showed multiple asso-
ciations between DSI and DFQ dimensions, confirming that the DSI predicts fatigue state
change during driving. However, these associations were not further moderated by the ex-
perimental factors. Third, we ran ANOVAs to test the effects of automation and secondary
media on driving performance. ANOVAs confirmed that automation slowed braking RT
to the emergency event, whereas secondary media enhanced vehicle control in the first
parts of the drive but did not affect emergency braking. Finally, we conducted correlational
and regression analyses on relationships between DFQ dimensions and performance met-
rics. The majority of fatigue state dimensions were associated with poorer vehicle control;
surprisingly, higher DFQ confusion correlated with faster emergency braking.

3.2. Effects of Automation and Secondary Media on Fatigue States

Four 2 × 3 × 3 (pre/post × automation × secondary media) mixed-model ANOVAs
were run to test the effects of experimental factors on the four DFQ state fatigue dimen-
sions. Pre/post was a repeated-measures factor contrasting pre- and post-drive DFQ
scores. One participant failed to complete the post-drive DFQ, and their data were omit-
ted from these analyses. Main effects of pre/post were significant for muscular fatigue
(F(1,170) = 45.53, p < 0.01, η2

p = 0.211), tiredness (F(1,170) = 91.08, p < 0.01, η2
p = 0.349),
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confusion (F(1,170) = 34.22, p < 0.01, η2
p = 0.168), and comfort-seeking (F(1,170) = 41.89,

p < 0.01, η2
p = 0.198). Fatigue state responses can be expressed as change scores from pre-

to post-drive, standardized against the SD of the pre-drive state, as shown in Table 2. Distri-
butions of scores were similar to those observed in previous studies using the DFQ [18,63].
Fatigue scores tended to increase on all dimensions during the drive, with the largest effect
on tiredness (standardized change score ∆z = 1.13) and smaller changes in muscular fatigue
(∆z = 0.48), confusion (∆z = 0.49), and comfort-seeking (∆z = 0.40). Variation in fatigue
response with experimental factors is indicated by a factor × pre/post interaction, i.e.,
the change in fatigue during the drive varies across experimental conditions. The pre-
post × automation interaction was significant for muscular fatigue (F(2,170) = 4.131, p < 0.05,
η2

p = 0.046) and the pre/post × media interaction was significant for tiredness
(F(2,170) = 6.26, p < 0.01, η2

p = 0.069). There were no other significant interactions.

Table 2. Means (and SDs) of standardized fatigue state changes as a function of automation and
secondary media conditions.

Condition
Fatigue State Dimension

Muscular Tiredness Confusion Comfort-
Seeking

Manual
Control 0.532 (0.77) 1.793 (1.79) 0.846 (1.396) 0.597 (0.966)
Trivia 0.862 (1.036) 1.217 (1.605) 0.491 (0.837) 0.49 (0.524)

Cellphone 0.567 (0.933) 0.825 (1.375) 0.26 (0.837) 0.149 (1.088)

Partial Auto
Control 0.532 (1.132) 2.134 (2.27) 0.888 (1.45) 0.49 (0.987)
Trivia 0.549 (0.963) 0.681 (1.663) 0.019 (1.022) 0.44 (0.827)

Cellphone 0.718 (0.941) 0.707 (1.263) 0.369 (1.1) 0.355 (0.54)

Full Auto
Control −0.243 (1.226) 1.217 (1.159) 0.388 (1.014) 0.263 (0.929)
Trivia 0.439 (0.775) 0.932 (1.634) 0.846 (1.353) 0.628 (0.729)

Cellphone 0.382 (0.685) 0.694 (1.232) 0.303 (0.872) 0.206 (0.684)
Note. Standardized change scores calculated as (post-task state–pre-task state)/(SD of pre-task state),
Auto = Automation.

Figure 4 graphs the two significant interactions. The upper panel shows that manual
and partial-automation drives elicited greater muscular fatigue than full automation, which
appears to have provided relief from steering the vehicle. Automation did not influence
other aspects of fatigue. The lower panel shows that both forms of secondary media
reduced the tiredness response but did not mitigate the other fatigue dimensions.

3.3. Predictors of Fatigue States

Table 3 shows pre- and post-drive correlations between DFQ state fatigue dimensions
and the DSI scales, representing predispositions to different forms of stress. The ‘Change’
rows are partial correlations between post-drive fatigue states and DSI scales, controlling
for the relevant pre-drive state. A positive partial indicates that the DSI scale predicts an
increase in state beyond that expected from the pre-drive level. Three of the DSI scales—
fatigue proneness, aggression, and dislike of driving—correlated positively with multiple
dimensions of state fatigue, although muscular fatigue was only weakly predicted, with
all rs < 0.2. Fatigue proneness and aggression both predicted changes in fatigue state
dimensions also, although only fatigue proneness predicted change in comfort-seeking.
Dislike of driving was associated with higher levels of fatigue on three of the DFQ scales,
but it did not predict change in fatigue state. That is, it appears that high Dislike drivers
were fatigued initially, and their fatigue persisted through the drive without increasing
disproportionately.
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We ran multiple regressions to test whether associations between the DSI and fatigue
states remained significant with experimental factors controlled. The regressions included
automation and secondary media factors as categorical predictors. The three levels of each
experimental factor were represented with two effect coded variables for each factor [67].
With each post-drive fatigue state as the dependent variable, successive steps entered (1)
the corresponding pre-drive state, (2) the two automation variables, (3) the two secondary
media variables, and (4) the five DSI variables. There was no evidence of automation ×
media interactions in the ANOVAs, so no interaction terms were included. Table 4 provides
summary statistics. Pre-task state made a substantial contribution to each equation, reflect-
ing correlations between pre-drive and post-drive scores. Consistent with the ANOVAs,
automation influenced muscular fatigue and secondary media influenced tiredness. As a
block, the DSI variables added significantly only to the prediction of tiredness. In the final
equation, fatigue proneness (β = 0.140, p < 0.05) and aggression (β = 0.158, p < 0.01) both
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made significant contributions. In the equation for confusion, the joint contribution of the
DSI variables at step 4 just failed to reach significance (p = 0.054) and hazard monitoring
was significantly negatively associated with confusion in the final equation (β = −0.139,
p < 0.05). In these, and all subsequent regressions, collinearity statistics were within
acceptable levels.

Table 3. Correlations between DSI scales and four fatigue state dimensions.

Fatigue State
DSI Scale

Fatigue
Proneness Aggression Dislike of

Driving
Hazard

Monitoring
Thrill

Seeking

Muscular Pre 0.082 0.091 0.040 0.118 0.092
Post 0.183 * 0.179 * 0.101 0.018 0.085

Change 0.189 * 0.171 * 0.111 −0.089 0.036

Tiredness Pre 0.063 0.100 0.215 ** 0.124 −0.001
Post 0.250 ** 0.259 ** 0.226 ** − 0.015 0.038

Change 0.268 ** 0.252 ** 0.117 −0.118 0.050

Confusion Pre 0.160 * 0.157 * 0.266 ** 0.020 0.140
Post 0.225 ** 0.160 * 0.232 ** − 0.132 0.100

Change 0.178 * 0.084 0.097 −0.177 0.015

Comfort Pre 0.237 ** 0.205 ** 0.338 ** 0.129 −0.068
Post 0.279 ** 0.225 ** 0.270 ** 0.048 − 0.056

Change 0.170 * 0.119 0.053 −0.058 −0.021
Note. Pre = pre-drive. Post = post-drive. Change = partial correlation with post-drive state, controlling for
pre-drive state. * p < 0.05, ** p < 0.01.

Table 4. Summary statistics for regressions of four fatigue state dimensions on pre-task state, experi-
mental factors and DSI scales.

Fatigue State Dimension

Muscular Tiredness Confusion Comfort-Seeking

Step df R ∆R2 R ∆R2 R ∆R2 R ∆R2

1. Pre-drive state 1177 0.636 ** 0.405 ** 0.614 ** 0.377 ** 0.603 ** 0.363 0.692 ** 0.478 **
2. Automation 2175 0.659 ** 0.029 * 0.617 ** 0.004 0.604 ** 0.002 0.693 ** 0.002

3. Secondary media 2173 0.667 ** 0.011 0.650 ** 0.042 ** 0.617 ** 0.016 0.708 ** 0.021 *
4. DSI scales 5168 0.684 ** 0.022 0.708 ** 0.078 ** 0.648 ** 0.039 0.720 ** 0.018

Note. * p < 0.05, ** p < 0.01. R = multiple correlation coefficient; ∆R2 = step change in R2

We ran further regressions to test whether relationships between fatigue proneness
and fatigue state were moderated by experimental condition. Moderator effects would
indicate that the capacity of fatigue proneness to predict fatigue states varied with levels
of automation and/or secondary media delivery. Fatigue proneness × automation and
fatigue proneness × secondary media interaction terms were computed by centering fatigue
proneness and calculating its products with the effect coded variables for the experimental
factors, i.e., four product terms in total. We repeated the regressions, first, adding fatigue
proneness × automation terms at step 5, and second, adding fatigue proneness × media
interaction terms at step 5. For the interactions with automation, the final step added from
0.001–0.008 to R2 and the increments to R2 were non-significant in all four equations. For
the media interaction terms, all contributions of the interactions were also non-significant,
with the increments to R2 varying from 0.002–0.009. Thus, there was no evidence that
associations between fatigue proneness and fatigue states were moderated by either level
of automation or provision of secondary media.
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3.4. Effects of Automation and secondary Media on Performance

Braking RT was log-transformed prior to analysis to correct positive skew. The analy-
sis of RT was based on 154 participants as 26 failed to brake. Across the three automation
conditions, frequencies of failing to brake were 3/60 (manual), 10/60 (partial automation)
and 13/60 (full automation). The difference between automation conditions was signif-
icant (χ2(2) = 7.10, p < 0.05). That is, both types of automation reduced probability of
braking. Frequencies of braking were similar across the three secondary media conditions.
118 drivers actually crashed into the van, but frequencies were similar across the different
automation and media conditions.

The effects of the experimental factors on braking RT were analyzed with a 3 × 3
(automation × secondary media) between-groups ANOVA. The main effect of automation
was significant (F(2,145) = 6.24, p < 0.01, η2

p = 0.079) but there was no main or interactive
effect of media. Table 5 shows the cell means for the analysis and Figure 5 illustrates the
automation effect. Braking RT was faster with manual control than with either form of
automation.

Table 5. Log RTs (and SDs) for braking response as a function of secondary media and automation
conditions.

Automation
Secondary Media

None Trivia Phone

Manual 0.408 (0.266) 0.450 (0.266) 0.459 (0.223)
Partial Auto 0.583 (0.257) 0.709 (0.418) 0.553 (0.350)

Full Auto 0.667 (0.250) 0.651 (0.339) 0.617 (0.486)
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Effects on SDLP early (8–12 min) and late (33–37 min) in the drive were analyzed
for drivers in the manual and partial automation conditions. SDLP was log-transformed
to reduce positive skew. A 2 × 2 × 3 (early/late × automation × secondary media)
mixed-model ANOVA showed several significant effects on SDLP. There were significant
main effects of early/late (F(1,114) = 81.63, p < 0.01, η2

p = 0.417) and secondary media
(F(2,114)=14.16, p < 0.01, η2

p = 0.199). SDLP declined over time, suggesting a practice effect.
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SDLP was lower in both secondary media conditions relative to no media. These effects
were modified by two significant interactions: early/late × automation (F(1,114) = 10.22,
p < 0.01, η2

p = 0.199), and automation × media (F(2,114) = 3.11, p < 0.05, η2
p = 0.052).

Figure 6 shows the cell means. Early in the drive, SDLP tended to be lower with partial
automation than with manual control, but the automation effect diminished later in the
drive. The apparent practice effect may have been accelerated in the partial automation
condition given that the driver could focus attention on lateral control. The automation ×
media interaction reflects greater benefits of media under partial automation.
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3.5. Performance Correlates of Fatigue States

Correlations between post-drive DFQ scores and SDLP early and late in the drive and
braking RT (performance variables log-transformed) are shown in Table 6. Data for SDLP
were taken from the partial automation and manual conditions (N = 120). Table 6 shows
that only confusion correlated with braking RT; surprisingly, more confused drivers were
faster to brake. Table 7 shows the multiple regression that controlled for the effects of the
experimental manipulations. The four DFS scales made a significant contribution to the
equation at the final step and the only significant DFS predictor in the final equation was
confusion (β = −0.232, p < 0.05). Additional regressions tested for interaction between
confusion and the experimental factors, but no significant effects of interaction terms were
found.

Table 6. Correlations between four fatigue state dimensions and performance measures.

Fatigue State Dimension

Muscular Tiredness Confusion Comfort-Seeking

SDLP (1st half) 0.060 0.366 ** 0.327 ** 0.188 *

SDLP (2nd half) 0.067 0.363 ** 0.236 ** 0.194 *

Braking RT −0.156 −0.154 −0.256 ** −0.034
Note. * p < 0.05, ** p < 0.01.
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Table 7. Summary statistics for regression of braking RT on experimental factors and DFQ scales.

Step df
Braking RT

R ∆R2

1. Automation 2176 0.258 ** 0.067 **
2. Secondary media 2174 0.265 * 0.004

3. DFQ scales 4170 0.349 ** 0.052 *

Note. * p < 0.05, ** p < 0.01. R = multiple correlation coefficient; ∆R2 = step change in R2.

Table 6 shows that all fatigue states except muscular fatigue were significantly corre-
lated with higher SDLP, at both stages of the drive. We ran multiple regressions for each
SDLP measure, with four steps. We entered successively (1) the automation effect coded
variable contrasting manual and partial automation conditions, (2) the two secondary
media effect coded variables, (3) automation × media interaction terms, and (4) the four
DFQ variables. Interaction terms were included because there was a significant interaction
in the ANOVA previously reported. Table 8 gives summary statistics for the two regres-
sions. Consistent with the ANOVA, both regressions showed a significant impact of media
on SDLP. The contribution of the DFS scales at step 4 was significant in both instances.
DFS tiredness was the only scale that was independently predictive, both for early SDLP
(β = 0.334, p < 0.01) and for late SDLP (β = 0.372, p < 0.01). We also tested for interactive
effects of tiredness and the experimental factors using the approach described in Section 3.2.
Product terms for tiredness × automation and tiredness × secondary media did not add
significantly to R2.

Table 8. Summary statistics for regressions of SDLP early and late on experimental factors and DFQ
scales.

Step df SDLP–Early SDLP–Late

R ∆R2 R ∆R2

1. Automation 1118 0.263 ** 0.069 ** 0.020 0.000

2. Secondary media 2116 0.474 ** 0.156 ** 0.415 ** 0.172 **

3. Automation × Media 2114 0.515 ** 0.041 * 0.454 ** 0.033

4. DFQ scales 5110 0.598 ** 0.092 ** 0.541 ** 0.086 *

Note. * p < 0.05, ** p < 0.01. R = multiple correlation coefficient; ∆R2 = step change in R2.

4. Discussion

The present study investigated relationships between subjective fatigue dimensions,
personality, and driving performance in simulated drives that varied in level of automation
and provision of secondary media. As expected, we found substantial increases in fatigue
during driving, partially mitigated by secondary media. Both full and partial automation
slowed emergency braking following manual takeover as in our previous studies [36]. We
also replicated previous findings that DSI fatigue proneness predicts increases in state
fatigue induced by driving [10]. We found relationships between state fatigue and impaired
vehicle control, although the confusion state dimension was unexpectedly associated with
faster emergency response. However, we also found various dissociations that support
the need for a multidimensional conception of driver fatigue states. In this discussion, we
consider further the impacts of the experimental factors on subjective and performance
outcomes, followed by an evaluation of findings on individual differences and their safety
implications.

4.1. Automation, Secondary Media, and Safety

The automation and secondary media manipulations both influenced fatigue out-
comes, but in different ways, implying that they may influence different fatigue processes.
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Automation did not influence most aspects of state fatigue. Here, full automation reduced
muscular fatigue, presumably reflecting the physical demands of manual vehicle steering.
Saxby et al. (2013) [6] found that automation affects fatigue dynamics, in that fatigue
develops faster in the automated vehicle than with manual control, but plateaus at a similar
level. The current data are consistent with this finding; 45 min is a long enough simulated
drive for substantial fatigue to develop during manual driving. Results also show that
simulated driving produces especially large increases in tiredness, relative to other aspects
of fatigue states. As in multiple previous studies [36], automation slowed response to an
emergency event taking place shortly after manual takeover. The current study extended
previous findings by showing that even partial automation—similar to driving with cruise
control—is sufficient to produce the slowing effect. Typically, it takes drivers 2–5 s to transi-
tion safely from automated to manual driving [60]. Here, we observed automation-induced
impairment 2 min after the initiation of the takeover, demonstrating a fatigue effect that
persisted beyond the automation-to-manual transition. Various authors [68,69] have drawn
attention to the safety threats of transitioning from automatic to manual driving at SAE
level 3, and the current data reinforce these concerns. They also show that level of subjective
fatigue is not necessarily diagnostic of loss of alertness in the takeover scenario.

Based on previous findings [38,41,43], we anticipated that secondary media would
mitigate state fatigue, including adverse impacts of automation. This hypothesis was
partially supported. Benefits of secondary media included reduced tiredness and improved
lateral control of the vehicle, especially as the drive progressed. However, secondary
media had no effect on muscular fatigue, confusion, or comfort-seeking, implying that
its benefits are selective. In addition, and contrasting with previous findings [44], there
was no impact on emergency braking, implying that media use benefits on alertness
are fragile and dependent on how additional cognitive workload is delivered. We also
found only limited interaction between media and automation. Secondary media did not
counteract slowing of emergency braking induced by automation. There was a significant
interaction between the two experimental factors in the analysis of SDLP. The benefits of
media for lateral control appeared earlier in the drive with partial automation than with
full automation. Matthews and Desmond (2002) [52] interpreted fatigue effects on lateral
control as reflecting loss of directed-effort, consistent with Hockey’s (2012) [16] account
of fatigue. The secondary media here appear to have maintained engagement with the
task, supporting performance improvement over time. Thus, secondary media use has
selective safety benefits. Specifically, the additional workload appears to mitigate loss of
task-directed effort under fatigue, but not loss of alertness.

4.2. Individual Differences in Driver Fatigue States

The present study investigated individual differences in both driver fatigue states
and performance impairments. Three DSI trait fatigue dimensions—fatigue proneness,
aggression, and dislike of driving—were correlated with fatigue states, consistent with
previous findings [10,19]. As expected, fatigue proneness was associated with increases
during the drive of all four DFQ fatigue dimensions, especially tiredness. More surpris-
ingly, aggression was also associated with increasing tiredness, and, to a lesser degree, with
muscular fatigue. Previously, Matthews and Desmond (1998) [21] found significant asso-
ciations between driver aggression and aspects of driver fatigue during simulated drives
designed to be fatiguing. Prolonged driving under relatively low workload conditions may
be especially frustrating for drivers prone to aggression. Sleep loss has also been linked to
aggression and irritability in multiple studies, suggesting overlap in underlying biological
mechanisms [70], although causal effects of prolonged anger on fatigue have not been
tested.

Dislike of driving was associated with tiredness pre- and post-drive but not change in
tiredness. This association may reflect a general association between dislike of driving and
negative moods in the driving context; dislike relates to task-induced state change mainly in
overtly threatening driving conditions [19]. Multiple regression analyses provided a slightly
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different picture of the role of DSI factors. Independent influences of fatigue proneness
and aggression on change in tiredness were confirmed. There was also a significant
relationship between DSI hazard monitoring and lower confusion, which was not evident
in the bivariate correlations.

Overall, data confirm the utility of the DSI for predicting driver fatigue. DSI–fatigue
correlations were not significantly moderated by the experimental factors; associations
generalized across different levels of automation and secondary media. Thus, the DSI does
not predict individuals uniquely sensitive to automation-induced fatigue or media impacts
on state.

4.3. Fatigue and Individual Differences in Performance

Results showed that different elements of the fatigue state correlated with the two
principal performance outcomes. Tiredness, confusion, and comfort seeking were all asso-
ciated with poorer lateral control in manual and partially automated driving; the multiple
regression suggested that the fatigue effects were attributable primarily to tiredness. Tired-
ness overlaps substantially with low task engagement, which is associated with both lower
resource availability and lower task-directed effort in performance studies [24], as well as
poorer lateral control in simulated driving [71]. As task demands in the present study were
relatively low, tiredness may be indexing reduced effort applied to vehicle control. Only
confusion was associated with braking speed, and, surprisingly, more confused drivers
were faster to brake. A tentative explanation is that confused participants responded impul-
sively without having full situation awareness of their surroundings, whereas those lower
in confusion took a little longer to evaluate the situation before responding. Consistent
with this suggestion, some research on manual takeover suggests that fatigued drivers may
compensate for loss of situation awareness by rapid braking [72,73]. Fatigue also leads
to loss of control over initiation of well-learnt motor responses [74], a process that may
generalize to emergency braking.

4.4. Practical Implications

The identification of drivers vulnerable to fatigue is important for safety [27,29] but the
role of dispositional fatigue-proneness has been neglected. A recent review of personality
factors and unsafe driving [75] located multiple factors associated with negative emotions,
such as anger and anxiety, but cited no studies of fatigue-prone personality. The current
data support the use of the DSI [26] to identify drivers who will show rapid onset of fatigue
symptoms during driving. Such individuals may not be well-suited to commercial driving
jobs. Assessment of fatigue vulnerability is a useful tool for exploring the safety impacts
of clinical disorders and neurological conditions associated with fatigue [27]. However,
the DSI was found to be more effective in predicting changes in tiredness than in other
dimensions of state fatigue.

Another practical issue is diagnostic monitoring for types and levels of fatigue that
threaten safety. In applied settings, objective measures that can be tracked continuously
such as eye closures are required [8]. However, subjective state research contributes
to differentiating cognitive fatigue processes that can be targeted for monitoring. The
current study links impairments in vehicle control to tiredness and impulsive response
to emergency events to confusion. This dissociation suggests that behavioral indices of
fatigue should be evaluated across multiple cognitive processes vulnerable to fatigue. For
example, indices based on analysis of steering movements [76] might not be diagnostic of
impulsive response or alertness. The study also suggests that caution should be used in
interpreting faster response times as indicative of greater alertness, at the individual driver
level, given a possible link to impulsivity.

4.5. Limitations

The study has the normal limitations of laboratory, simulation-based research, i.e.,
extent of generalization to real-world driving is uncertain. In particular, larger magnitude
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declines in subjective fatigue are seen in simulator studies than in real-world driving [77].
However, fatigue effects on real-world performance metrics such as those utilized here
have been demonstrated, including manual takeover from automation [73]. The value
of simulation research is in identifying individual differences in fatigue processes whose
impacts can be followed up in real-world contexts [27,29,78]. Further research might
discriminate the various physical, visual, and cognitive processes that control emergency
braking speeds and their sensitivities to fatigue states [61].

In addition, participants were predominantly young American adults, and general-
ization to other demographic groups is unknown. It would also have been desirable to
include objective, psychophysiological fatigue metrics to complement the subjective state
measures, although our previous work suggests that subjective measures have diagnostic
validity over and above psychophysiological indices [79]. Finally, the automated driving
scenario was rather artificial; drivers in real-life would typically have greater familiarity
with the automated systems of their vehicles.

5. Conclusions

Vehicle automation can increase driver vulnerability to task-induced fatigue states
and performance impairment. Use of in-car media such as trivia games and phone con-
versations are promising for mitigating fatigue during automated phases of driving, but
the current findings suggest that further work is necessary to develop interventions that
can reliably enhance both neurocognitive state and driver performance. We have shown
that driver personality is associated with individual differences in state fatigue response
that are robust across different levels of automation and provision of secondary media,
presenting a challenge to mitigation efforts. Findings also show the utility of the mul-
tidimensional perspective on fatigue states for understanding the inter-relationships of
personality, state response, and performance impairments. Different aspects of fatigue may
be associated with different impairments in information-processing, supporting the need
for multidimensional assessments in evaluating the impacts of interventions for driver
fatigue.
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