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Abstract: Citrus is a subtropical fruit tree with high water requirements. This study aimed to
determine the effects of water deficit on an orange orchard subjected to different water-saving
strategies. The study was realised in an orange orchard in a semiarid area by adopting four different
water management techniques: 100% crop evapotranspiration (control); SSDI—subsurface sustained
deficit irrigation; RDI—regulated deficit irrigation; PRD—partial rootzone drying treatment during
five growing seasons. The experimental design foresaw a randomised block design with six replicates
per treatment (24 index plants). The results of the study showed that the water-saving strategies
reduced irrigation water consumption by 25% (SSDI), 33% (RDI), and 49% (PRD) compared to the
fully irrigated treatment without yield reduction, thus increasing water use efficiency. Mineral
nutrition of the trees was slightly affected by irrigation treatments; element concentration in leaves
was generally in the optimal range; only potassium showed values below the recommended leaf
concentrations. Regarding fruit quality parameters, the vitamin C concentration in RDI showed
significant differences with a value of 62.7 mg 100 mL−1 compared to 58.5 mg 100 mL−1 in the
control. Plants subjected to SSDI and PRD strategies showed increased levels of pulp colour index
with significant values of 10 and 9.90, respectively, compared to the control (8.44). By implementing
targeted water management, citrus growers could save water and increase the ascorbic acid and
sugar concentration in the fruits; anthocyanins also increased but not significantly. These findings
open new market opportunities for citrus growers in marginal areas, where they cannot rely solely
on producing citrus fruits to remain competitive.

Keywords: orange; sustainable water management; nutrients; ascorbic acid; anthocyanin

1. Introduction

Citrus is a worldwide-grown fruit tree group of species cultivated in tropical and
subtropical areas with proper climate, suitable soil, and sufficient water availability. Italy is
one of the leading citrus producers in the Mediterranean area after Spain and Egypt [1].
Farmers in semiarid climate conditions are increasingly interested in enhancing the sus-
tainability of citrus production: the high crop water requirements, particularly during
summer [2,3], and the sensitivity of flowering and fruit-set to water stress [4] may affect
fruit characteristics (e.g., size, taste and colour), making them unsuitable for consumer
acceptance [5].

Water and nitrogen (N) supply are the two main factors limiting the productivity of
crops [6], particularly in arid and semiarid regions. Water and N interact strongly in most
agricultural conditions, with reductions in water use efficiency (WUE) caused by N deficits
and a reciprocal limitation in N use efficiency (NUE) under water deficits [6–8].
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Therefore, designing an optimal irrigation management plan based on state-of-the-
art measuring and modelling tools can effectively contribute to water-saving efforts and
potentially address the water scarcity issue in these regions [9].

Sustained deficit irrigation is a watering strategy proposed to improve water produc-
tivity and reduce irrigation application [10]. It is a common practice in many areas of the
world, especially in dry regions, where maximising crop water productivity is crucial in
reducing crop water requirements.

Crop management techniques such as partial rootzone drying (PRD) and regulated
deficit irrigation (RDI) aim to enhance water use efficiency in field and fruit crops [11–17].
PRD involves alternately drying out one part of the root system while keeping the other part
moist and then switching the irrigation between these root portions after a set interval [18].
This method can significantly decrease water use, foster crop vigour, and sustain yields in
comparison to traditional irrigation methods [19]. When using PRD, the roots exposed to
dry soil produce the root chemical signal of drying (abscisic acid—ABA), while the other
part of the roots in wet soil maintain the water supply so that leaves are kept hydrated [20].
The impact of PRD has been extensively investigated in grapevine crops [21,22] and, to a
lesser extent, in other woody crops. Concerning citrus, the limited available data on PRD
effects focus more on the water volume reduction than the PRD effect on yield and fruit
size [23–25]. RDI applies water stress to control plant growth and the competition between
vegetative growth and fruit production within the plant system [26]. Plants’ responses to
water stress vary at different growth stages; less irrigation applied to the crop at noncritical
stages does not affect normal plant production. However, during critical periods of the
growth cycle, irrigation provides the total water required by the crop to ensure that the
yield and fruit quality are not adversely affected [27].

Subsurface drip irrigation is a water-saving method that enhances the efficiency of
orchard systems. This technology involves applying water directly to the root zone below
the soil surface. By doing so, evaporation is minimized, and water is saved, resulting
in higher water application efficiency. [28–31]. This irrigation strategy may also supply
reduced water amounts: in this study, such a water-saving technique is hereafter referred
to as subsurface sustained deficit irrigation (SSDI). Observations on tree adaptability to
subsurface drip irrigation demonstrate that water restrictions do not affect physiologic
indicators, yield, or fruit quality [30].

The ability of crop plants to survive and maintain productivity under environmental
stress largely depends on their adaptive mechanisms in avoiding or tolerating stress.
Research has shown that the mineral nutritional status of plants plays a significant role in
their ability to adapt to adverse environmental conditions [32].

Water-saving techniques do not impair soil conditions; meanwhile, they increase soil
microorganisms and make more nitrogen available for plants [33]. Thus, water-saving
irrigation strategies are promising field management practices for improving water use
efficiency (WUE) and nutrient use efficiency (NUE) in water-limiting environments [34–37].
Furthermore, PRD significantly increases the soil inorganic N available for plant growth
in a low-input organic farming system, where slow N supply from the decomposition of
organic manure is often a significant constraint for crop yield [33]. Implementing PRD may
stimulate organic N mineralisation, thus improving crop N nutrition and yield [38].

Many studies have shown that using deficit irrigation methods for growing citrus,
nut trees, and vines [17,19,39–42] can lead to better water utilization and the improved
maintenance of adequate crop yield [43,44]; however, to the best of our knowledge, there is
a need for studies with a focus on how these techniques affect the quality of the fruits.

This study investigates the impacts of different deficit irrigation (DI) treatments (i.e.,
SSDI, RDI, and PRD) on an orange orchard in a semiarid region. The objective is to find
ways to conserve water and enhance fruit yield and quality. The study focuses on the
connection between nutraceutical compounds and water use efficiency. Additionally, it
assesses the effects of DI treatments on the nutritional status of plants.
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2. Materials and Methods
2.1. Site Description and Climatic Data

The experiment lasted five consecutive growing seasons (2013–2018) in an orange
orchard of the Council for Agricultural Research and Economics, Research Center Olive,
Fruit and Citrus Crops (CREA-OFA), located in Lentini (SR, Italy; 37◦20′ N, 14◦53′ E,
54 m above sea level). The orange trees [Citrus sinensis (L.) Osbeck] cv ‘Tarocco Sciara
C1882′ grafted on Carrizo citrange rootstock [Poncirus trifoliata (L.) Raf. × C. sinensis (L.)
Osbeck] were planted in 2010 with a 6 m × 4 m tree spacing. The region has a typically hot
Mediterranean summer climate, classified as Csa in the updated Köppen–Geiger climate
classification [45]. Summers are warm and dry. An automatic weather station installed in
the experimental orchard (Vantage Pro 2, Davis Instruments Corporation, Hayward, CA,
USA) logged hourly the climatic parameters, including global radiation, relative humidity,
wind speed and direction, and air temperature. Between 2013 and 2017, the maximum
air temperature reached 41 ◦C, while the average relative humidity was 90%. During this
period, the cumulative reference evapotranspiration (ET0) measured 4512.2 mm, the crop
evapotranspiration (ETc) was 2827.4 mm, and the rainfall was 777.4 mm (Figure 1).
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Figure 1. Average air temperature, humidity, and rainfall during the experiment in the 2013–2018 period.

2.2. Experimental Design

The experimental design consisted of three DI treatments compared to a fully irrigated
control in a randomised block (about 600 m2 each) design with three replicates: each plot
consisted of three rows of 8 trees per row for a whole of 24 plants. In each elemental plot,
two trees were monitored over time (index trees) for plant physiology, nutrition, production,
and fruit quality parameters.

The four irrigation treatments were: (T1) control irrigation, delivering 100% of crop
evapotranspiration (ETc); (T2) subsurface sustained deficit irrigation treatment (SSDI),
delivering about 75% of T1; (T3) regulated deficit irrigation (RDI), delivering on different
phenological stages; (T4) partial rootzone drying (PRD), delivering about 50% of T1. In RDI
trees, the irrigation amount was at 50% ETc from mid-July till the end of August; during
the remainder of the year, RDI provided water at 100% ETc. In PRD trees, the wet and dry
sides of the rootzone were switched every 2 weeks.

Trees from T1, T3, and T4 were drip-irrigated using two surface lateral pipes per tree
row, with six 4 L h−1 emitters (spaced 0.6 m) per tree; those in the T2 treatment had two
subsurface lateral pipes (buried 0.35 m from the soil surface), emitting a total of 6 L h−1.
The self-compensating drips were mounted in a 16 mm section pipe with a thickness of
0.9 mm. The drips spaced 0.6 m at 4 L h−1 allowed the linear flow of 6.4 L m h−1, commonly
used in orange orchards. Lateral pipes in T1, T3, and T4 were located 0.50 m apart from the
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trunk. This irrigation system allowed operating at low pressures with significant energy
savings [46].

The weather conditions at the experimental site (global radiation, relative humidity,
wind speed and direction, air temperature) were logged hourly using an automatic weather
station installed 40 m from the experimental orchard and surrounded by grass. The
data were used to calculate daily reference evapotranspiration (ET0) through the Penman–
Monteith equation [47]. During June–October of 2013, irrigation was scheduled weekly, and
water was applied twice weekly in the early morning. In the consecutive years, the irrigation
frequency was increased to three times per week to contain the negative values of stem
water potential registered in the previous year of trial (i.e., −2.6 MPa). The amounts of water
provided (Table 1) were measured with in-line water meters; manometers also checked the
water pressure regime. The soil of the experimental plot was Typic Haplustept [48,49] with
a sandy–loam texture (69.7% sand, 10.5% clay, 19.8% silt), a total organic carbon of 1.25%, a
sub-alkaline pH value (7.8), and a high cation exchange capacity (65 meq 100 g dry soil).
The average field capacity and the soil wilting point were 0.39 m3 m−3 and 0.24 m3 m−3,
respectively. Agronomic practices included weed control by herbicides within the tree
rows and weed mowing between them. Irrigation water had an electrical conductivity
of 2.02 dS m−1 (at 25 ◦C) and a pH of 7.30. The fertiliser inputs were uniform in all plots
and carried out according to best practices; they ranged over the years by 120 kg ha−1

of N, 50 kg ha−1 of P2O5, and 100 kg ha−1 of K2O, with one half applied in early spring;
the rest was fractioned into three fertigation applications during the irrigation season.
The comparison of each water treatment (T2–T4) with the reference (T1) resulted in the
calculation of the percentage water savings (WS) according to Equation (1):

WS =

(
1 −

(
Ti
T1

))
× 100 (1)

where i = 2, 3, 4.

2.3. Tree Monitoring

Stem water potential (SWP) was measured every two weeks during the irrigation
season at solar midday with a pressure chamber (SKPM 1405/40, Skye Instruments, Llan-
drindod Wells, UK). Measurements were carried out on three leaves per treatment, enclosed
in plastic bags covered with silver foil for at least 1 h before the measurements.

The leaf area index (LAI) (m2 m−2) was measured with a ceptometer (AccuPAR
LP-80, Decagon Devices Inc., Pullman, WA, USA), and the stomatal conductance (gs,
mmol m−2 s−1) was measured with a leaf porometer (Leaf Porometer, Decagon Devices
Inc., Pullman, WA, USA). All porometry measurements were conducted between 11:00 and
13:00 a.m. on six fully exposed leaves per tree, two trees per plot.

2.4. Mineral Concentration Determination

In the experiment, twenty-four trees were selected for plant nutrient status detec-
tion by foliar analysis (performed on 15 leaves per tree). During October of each year,
5–7-month-old leaves of the spring flush were collected from non-fruiting twigs on the
external side of the tree canopy, as outlined by Embleton et al. [50], and adapted to Italian
conditions by Intrigliolo et al. [51]. Indirect chlorophyll concentration measurements were
performed with a SPAD-502 (Konica Minolta, Milan, Italy). Chemical analyses were carried
out on the same leaves to detect the following elements: nitrogen (N), phosphorous (P),
potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), zinc (Zn), and manganese (Mn).
Leaves were (i) washed in tap water by rubbing both sides using cheesecloth, (ii) rinsed
in de-ionised water, (iii) oven-dried at 65 ◦C for 72 h, (iv) ground, and (v) dried at 105 ◦C
for 4 h. The concentration of N was determined on 1 g of dried leaf tissue using the
micro-Kjeldahl method (Distillation Unit K370, Büchi Analytical Inc., Flawil, St. Gallen,
Switzerland). Another 1 g of sample leaf tissue was reduced to ashes in a muffle furnace at
550 ◦C for 12 h. After incineration and extraction with nitric acid (1% v/v), P, K, Ca, Mg,
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Fe, Zn, Mn, and Cu were determined using inductive coupled plasma–optical emission
spectrometry (ICP-OES; OPTIMA 2000DV, Perkin–Elmer, Milano, Italy).

2.5. Yield and Fruit Quality Determination

The yield and number of fruits per tree were determined at the time of commercial
harvest, and ten fruits per tree (treatment × replication) were analysed to assess the quality
of the fruits. The equatorial and polar sections of the fruits were measured using caliper
tape. Fruit firmness, weight, peel thickness, titratable acidity, and total soluble solids were
also determined.

The fruit quality analyses followed the standard procedures described by Kimball [52].
The fruits were weighed, squeezed using a juice machine, and the juice was filtered.
Afterwards, a temperature-compensated digital refractometer (Atago RX5000, ATAGO
Co. Ltd, Tokyo, Japan) was used to determine the juice’s total soluble solids content (TSS).
The juice’s titratable acidity (TA) was measured through titration with 0.1 N NaOH. The
maturity index (MI; dimensionless—dmnl) was calculated as the ratio of TSS (◦ Brix) and
TA (% citric acid). Anthocyanin determination occurred per the pH differential method [53]
and was expressed as cyanidin 3-glucoside equivalents (mg L−1).

Fruit colour analyses were carried out on skin and fruit pulp with a portable spec-
trophotometer (CM-2550d, Konica Minolta Italia). The external colour index (CI) was
determined as follows:

CI = a∗ × 103 × (L × b∗)−1 (2)

where a* is for green–red (a* = red; −a* = green); L is the lightness (L = 0, black; L = 100,
white); b* is for the blue–yellow chromaticity coordinates (b* = yellow; −b* = blue). WUE
was calculated as the total yield produced per unit of irrigation applied plus effective
rainfall (kgfresh weight m−3), and the total of bioactive compounds (TSS, TA, anthocyanin)
produced per unit of water used by the plant (g m−3).

2.6. Statistical Analysis

Data underwent statistical processing using the Jamovi, version 2.2 software [54],
based on the “R” statistical suite of codes [55]. Data processing foresaw the calculation of
the descriptive statistics for each treatment (mean ± standard deviation) and, to evaluate
the statistically significant differences among the treatments, data underwent analysis of
variance (ANOVA) followed by post hoc multiple comparisons (Tuckey HSD test—p < 0.05)
using the general linear model procedure [56] considering the irrigation treatments and the
years of monitoring as fixed factors; meanwhile, the LAI, the mineral contents of the leaves,
the yield, and the quality parameters of fruits served as dependent variables in the study.

3. Results and Discussion
3.1. Applied Water for Irrigation Treatments

Table 1 reports the irrigation water amounts provided to plants. On average, the
provided amounts were 258.4, 194.1, 170.2, and 131.5 mm in T1, T2, T3, and T4, with
remarkable differences among the treatments compared to T1, which was considered the
control (Table 1).

The DI treatments allowed for achieving water savings of 25, 33, and 49%, respectively,
on average compared to the control treatments. Among the T2, T3, and T4 treatments, the
PRD treatment resulted in the highest water savings (49% on average for the five seasons).
On average, the DI strategy promoted significant increases in irrigation water productivity.
However, severe and prolonged plant water stress might impair tree performance, reducing
the economic return.
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Table 1. Amounts of irrigation water provided for each treatment (mm) and the related percentage of
water savings (WS).

Years T1 T2 WS2 T3 WS3 T4 WS4

2013–2014 259 191 26.5 159 38.8 109 57.9
2014–2015 266 195 26.8 157 41.0 111 58.5
2015–2016 279 204 26.8 174 37.6 158 43.4
2016–2017 279 213 23.7 198 29.0 155 44.5
2017–2018 209 168 19.5 163 21.9 126 39.9
Average 258 194 24.6 170 33.6 131 48.8

The water deficit in fruit crops has been associated with WUE enhancement [57,58].
For this reason, water productivity has become essential for sustainable crop production
and environmental management [59,60]. In our trial, WUE increased proportionally under
water deficit (Table 2).

Table 2. Water use efficiency (WUE).

Water Treatment WUE (kgfresh weight m−3) Grouping *

Control—T1 7.31 ± 3.02 c
SSDI—T2 9.71 ± 2.00 b
RDI—T3 11.32 ± 3.37 b
PRD—T4 15.85 ± 3.95 a

* Averages that do not share a letter are significantly different (Tukey HSD post hoc test, p < 0.05).

3.2. Stem Water Potential and Stomatal Conductance

Figure 2 reports the midday stem water potential (Ψstem) and the stomatal conductance
(gs) for various days of the year (DOYs) during the trial. The minimum Ψstem of −2.56 MPa
occurred in the PRD treatment (T4) measured on the 221st DOY, 2013 (Figure 2a), in a
period when the soil water content reached the maximum depletion from the field capacity
condition (Figure 2b). In the same trial timeframe, even the control treatment (T1) resulted
in a similar Ψstem value; this indicates the existence of factual water limitation as well, even
though T1 underwent maximum rate irrigation. Such a drop of Ψstem might result from
the adopted irrigation timing (i.e., two irrigations per week) during the hottest months of
2013, which did not allow plants to rehydrate. Since 2014, supplying water three days a
week made it possible to maintain the stem potential at optimal levels in all treatments and
reduce water stress.

The values of Ψstem obtained in 2015 in RDI treatments ranged from −2.0 to −2.6 MPa
(Figure 2e). The Ψstem measurements encompass the severity of the water stress that the
trees experienced and the duration of such a stressful situation. In all the treatments, the
stomatal conductance values, gs, of fully sunny leaves ranged between mild stress and
stressed conditions (Figure 2b for 2013 and Figure 2d for 2014), which is typical for orange
trees. In most cases, the lowest gs values match the minimum Ψstem values [2].

Many environmental factors influencing stomatal conductance are well described in
citrus. In this work, gs values were similar to those of other crops and citrus trees, meaning
that low stomatal conductance restricts water use [2]. Following the summer rains, the ob-
served gs values rise around DOY 230 in 2015, 2016, and 2017 (Figure 2f,h,j). In citrus, other
authors observed fluctuations in gs and Ψstem in response to water restrictions [37,43,44].
The evolution of these two variables responds to the time and intensity of water shortage
at different phenological periods. The results demonstrate that both Ψstem and gs serve as
indicators of the cumulative effects of water stress [27].

3.3. Leaf Area Index

Table 3 reports the LAI averages (m2 m−2) recorded in each year of the trial. There is
no treatment effect for LAI, only a difference in the 2017 irrigation period. The 2017–2018
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season is the only one in which the LAI value differs significantly (p < 0.05); this is, on
average, lower than the others by 27.6 ± 5.6%.

Table 3. Average LAI of the trees recorded during the trial.

Years Average LAI Grouping *

2013–2014 4.52 ± 0.65 a
2014–2015 4.16 ± 0.84 a
2015–2016 3.90 ± 0.94 a
2016–2017 4.40 ± 0.77 a
2017–2018 3.14 ± 0.80 b

* Different letters indicate significant differences among values belonging to years—p < 0.05 at post hoc Tukey
HSD test.

LAI is an indispensable parameter in radiative transfer canopy models and is essential
for accurately predicting photosynthetic productivity by crop growth models. LAI is used
for monitoring change detection in canopy structure due to biotic or abiotic stresses [61].
Consequently, in intensive orchard systems, accurate LAI estimates contribute to better
management of pruning and precision farming [62].
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3.4. Mineral Concentration of Leaves
3.4.1. Nitrogen

Leaf N concentration ranged between 25.88 ± 2.16 and 27.56 ± 3.37 g kg−1
d.w. Trees

with the SSDI and RDI protocols resulted in the lowest and the highest foliar nitrogen
concentrations that did not differ significantly from the control and PRD ones (Table 4).
The N concentration differed significantly between 2013–2014 and 2014–2015, but in the
following years, no significant differences were noticed (Table 4).

Table 4. Average nitrogen leaf concentration ± standard deviation (g kg−1
d.w.) recorded for each

irrigation treatment and for each year of trial.

Treatment Average N Grouping *

Control—T1 26.99 ± 1.39 ab
SSDI—T2 27.56 ± 3.37 a
RDI—T3 25.88 ± 2.16 b
PRD—T4 26.50 ± 1.29 ab

Years Average N Grouping *

2013–2014 28.20 ± 4.01 a
2014–2015 25.77 ± 0.87 b
2015–2016 26.98 ± 1.96 ab
2016–2017 26.34 ± 1.18 ab
2017–2018 26.38 ± 1.07 ab

* Different letters indicate significant differences among values belonging to treatments/years—p < 0.05 at post
hoc Tukey HSD test.

The measured concentrations are in line with the 2–6% dry weight ranges found
by Jones [63] and Munson [64] and with the 25–27 g kg−1

d.w. optimum range [65] that
Alva et al. [66,67] reported for similar N and K fertilisation rates administered to ‘Hamlin’
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orange trees. Such concentrations usually correlate with photosynthetic capacity and
yield [68]; however, the treatments that plants underwent did not have any effect on the
SPAD readings that were almost constant, being 77.9 ± 4.41 and 77.6 ± 4.13 SPAD units for
T2 and T3.

3.4.2. Phosphorus

Irrigation and the year of monitoring did not significantly affect the leaf phosphorus
concentration. The values in Table 5 are in line with the reported 0.10–0.15% dry matter
range of P in citrus leaves [65]. Commonly, phosphorus deficiency occurs if leaf P is less
than 0.09 percent. Appropriate P management is important not only for higher crop yield
but also for environmental protection. Baral [69] reported values of foliar P in the 0.19–0.22%
range for healthy mandarin trees compared to higher values occurring in unhealthy plants.
Based on the observed leaf P concentration, varying the irrigation did not induce any stress
in the studied plants for the considered years. In ordinary conditions, soil properties (soil
organic matter content, clay content, and cations exchange capacity) affect the quantity and
the distribution of plant-available P in the orchard soils.

Table 5. Average phosphorus leaf concentrations and standard deviation (g kg−1
d.w.) recorded for

each irrigation treatment and for each year of trial.

Treatment Average P Grouping *

Control—T1 1.55 ± 0.16 n.s.
SSDI—T2 1.50 ± 0.08 n.s.
RDI—T3 1.72 ± 0.12 n.s.
PRD—T4 1.62 ± 0.11 n.s.

Years Average P Grouping *

2013–2014 1.61 ± 0.09 n.s.
2014–2015 1.59 ± 0.10 n.s.
2015–2016 1.62 ± 0.14 n.s.
2016–2017 1.56 ± 0.13 n.s.
2017–2018 1.63 ± 0.17 n.s.

* n.s. = not significant at post hoc Tukey HSD test.

3.4.3. Potassium

Potassium is ubiquitous in the soil–plant system and is unique among the essential
plant nutrients in its multifunctional contribution to plant metabolic processes. Moreover,
it also regulates the water economy of the trees and greatly increases citrus yield, not in
number but in fruit size [70,71]. The extreme mobility of potassium within the plant system
is mainly responsible for the failure to associate it with specific functions.

The observed K concentration values in the foliar tissue ranged between 2.36 and
9.38 g kg−1

d.w. (Figure 3). The significant interaction of irrigation treatments and the
year significantly affected the concentrations of this element, making it impossible to
assess specifically the effect of the irrigation treatments. The lowest K foliar concentra-
tion was 3.95 ± 0.46 g kg−1

d.w. (T3, Year 2016–2017), while the highest K concentration
(7.15 ± 1.55 g kg−1

d.w.) occurred for T1 during 2014–2015. However, considering the sole
effect of the treatment on this element, T1 showed the highest average concentration
(5.89 ± 1.70 g kg−1

d.w.), while plants subjected to T3 had the lowest potassium concentra-
tions (4.44 ± 0.86 g kg−1

d.w.). Such values are below the recommended K leaf concentrations
in the 1.0–1.55% dry matter range [71] and even lower than the more comprehensive ranges
recommended by Srivastava (0.99–2.59%) [72] and Intrigliolo et al. (0.7–1.1%) [51]. Different
parameters, including soil properties, plant variety, maximum production, and climate, can
affect the amounts of K necessary for fruit production [73].
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Figure 3. Average potassium leaf concentration and standard deviation (g kg−1
d.w.) in each treatment

and per year of the trial. Error bars represent the standard deviation from the mean (n = 6).

3.4.4. Calcium and Magnesium

Ca concentration ranged from 48.2 ± 4.29 g kg−1
d.w. to 56.5 ± 2.41 g kg−1

d.w. Year and
treatment did not significantly affect calcium concentration inside the plants, which is in line
with its scarce mobility in the plant–soil system. However, magnesium was significantly
affected by the year and the treatment. T4 resulted in the highest Mg concentration,
11.1 ± 1.0% higher than the other three. The effect of the year, albeit significant, showed
the highest significant Mg concentration in the year 2016–2017 (5.30 ± 0.80), while the year
2013–2014 recorded the lowest (4.29 ± 0.39) (Figure 4).
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d.w.):

(a) depending on treatments; (b) depending on year. Averages not sharing a letter are significantly
different (p < 0.05 at post hoc Tukey HSD test). Error bars represent the standard deviation from the
mean (n = 30 for the treatments and 24 for the years).

3.4.5. Iron, Zinc, Manganese, and Copper

Iron and zinc concentrations in plant leaves were not affected by the treatments.
However, the year resulted in having a significant effect on their concentrations in plant
tissues: the year 2013–2014 had the highest iron concentration (133.8 ± 13.1 mg kg−1

d.w.),
while the year 2016–2017 was the one where the zinc concentration in leaves was the highest
(65.9 ± 10.3 mg kg−1

d.w.).
Manganese and copper concentrations were affected significantly by the irrigation

treatments. Mn resulted significantly higher in T2 and T3 (Table 6), while plants subjected
to T1 and T4 resulted in higher copper concentrations (Table 7).
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Table 6. Average Mn concentrations and standard deviation (mg kg−1
d.w.) across treatments. Aver-

ages that do not share a letter are significantly different.

Water Treatment Average Concentration Grouping *

Control—T1 45.0 ± 11.0 b
SSDI—T2 50.9 ± 14.1 a
RDI—T3 51.0 ± 16.2 a
PRD—T4 45.2 ± 11.2 b

* Different letters indicate significant differences among values belonging to treatments/years—p < 0.05 at post
hoc Tukey HSD test.

Table 7. Average Cu concentrations and standard deviation (mg kg−1
d.w.) across treatments. Averages

that do not share a letter are significantly different.

Water Treatment Average Concentration Grouping *

Control—T1 24.1 ± 4.56 a
SSDI—T2 14.3 ± 4.58 b
RDI—T3 20.9 ± 4.58 ab
PRD—T4 26.0 ± 4.56 a

* Different letters indicate significant differences among values belonging to treatments/years—p < 0.05 at post
hoc Tukey HSD test.

Irrigation treatments induced some statistical differences in the mineral nutrition of
the trees. Nitrogen concentration in leaves was optimal for all treatments, even though SSDI
treatment showed a significantly higher value than RDI. Phosphorus, calcium, iron, and
zinc concentrations in leaves were not affected by irrigation treatments and were all in line
with optimal reference values. Potassium concentrations in leaf tissues were consistently
below the optimal level or at its lower range [50], as found in commercial citrus orchards in
Israel [74], with a significant reduction in the RDI treatment. Accordingly, magnesium leaf
concentration was higher in RDI-treated trees than in other irrigation treatments. Mn leaf
concentration was higher in SSDI and RDI compared to control and PRD treatments; the
opposite trend was noticed for copper leaf concentrations.

3.5. Yield and Fruit Quality

The PRD treatment significantly affected the weight per fruit: full irrigation (T1) trees
showed fruits weighing 277.3 ± 34 g on average, significantly more than fruits from plants
subjected to partial rootzone drying treatment (249.9 ± 33.6 g). However, the treatments
did not affect plant production (t ha−1) (Figure 5). This result agrees with other studies on
citrus trees in which water savings did not affect yield [75,76].
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As recorded for the yield (t ha−1), the irrigation treatment did not significantly affect
plant vigour, canopy volume, trunk diameter, or circumference (data not reported).

T3 and T4 showed a significant increase in the TSS (about +6.0%) compared to T1 and
T2 (Table 8). The same trend was observed for total acidity. T2 fruits had the lowest juice
yield, while T3 showed the highest C vitamin concentration in fruits.

Table 8. Effect of deficit irrigation on fruit quality parameters at harvest.

Control
T1

SSDI
T2

RDI
T3

PRD
T4

Total soluble solids—TSS (◦Brix) 10.8 ± 0.64 b 10.9 ± 0.66 b 11.6 ± 0.87 a 11.4 ± 0.74 a
Titratable acidity—TA (%) 1.36 ± 0.18 b 1.36 ± 0.28 b 1.44 ± 0.31 a,b 1.46 ± 0.26 a
Maturity Index—MI (dmnl) 8.07 ± 1.04 8.38 ± 1.38 8.23 ± 1.57 8.01 ± 1.28
Juice yield (%) 51.3 ± 5.27 a,b 48.9 ± 8.89 b 53.5 ± 5.93 a 52.4 ± 4.56 a,b
Anthocyanin (mg L−1) 6.49 ± 4.30 12.3 ± 8.90 9.25 ± 6.94 11.5 ± 10.2
Vit C (mg 100 mL−1) 58.5 ± 8.15 b 60.5 ± 9.38 a,b 62.7 ± 6.71 a 60.0 ± 6.23 a,b
Pulp colour index—CI 8.44 ± 2.33 b 10.01 ± 2.33 a 9.07 ± 1.83 a,b 9.90 ± 3.06 a
Equatorial Diameter (mm) 81.1 ± 4.20 a 79.7 ± 4.78 a,b 78.6 ± 4.06 b 78.6 ± 3.64 b
Longitudinal Diameter (mm) 88.5 ± 4.66 87.0 ± 6.98 86.1 ± 6.77 85.5 ± 5.21

Averages that do not share a letter are significantly different (Tukey HSD post hoc test, p < 0.05).

The pulp colour index was significantly higher in trees subjected to T2 and T4 treat-
ments (about +13%), while T1 fruits had a higher equatorial diameter than T3 and T4
(Table 8). Pulp colour is correlated with the carotenoid composition of the fruit [77]: incre-
ments in the pulp colour index and fruit size are external quality attributes that positively
affect fruit quality, influencing consumer perception [78,79].

The maturity index (MI) values in the RDI and PRD treatments were similar to that of
the full-irrigated control. This can be considered to be a positive outcome, since a delay in
fruit ripening has the commercial advantage of increased market price following the late
picking up in the season. Previous studies on citrus have also reported this drop in the MI
in deficit-irrigated trees [43,80].

However, regarding water use efficiency, some quality parameters highlighted the
increase in the production efficiency that citrus plants experienced, as follows.

The treatment and year affected the TA content related to the amount of administered
water (g m−3) (Figure 6). The highest significant efficiency belonged to the T4 treatment
(122.0 ± 51.9 g m−3); T3 differed significantly from T4 and T1, while T2 was not significantly
different from T3 and T1, which had the lowest significant efficiency (50.1 ± 23.5 g m−3).
The effect of the year resulted in a significant difference between 2013 and 2014; however,
such an effect did not mask the effect of the treatment.
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The total soluble solids (TSSs) yield showed a similar trend. They were significantly
affected by both the treatment and the year. Again, T4 was the watering procedure with
the highest efficiency (957.2 ± 341.1 g m−3), followed by T3; T1 and T2 were those with the
lowest efficiency (Figure 7).
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Anthocyanins’ content related to the amount of water administered was not affected
by the treatment, the year, or the interaction among them. Despite this, our results indicate
an increase in the anthocyanin content for all the DI treatments, which was 1.4 to 1.9 times
higher than the control (Table 8). The related water use efficiency increased by 2.4 to
4.5 times compared to the control (Figure 8).
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For vitamin C (Figure 9), treatment and year had separate significant effects. The chart
shows that T4 recorded the highest significant efficiency (49.2 ± 15.0 g m−3), followed
by T3. T1 and T2 did not differ between them. The year 2017–2018 recorded the highest
efficiency, while the lowest belonged to fruits collected in 2013–2014.
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4. Conclusions 
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However, future site-specific studies are required to assess the optimal duration of 
DI strategies to achieve the best economic results for citrus growers facing the current 
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Figure 9. Average WUE of vitamin C yield and standard deviation (g m−3) according to treatment
(on the left) and year (on the right). Averages that do not share a letter are significantly different
(Tukey HSD post hoc test, p < 0.05). Error bars represent the standard deviation from the mean (n = 30
for the treatments and 24 for the years).

4. Conclusions

Precise monitoring of meteorological data and Ψstem (related to plant physiology)
make it possible to reduce irrigation water amounts significantly. This allowed for an
increase in the water use efficiency of fruit yield, TSS, TA, and vitamin C. SSDI and RDI
showed a remarkable water-saving effect during the citrus irrigation season compared to
the control. PRD proved to be a remarkable water-saving technique with improved quality
and quantity of fruits, even with a significant reduction in fruit size (−9.9%), significantly
increasing Mg leaf concentration (+11.5%). Irrigation treatments induced some statistical
differences in the mineral nutrition of the trees without apparent agronomic effects. The
targeted water resource management also increased concentrations of specific nutraceutical
compounds (anthocyanins, ascorbic acid, sugars) in the fruits. Therefore, besides the
savings resulting from the reduced use of water, DI may be beneficial for the economy of
Mediterranean citrus farmers due to the increased levels of vitamin C, anthocyanin, and
TSS that could leverage new market possibilities, thus enabling plots located in marginal
areas to become competitive on the market.

However, future site-specific studies are required to assess the optimal duration of DI
strategies to achieve the best economic results for citrus growers facing the current change
in climatic conditions and the evolution of the citrus industry.
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