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Abstract: (1) Background: Currently, echocardiography is the primary non-invasive diagnostic
method used to screen patients with severe aortic valve stenosis (AS) for pulmonary hypertension
(PH) by estimating systolic pulmonary artery pressure (sPAP). Other radiological methods have been
a focus of research in the past couple of years, as it was shown that by determining the pulmonary
artery (PA) diameter, prognostic statements concerning overall mortality could be made in these
patients. This study compared established and novel cardiovascular biomarkers with the PA/BSA
value to detect PH in patients with severe AS. (2) Methods: The study cohort comprised 188 patients
with severe AS undergoing transcatheter aortic valve replacement (TAVR), who were then divided
into two groups based on PA/BSA values obtained through CT-angiography. The presence of PH
was defined as a PA/BSA ≥ 16.6 mm/m2 (n = 81), and absence as a PA/BSA < 16.6 mm/m2 (n = 107).
Blood samples were taken before TAVR to assess cardiovascular biomarkers used in this study,
namely brain natriuretic peptide (BNP), cardiac troponin I (cTnI), high-sensitive troponin (hsTN),
soluble suppression of tumorigenesis-2 (sST2), growth/differentiation factor 15 (GDF-15), heart-
type fatty acid-binding protein (H-FABP), insulin-like growth factor binding protein 2 (IGF-BP2),
and soluble urokinase-type plasminogen activator receptor (suPAR). (3) Results: Patients with a
PA/BSA ≥ 16.6 mm/m2 showed significantly higher levels of BNP (p = <0.001), GDF-15 (p = 0.040),
and H-FABP (p = 0.007). The other investigated cardiovascular biomarkers did not significantly differ
between the two groups. To predict a PA/BSA ≥ 16.6 mm/m2, cut-off values for the biomarkers were
calculated. Here, GDF-15 (p = 0.029; cut-off 1172.0 pg/mL) and BNP (p < 0.001; cut-off 2194.0 pg/mL)
showed significant results. Consequently, analyses of combined biomarkers were performed, which
yielded IGF-BP2 + BNP (AUC = 0.721; 95%CI = 0.585–0.857; p = 0.004) as the best result of the
two-way analyses and GDF-15 + IGF-BP2 + BNP (AUC = 0.727; 95%CI = 0.590–0.864; p = 0.004) as
the best result of the three-way analyses. No significant difference regarding the 1-year survival
between patients with PA/BSA < 16.6 mm/m2 and patients with PA/BSA ≥ 16.6 mm/m2 was found
(log-rank test: p = 0.452). (4) Conclusions: Although PA/BSA aims to reduce the bias of the PA value
caused by different body compositions and sizes, it is still a controversial parameter for diagnosing
PH. Combining the parameter with different cardiovascular biomarkers did not lead to a significant
increase in the diagnostic precision for detecting PH in patients with severe AS.

Keywords: aortic valve stenosis; biomarker; computed tomography; pulmonary hypertension;
PA/BSA; TAVR
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1. Introduction

Patients suffering from severe aortic stenosis (AS) regularly have concomitant pul-
monary hypertension (PH), leading to increased all-cause mortality in surgical and in-
terventional AS repair [1,2]. Invasive right heart catheterization has been used in pre-
operative/pre-interventional diagnostics to assess the additional risk posed by PH. This
practice has been largely abandoned in recent years due to new findings regarding the eval-
uation of PH through echocardiographic measurements such as systolic pulmonary artery
pressure (sPAP) [3,4]. Studies have shown that sPAP can not only be used to accurately
diagnose PH, but also as an independent risk factor for early and long-term mortality, as
well as length of hospital stay [5,6]. However, there is no definitive consensus in the litera-
ture concerning the cut-off value of sPAP defining the presence of PH. Current guidelines
and studies give sPAP values ranging from ≥40 mmHg to ≥50 mmHg, leading to a lack of
standardization [3–9].

Additionally, CT angiography is utilized to gain information about the great arteries
and aortic valve annulus of every patient undergoing TAVR. As per current European
Society of Cardiology (ESC) guidelines [10], CT imaging may be used to assess PH in a
non-invasive manner [11,12]. Pulmonary artery diameter/body surface area (PA/BSA),
with a cut-off value of 16.6 mm/m2, was used in this study to possibly diagnose PH.

In addition to imaging, several biomarkers have been found to correlate with important
cardiovascular diseases. New biomarkers such as soluble suppression of tumorigenesis-2
(sST2), growth/differentiation factor 15 (GDF-15), heart-type fatty acid-binding protein
(H-FABP), insulin-like growth factor binding protein 2 (IGF-BP2), and soluble urokinase-
type plasminogen activator receptor (suPAR) are starting to be mentioned together with
classical biomarkers such as brain natriuretic peptide (BNP) and cardiac troponin I (cTnI)
because of their potential for an adequate diagnosis of cardiovascular diseases, including
myocardial infarction [13,14] or heart failure [15,16].

As the literature investigating the predictive value of biomarkers regarding the concur-
rence of severe AS and PH is rare, this study aims to compare PA/BSA obtained through
CT angiographic imaging with biomarkers, to assess the presence of PH in patients with
severe AS before TAVR in a non-invasive manner.

2. Materials and Methods
2.1. Study Population

Data of 188 patients with severe, primary degenerative AS who were supposed to
undergo the TAVR procedure were analyzed at Paracelsus Medical University Hospital
Salzburg and Kepler University Hospital Linz between 2016 and 2018. Local ethics commit-
tees at Paracelsus Medical University Salzburg (415-E/1969/5-2016) and Johannes Kepler
University Linz (E-41-16) reviewed and approved the study protocol. All study participants
consented in writing to the parameters of this study.

2.2. Transthoracic Echocardiography

Guidelines of the European Society for Cardiology were used to classify severe AS,
defined as AV Vmax (maximal velocity over aortic valve) of 4.0 m/s, AV dpmean (mean
pressure gradient over aortic valve) ≥ 40 mmHg, and an aortic valve area ≤ 1.0 cm2.
Simpson’s method was used to calculate left ventricular ejection fraction (LVEF). Valve
regurgitations of mitral, aortic, and tricuspid valves were classified as minimal, mild (I),
moderate (II), and severe (III) using spectral and color Doppler images. Continuous wave
Doppler was used over the tricuspid valve to obtain maximum tricuspid regurgitant jet
velocity (TRV). Using the formula 4 × TRV2 + estimated right atrial pressure (RAP), the
pulmonary artery pressure (PAP) was calculated. Estimated RAP corresponds to the central
venous pressure, which is determined by the inferior vena cava (IVC) diameter (Table 1):
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Table 1. Overview of the calculation of the estimated RAP.

IVC Diameter Respiratory Caliber Fluctuation RAP

≥21 mm <50% 15 mmHg

Not corresponding to these constellations 8 mmHg

<21 mm ≥50% 3 mmHg

Finally, sPAP was calculated using the simplified Bernoulli equation (4 × TRV2) + RAP,
which was then used to determine PH in accordance with the current literature [3–5,7–9].
To perform transthoracic echocardiography, common devices (iE33 and Epiq 5; Philips
Healthcare) were used.

2.3. CTA Protocol and Measurement of PA Diameter for PH Assessment

Before TAVR, aortic annulus size, aortic anatomy, and vascular access were evaluated
using ECG triggered CT-angiography (second-generation, multidetector 128-slice dual
source CT; Somatom Definition AS+, Siemens Healthcare, Erlangen, Germany) of the aorta
and femoral arteries. A 100 mL bolus of non-ionic iodinated contrast media followed by
70 mL saline solution injected at 3.5–5 mL/s were used to visualize the vasculature. Two
radiological investigators who had no prior knowledge of the patients’ clinical information
analyzed the images on a stationary workstation (Impax, Agfa-Gevaert, Mortsel, Belgium).
The diameter of the pulmonary artery (PA) was measured within 3 cm of the bifurcation, as
can be seen in Figure 1. The quotient of PA/BSA was generated using the DuBois formula
(BSA = 0.007184 × Height0.725 × Weight0.425).
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Enzyme-linked immunosorbent assay (ELISA) kits (sST2: DY523, GDF-15: DY957, H-
FABP: DY1678, IGF-BP2: DY674, suPAR: DY807, R&D Systems, Minneapolis, MN, USA) 
were used to quantify plasma levels of GDF-15, H-FABP, IGF-BP2, and suPAR. Serum 
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USA), the resulting color reaction could be measured at an optical density of 450 nm using 
an ELISA plate-reader (iMark Microplate Absorbance Reader, Bio-Rad Laboratories, Vi-
enna, Austria). 

Figure 1. Measurement of pulmonary artery diameter (black line) on axial CT. PA: pulmonary
artery; red double-headed arrow: distance between bifurcation of the pulmonary artery and level of
measurement within pulmonary artery; RPA: right pulmonary artery; LPA: left pulmonary artery;
DA: descending aorta; AA: ascending aorta.
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2.4. Biomarker Analysis

Biomarker analysis was performed using samples obtained one day before TAVR,
as well as 3 and 12 months after the procedure in an outpatient setting using a vacuum-
containing system. The collection tubes were centrifuged to separate plasma from blood
components and then frozen at −80 ◦C. The samples of all 188 patients were measured at
similar time points under the same conditions. To avoid bias in the biomarker analyses,
patients with end-stage renal disease or requiring dialysis and patients with previous my-
ocardial infarction or coronary intervention with drug-eluting stent implantation <1 month
before TAVR were excluded in advance.

Enzyme-linked immunosorbent assay (ELISA) kits (sST2: DY523, GDF-15: DY957,
H-FABP: DY1678, IGF-BP2: DY674, suPAR: DY807, R&D Systems, Minneapolis, MN, USA)
were used to quantify plasma levels of GDF-15, H-FABP, IGF-BP2, and suPAR. Serum
samples and standard protein were put onto the ELISA plate wells (Nunc MaxiSorp flat-
bottom 96 well plates, VWR International GmbH, Vienna, Austria) and incubated for two
hours, as per the manufacturer’s instructions. After they were treated with Tween 20/PBS
solution (Sigma Aldrich, USA), a biotin-labeled antibody was added and incubated for a
further 2 h. They were then washed, and streptavidin horseradish peroxidase solution was
added. After adding tetramethylbenzidine (TMB; Sigma Aldrich, St. Louis, MO, USA), the
resulting color reaction could be measured at an optical density of 450 nm using an ELISA
plate-reader (iMark Microplate Absorbance Reader, Bio-Rad Laboratories, Vienna, Austria).

The selection of biomarkers was based on extensive literature research as well as pre-
liminary work of our own research group: sST2 has already been described as a potentially
valuable biomarker for risk stratification of PH in TAVR patients [17]. IGF-BP2 is considered
a general risk predictor in patients with severe AS and TAVR [18]. High plasma levels of
suPAR have been associated with increased postoperative mortality and complications
after surgical aortic valve replacement [19]; increased mortality after TAVR was found in
patients with elevated GDF-15 levels [20]. Finally, H-FABP as a relevant biomarker for acute
myocardial injury was shown to be decreased in the course after TAVR, so the hypothesis
was raised that falling H-FABP levels after TAVR are associated with improvement of the
hemodynamic situation [21].

2.5. Statistical Analysis

Statistical analysis was performed using SPSS (Version 25.0, SPSSS Inc., Armonk, NY,
USA). GraphPad Prism (Version 8.0.0, GraphPad Software, San Diego, CA, USA) as well as
SPSS were used to create figures.

The estimated sample size was calculated using the following formula, where z stands
for confidence interval, p for the sample proportion, and ε for the margin of error:

z2 ∗ p(1 − p)
ε2 (1)

This was repeated using different confidence levels and margin errors (Figure S1).
To test variables for normal distribution, the Kolmogorov–Smirnov test was used. If

metric data were normally distributed, they were expressed as mean ± standard deviation
(SD) and analyzed using the unpaired Student’s t-test. For non-normally distributed metric
data, the Mann–Whitney U-test was used; median and interquartile range (IQR) were used
to convey the data. Categorical data were compared using the chi-square test.

To determine a cut-off value for PA/BSA, area under the receiver operating char-
acteristics (AUROC) curves with area under the curve (AUC) and subsequent Youden
Index (YI) analyses were performed at different sPAP values (sPAP 40–45–50 mmHg).
Biomarker plasma levels were then statistically compared based on two groups (“No PH”:
PA/BSA < cut-off and “PH”: PA/BSA ≥ cut-off; cut-off = 16.6 mm/m2) using AUROC
analyses and YI analyses for each examined biomarker.

Twofold and threefold biomarker combinations by first completing a binary logistic
regression for each combination and then submitting the obtained values to an AUROC



J. Cardiovasc. Dev. Dis. 2023, 10, 22 5 of 20

analysis. All possible combinations of the named biomarkers (sST2, GDF-15, H-FABP,
IGF-BP2, suPAR, BNP, hsTN, cTnI) were considered in this study.

A Kaplan–Meier curve with a log-rank test was generated to compare the 1-year
survival between patients with a PA/BSA above and below 16.6 mm/m2.

Statistical significance was set to a p-value ≤ 0.050.

3. Results
3.1. Sample Size Calculation

Using the aforementioned formula to calculate, it was assessed that in this study, for a
95% confidence interval/5% margin error, a sample size of 385 subjects would have been
needed. For a 90% confidence interval/10% margin error, the sample size necessary was
calculated to be 69 patients. Averaging the four calculated versions of the estimated sample
size in this study equals 206 patients, which is in an acceptable range to our cohort of
188 patients. Supplementary Figure S1 provides further detail and summarizes the sample
size calculation.

3.2. Study Cohort

Of the 188 patients included in this study, 107 patients (56.9%) had a PA/BSA ratio
measured through CT angiography below 16.6 mm/m2, which we defined as “No PH”.
The remaining 81 patients (43.1%) showed a PA/BSA ratio higher or equal to 16.6 mm/m2,
which was equated to them having PH.

3.3. Baseline Characteristics

In Table 2, the baseline characteristics of the overall cohort, as well as the characteristics
of the two groups defined as PA/BSA < 16.6 mm/m2 and PA/BSA ≥ 16.6 mm/m2 are
listed and compared using the statistical methods laid out above.

Table 2. Characteristics of the study cohort.

Overall Cohort
n = 188

PA/BSA < 16.6 mm/m2

n = 107
PA/BSA ≥ 16.6 mm/m2

n = 81

Clinical Data p-value

Age (years)—mean ± SD 82.8 4.9 82.0 5.0 83.0 4.5 0.139
Gender (male)—% 52.7 60.7 42.0 0.011
Weight (kg)—mean ± SD 74.2 14.6 76.0 15.5 71.0 12.8 0.021
Height (cm)—mean ± SD 166.9 9.1 168.6 8.7 164.7 9.0 0.003
BMI (kg/m2)—mean ± SD 26.6 5.3 26.8 5.7 26.3 4.6 0.517
NYHA—median ± IQR 3.0 1.0 3.0 1.0 3.0 1.0 0.277
STSScore—mean ± SD 2.9 1.6 2.4 1.0 3.5 1.8 0.005

Concomitant Disease p-value

Diabetes mellitus—% 21.8 23.4 19.8 0.553
Hypertension—% 79.3 82.2 75.3 0.246
CVD-% 73.4 80.4 64.2 0.025
CVD-1 vessel—% 22.3 25.2 18.5 0.399
CVD-2 vessels—% 9.0 8.4 9.9 0.610
CVD-3 vessels—% 9.6 11.2 7.4 0.469
Myocardial infarction—% 3.2 2.8 3.7 0.737
Atrial fibrillation—% 33.5 29.0 39.5 0.130
Pacemaker—% 7.4 6.5 8.6 0.587
Malignancy—% 21.3 24.3 17.3 0.244
Stroke—% 4.8 3.7 6.2 0.436
PAD—% 5.3 4.7 6.2 0.650
COPD—% 9.0 8.4 9.9 0.729
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Table 2. Cont.

Overall Cohort
n = 188

PA/BSA < 16.6 mm/m2

n = 107
PA/BSA ≥ 16.6 mm/m2

n = 81

Echocardiography p-value

LVEF (%)—mean ± SD 55.8 11.0 57.5 9.4 53.4 12.4 0.015
LVEDD (mm)—mean ± SD 46.0 6.1 4.5 0.5 4.6 0.7 0.277
IVSd (mm)—mean ± SD 15.2 2.9 15.0 2.8 15.5 3.2 0.377
AV Vmax (m/s)—mean ± SD 4.3 0.6 4.3 0.5 4.3 0.6 0.678
AVdPmean (mmHg)—mean ± SD 48.6 12.5 48.6 12.0 48.7 13.3 0.949
AVdPmax (mmHg)—mean ± SD 77.8 19.2 77.9 18.3 77.7 20.4 0.950
TAPSE (mm)—mean ± SD 22.1 3.9 22.7 4.1 21.1 3.6 0.077
sPAP (mmHg)—mean ± SD 43.3 15.4 38.5 14.3 49.0 14.8 <0.001
AVI ≥ II◦—% 16.0 11.2 22.2 0.053
MVI ≥ II◦—% 19.7 15.9 24.7 0.147
TVI ≥ II◦—% 12.2 9.3 16.0 0.154

Laboratory data p-value

Creatinine (mg/dL)—median ± IQR 1.0 0.4 1.0 0.3 1.0 0.5 0.694
BNP (pg/mL)—median ± IQR 1174.0 2094.4 823.1 1557.3 2270.5 3263.7 <0.001
cTnI (pg/mL)—median ± IQR 23.5 19.0 21.0 14.0 27.0 22.0 0.055
hsTN (pg/mL)—median ± IQR 2.5 2.3 2.4 2.3 2.7 1.3 0.747
Hkt (%)—median ± IQR 38.4 6.2 39.1 5.3 37.4 7.7 0.013
Hb (g/dL)—median ± IQR 12.8 2.3 13.1 2.4 12.6 2.9 0.011
CK (U/L)—median ± IQR 79.0 68.0 86.5 78.0 75.0 66.0 0.218
sST2 (pg/mL)—median ± IQR 13,947.3 9073.6 14,399.6 10,086.8 13,806.6 6727.2 0.323
GDF-15 (pg/mL)—median ± IQR 922.8 707.5 840.1 577.7 1055.2 778.9 0.040
H-FABP (ng/mL)—median ± IQR 1.3 1.8 1.1 1.5 1.6 1.9 0.007
IGF-BP2 (pg/mL)—median ± IQR 178,153.7 134,892.6 156,947.6 115,637.5 225,232.1 180,916.1 0.005
suPAR (pg/mL)—median ± IQR 3524.1 1740.2 3449.2 1775.6 3767.5 1895.8 0.097

PA: pulmonary artery; BSA: body surface area; BMI: body mass index; CVD: cardiovascular disease; LVEF: left
ventricular ejection fraction; LVEDD: left ventricular end-diastolic diameter; IVSd: interventricular septal thickness
at diastole; AV Vmax: maximal velocity over aortic valve; AV dpmean: mean pressure gradient over aortic valve;
AV dpmax: maximal pressure gradient over aortic valve; TAPSE: tricuspid annular plane systolic excursion;
sPAP: systolic pulmonary artery pressure; AVI: aortic valve insufficiency; MVI: mitral valve insufficiency; TVI:
tricuspid valve insufficiency; BNP: brain natriuretic peptide; cTnI: cardiac troponin I; hsTN: high-sensitive
troponin; Hkt: hematocrit; Hb: hemoglobin; CK: creatine kinase; sST2: soluble suppression of tumorigenesis-2;
GDF-15: growth/differentiation factor-15; H-FABP: heart-type fatty acid-binding protein; IGF-BP2: insulin-like
growth factor binding protein 2; suPAR: soluble urokinase-type plasminogen activator receptor; SD: standard
deviation; IQR: interquartile range.

Most of the study population was male (52.70%), and the percentages for the
PA/BSA < 16.6 mm/m2 and the PA/BSA ≥ 16.6 mm/m2 groups differed significantly (60.7%
vs. 42.0%; p = 0.011). The average age of the cohort was calculated to be 82.8 years ± 4.9 years.
The two groups also differed in weight (76.0 kg ± 15.5 kg vs. 71.0 kg ± 12.8 kg; p = 0.021),
height (168.6 cm ± 8.7 cm vs. 164.7 cm ± 9.0 cm; p = 0.003), and STSScore mean (2.4 ± 1.0
vs. 3.5 ± 1.8; p = 0.005). Concerning clinical characteristics, a difference in mean LVEF
(57.5% ± 9.4% vs. 53.4% ± 12.4%; p = 0.015) and sPAP (38.5 mmHg ± 14.3 mmHg vs.
49.0 mmHg ± 14.8 mmHg; p = <0.001) between the two groups was seen. Other basic
characteristics did not show any significant difference between the two groups investigated.

3.4. AUROC Results—sPAP vs. PA/BSA Ratio

With the goal of calculating a cut-off value for the PA/BSA ratio to accurately diagnose
PH, an AUROC analysis was performed, which is shown in Figure 2 and Table 3.
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Figure 2. AUROC curves of PA/BSA values for the prediction of sPAP ≥ 40, 45, and 50 mmHg with
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Table 3. Tabular overview of AUROC analyses of PA/AA-Ratio for prediction of sPAP ≥ 40, 45, and
50 mmHg with concerning cut-off values, Youden Index, sensitivity, and specificity.

Value Prediction AUC 95%CI p-Value Cut-Off Sensitivity Specificity Youden
Index

PA/BSA
(mm/m2)

sPAP ≥ 40
mmHg 0.741 0.656–0.826 <0.001 16.53 0.62 0.79 0.41

PA/BSA
(mm/m2)

sPAP ≥ 45
mmHg 0.642 0.584–0.761 <0.001 16.65 0.62 0.71 0.33

PA/BSA
(mm/m2)

sPAP ≥ 50
mmHg 0.742 0.658–0.826 <0.001 16.65 0.74 0.68 0.42

sPAP: systolic pulmonary artery pressure; PA: pulmonary artery; BSA: body surface area.

For sPAP ≥ 40 mmHg, a PA/BSA cut-off of 16.53 mm/m2 was calculated (AUC = 0.741;
95% CI = 0.656–0.826; p = <0.001; sensitivity = 0.62; specificity = 0.79; YI = 0.41). More-
over, 16.65 mm/m2 was determined to be the cut-off for sPAP ≥ 45 mmHg (AUC = 0.672;
95% CI = 0.584–0.761; p = <0.001; sensitivity = 0.62; specificity = 0.71; YI = 0.33). Fi-
nally, sPAP ≥ 50 mmHg led to a PA/BSA cut-off of 16.65 mm/m2 (AUROC = 0.742;
95% CI = 0.658–0.826; p = <0.001; sensitivity = 0.74; specificity = 0.68; YI = 0.42).

A rounded PA/BSA of 16.6 mm/m2 was used as a cut-off value in this study based on
these calculations.

3.5. Biomarker Concentrations in the Study Cohort

A comparison of the cardiovascular biomarker concentrations regarding the PA/BSA
cut-off value determined can be found in Figure 3.

A significant difference in the median biomarker concentrations between patients with
a PA/BSA < 16.6 mm/m2 and patients with a PA/BSA ≥ 16.6 mm/m2 was seen in BNP
(823.1 pg/mL with IQR 1557.3 pg/mL vs. 2270.5 pg/mL with IQR 3263.7 pg/mL; p = <0.001),
hematocrit (39.1% with IQR 5.3% vs. 37.4% with IQR 7.7%; p = 0.013), hemoglobin (13.1 g/dL
with IQR 2.4 g/dL vs. 12.6 g/dL with IQR 2.9; p = 0.011), GDF-15 (840.1 pg/mL with IQR
577.7 pg/mL vs. 1055.2 pg/mL with IQR 778.9 pg/mL; p = 0.040), H-FABP (1.1 ng/mL with
IQR 1.5 ng/mL vs. 1.6 ng/mL with IQR 1.9 ng/mL; p = 0.007), and IGF-BP2 (156,947.1 pg/mL
with IQR 115,637.5 pg/mL vs. 225,232.1 pg/mL with IQR 180,916.1 pg/mL; p = 0.005). The
remaining cardiovascular biomarkers did not show any significant difference between the
two PA/BSA groups.
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Figure 3. Serum concentrations of sST2, GDF-15, H-FABP, IGF-BP2, suPAR, BNP, hsTN, and cTnI in
patients with a PA/BSA value ≥ 16.6 mm/m2 and with a PA/BSA value < 16.6 mm/m2; ** p ≤ 0.010;
* p ≤ 0.050. PA: pulmonary artery; BSA: body surface area; BNP: brain natriuretic peptide; cTnI:
cardiac troponin I; hsTN: high-sensitive troponin; sST2: soluble suppression of tumorigenesis-2; GDF-
15: growth/differentiation factor-15; H-FABP: heart-type fatty acid-binding protein; IGF-BP2: insulin-
like growth factor binding protein 2; suPAR: soluble urokinase-type plasminogen activator receptor.

3.6. AUROC Results—PA/BSA vs. Singular Biomarkers

To evaluate the potential of biomarkers to predict PA/BSA ≥ 16.6 mm/m2 in patients
with severe AS before undergoing TAVR, AUROC and YI analyses were again performed
on each of the biomarkers (sST2, GDF-15, H-FABP, IGF-BP2, suPAR, BNP, hsTN, cTnI).
Figure 4 and Table 4 depict the results of these analyses.
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Figure 4. AUROC curves of sST2, GDF-15, H-FABP, IGF-BP2, suPAR, BNP, hsTN, and cTnI for
prediction of a PA/BSA value ≥ 16.6 mm/m2 with concerning cut-off values, Youden Indexes,
sensitivity and specificity. BNP: brain natriuretic peptide; cTnI: cardiac troponin I; hsTN: high-
sensitive troponin; sST2: soluble suppression of tumorigenesis-2; GDF-15: growth/differentiation
factor-15; H-FABP: heart-type fatty acid-binding protein; IGF-BP2: insulin-like growth factor binding
protein 2; suPAR: soluble urokinase-type plasminogen activator receptor.

With p-values ≤ 0.05, significant results were found for GDF-15 (AUROC = 0.595,
95%CI = 0.509–0.680, p = 0.029, sensitivity = 0.44, specificity = 0.76, YI = 0.20) with a cut-off
value of 1172.0 pg/mL and for BNP (AUROC = 0.684, 95%CI = 0.604–0.764, p = <0.001,
sensitivity = 0.51, specificity = 0.80, YI = 0.32) with a cut-off value of 2194.0 pg/mL. IGF-
BP2 (AUROC = 0.694, 95%CI = 0.570–0.818, p = 0.05, sensitivity = 0.63, specificity = 0.70,
YI = 0.33) with a cut-off value of 198,440.4 pg/mL also showed promising results with
statistical significance just barely present (p = 0.050).

sST2, H-FABP, suPAR, hsTN, and cTnI did not show any significant results in their
AUROC analyses.

3.7. AUROC Results—PA/BSA vs. Dual-Biomarker Combinations

As stated previously, the biomarkers were then combined using a binary logistical
regression and AUROC and YI analyses were performed on the resulting data. Firstly, they
were performed on all possible dual-biomarker combinations of the biomarkers used in
this study up to this point. Results can be seen in Table 5 and are visualized in Figure 5.
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Table 4. Tabular overview of AUROC analyses of singular biomarkers for prediction of a PA/BSA
value ≥ 16.6 mm/m2 with concerning Youden Index, sensitivity, and specificity.

Value Prediction AUC 95%CI p-Value Cut-Off Sensitivity Specificity Youden
Index

sST2
(pg/mL)

PA/BSA
≥ 16.6 mm/m2 0.466 0.382–0.550 0.433 11,545.5 0.72 0.33 0.05

GDF-15
(pg/mL)

PA/BSA
≥ 16.6 mm/m2 0.595 0.509–0.680 0.029 1172.0 0.44 0.76 0.20

H-FABP
(ng/mL)

PA/BSA
≥ 16.6 mm/m2 0.616 0.533–0.700 0.080 1.6 0.54 0.69 0.23

IGF-BP2
(pg/mL)

PA/BSA
≥ 16.6 mm/m2 0.694 0.570–0.818 0.050 198,440.4 0.63 0.70 0.33

suPAR
(pg/mL)

PA/BSA
≥ 16.6 mm/m2 0.572 0.487–0.656 0.097 2753.9 0.83 0.31 0.14

BNP
(pg/mL)

PA/BSA
≥ 16.6 mm/m2 0.684 0.604–0.764 <0.001 2194.0 0.51 0.80 0.32

hsTN
(pg/mL)

PA/BSA
≥ 16.6 mm/m2 0.518 0.410–0.626 0.748 2.0 0.76 0.39 0.15

cTNI
(pg/mL)

PA/BSA
≥ 16.6 mm/m2 0.635 0.501–0.770 0.055 24.5 0.66 0.66 0.31

PA: pulmonary artery; BSA: body surface area; BNP: brain natriuretic peptide; cTnI: cardiac troponin I; hsTN:
high-sensitive troponin; sST2: soluble suppression of tumorigenesis-2; GDF-15: growth/differentiation factor-15;
H-FABP: heart-type fatty acid-binding protein; IGF-BP2: insulin-like growth factor binding protein 2; suPAR:
soluble urokinase-type plasminogen activator receptor.

Table 5. Tabular overview of AUROC analyses of a combination of 2 biomarkers for prediction of a
PA/BSA value ≥ 16.6 mm/m2 with concerning Youden Index, sensitivity, and specificity.

Values Prediction AUC 95%CI p-Value Sensitivity Specificity Youden
Index

sST2—GDF-15 PA/BSA
≥ 16.6 mm/m2 0.600 0.514–0.686 0.022 0.34 0.88 0.22

sST2—H-FABP PA/BSA
≥ 16.6 mm/m2 0.625 0.543–0.708 0.004 0.67 0.56 0.23

sST2—IGF-BP2 PA/BSA
≥ 16.6 mm/m2 0.700 0.577–0.823 0.004 0.53 0.81 0.35

sST2—suPAR PA/BSA
≥ 16.6 mm/m2 0.599 0.515–0.682 0.220 0.30 0.93 0.22

sST2—BNP PA/BSA
≥ 16.6 mm/m2 0.706 0.626–0.785 < 0.001 0.71 0.67 0.38

sST2—hsTN PA/BSA
≥ 16.6 mm/m2 0.524 0.415–0.634 0.056 0.77 0.38 0.14

sST2—cTnI PA/BSA
≥ 16.6 mm/m2 0.619 0.484–0.754 0.092 0.59 0.66 0.25

GDF-15—H-FABP PA/BSA
≥ 16.6 mm/m2 0.619 0.534–0.704 0.006 0.67 0.62 0.29

GDF-15—IGF-BP2 PA/BSA
≥ 16.6 mm/m2 0.698 0.570–0.825 0.005 0.64 0.72 0.36
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Table 5. Cont.

Values Prediction AUC 95%CI p-Value Sensitivity Specificity Youden
Index

GDF-15—suPAR PA/BSA
≥ 16.6 mm/m2 0.609 0.525–0.692 0.013 0.49 0.74 0.22

GDF-15—BNP PA/BSA
≥ 16.6 mm/m2 0.682 0.599–0.765 <0.001 0.76 0.58 0.34

GDF-15—hsTN PA/BSA
≥ 16.6 mm/m2 0.580 0.468–0.693 0.153 0.51 0.74 0.25

GDF-15—cTnI PA/BSA
≥ 16.6 mm/m2 0.636 0.498–0.774 0.059 0.48 0.83 0.31

H-FABP—IGF-BP2 PA/BSA
≥ 16.6 mm/m2 0.694 0.567–0.821 0.006 0.46 0.88 0.35

H-FABP—suPAR PA/BSA
≥ 16.6 mm/m2 0.612 0.527–0.697 0.010 0.51 0.74 0.25

H-FABP—BNP PA/BSA
≥ 16.6 mm/m2 0.698 0.617–0.778 <0.001 0.78 0.62 0.39

H-FABP—hsTN PA/BSA
≥ 16.6 mm/m2 0.606 0.497–0.715 0.056 0.45 0.77 0.22

H-FABP—cTnI PA/BSA
≥ 16.6 mm/m2 0.624 0.486–0.762 0.086 0.59 0.68 0.28

IGF-BP2—suPAR PA/BSA
≥ 16.6 mm/m2 0.684 0.559–0.810 0.008 0.43 0.88 0.32

IGF-BP2—BNP PA/BSA
≥ 16.6 mm/m2 0.721 0.585–0.857 0.004 0.68 0.73 0.41

IGF-BP2—cTnI PA/BSA
≥ 16.6 mm/m2 0.694 0.570–0.818 0.005 0.63 0.70 0.33

suPAR—BNP PA/BSA
≥ 16.6 mm/m2 0.695 0.615–0.775 <0.001 0.47 0.84 0.31

suPAR—hsTN PA/BSA
≥ 16.6 mm/m2 0.572 0.487–0.656 0.097 0.83 0.31 0.14

suPAR—cTnI PA/BSA
≥ 16.6 mm/m2 0.669 0.539–0.798 0.017 0.69 0.63 0.32

BNP—hsTN PA/BSA
≥ 16.6 mm/m2 0.700 0.603–0.798 <0.001 0.54 0.82 0.36

BNP—cTnI PA/BSA
≥ 16.6 mm/m2 0.680 0.544–0.816 0.018 0.89 0.44 0.33

PA: pulmonary artery; BSA: body surface area; BNP: brain natriuretic peptide; cTnI: cardiac troponin I; hsTN:
high-sensitive troponin; sST2: soluble suppression of tumorigenesis-2; GDF-15: growth/differentiation factor-15;
H-FABP: heart-type fatty acid-binding protein; IGF-BP2: insulin-like growth factor binding protein 2; suPAR:
soluble urokinase-type plasminogen activator receptor.

Most of the combinations showed significant p-values. The most promising combina-
tions in these two-way analyses were sST2 + BNP (AUROC = 0.706, 95%CI = 0.626–0.785,
p = <0.001, sensitivity = 0.71, specificity = 0.67, YI = 0.38), H-FABP + BNP (AUROC = 0.698,
95%CI = 0.617–0.778, p = <0.001, sensitivity = 0.78, specificity = 0.62, YI = 0.39) and IGF-
BP2 + BNP (AUROC = 0.721, 95%CI = 0.484–0.857, p = 0.004, sensitivity = 0.68, speci-
ficity = 0.73, YI = 0.41).

3.8. AUROC Results—PA/BSA vs. Triple-Biomarker Combinations

All possible three-way combinations of these biomarkers were then analyzed in the
same manner as the dual combinations. Findings are depicted in Table 6 and are visualized
in Figure 6.
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Figure 5. Two-way biomarker combinations with corresponding AUROC analyses and diagnostic
strength; # YI ≥ 35; ## YI ≥ 40. BNP: brain natriuretic peptide; cTnI: cardiac troponin I; hsTN: high-
sensitive troponin; sST2: soluble suppression of tumorigenesis-2; GDF-15: growth/differentiation
factor-15; H-FABP: heart-type fatty acid-binding protein; IGF-BP2: insulin-like growth factor binding
protein 2; suPAR: soluble urokinase-type plasminogen activator receptor; YI: Youden Index.

Table 6. Tabular overview of AUROC analyses of a combination of 3 biomarkers for prediction of a
PA/BSA value ≥ 16.6 mm/m2 with concerning Youden Index, sensitivity, and specificity.

Values Prediction AUC 95%CI p-Value Sensitivity Specificity Youden
Index

sST2—GDF-15—
H-FABP

PA/BSA
≥ 16.6 mm/m2 0.633 0.550–0.717 0.002 0.55 0.71 0.26

sST2—GDF-15—
IGF-BP2

PA/BSA
≥ 16.6 mm/m2 0.702 0.575–0.829 0.004 0.82 0.53 0.36

sST2—GDF-15—
suPAR

PA/BSA
≥ 16.6 mm/m2 0.614 0.529–0.699 0.009 0.40 0.87 0.26

sST2—GDF-15—
BNP

PA/BSA
≥ 16.6 mm/m2 0.708 0.627–0.788 <0.001 0.75 0.62 0.36
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Table 6. Cont.

Values Prediction AUC 95%CI p-Value Sensitivity Specificity Youden
Index

sST2—GDF-15—
hsTN

PA/BSA
≥ 16.6 mm/m2 0.584 0.473–0.695 0.136 0.36 0.85 0.21

sST2—GDF-15—
cTnI

PA/BSA
≥ 16.6 mm/m2 0.637 0.496–0.778 0.058 0.48 0.85 0.33

sST2—H-FABP—
IGF-BP2

PA/BSA
≥ 16.6 mm/m2 0.719 0.595–0.844 0.002 0.68 0.72 0.40

sST2—H-FABP—
suPAR

PA/BSA
≥ 16.6 mm/m2 0.630 0.548–0.712 0.003 0.61 0.61 0.22

sST2—H-FABP—
BNP

PA/BSA
≥ 16.6 mm/m2 0.714 0.635–0.793 <0.001 0.73 0.65 0.38

sST2—H-FABP—
hsTN

PA/BSA
≥ 16.6 mm/m2 0.619 0.512–0.725 0.035 0.68 0.56 0.24

sST2—H-FABP—
cTnI

PA/BSA
≥ 16.6 mm/m2 0.626 0.487–0.765 0.080 0.67 0.61 0.28

sST2—IGF-BP2—
suPAR

PA/BSA
≥ 16.6 mm/m2 0.697 0.573–0.821 0.004 0.53 0.81 0.35

sST2—IGF-BP2—
BNP

PA/BSA
≥ 16.6 mm/m2 0.727 0.593–0.862 0.003 0.64 0.79 0.43

sST2—IGF-BP2—
cTnI

PA/BSA
≥ 16.6 mm/m2 0.731 0.605–0.858 0.001 0.64 0.80 0.44

sST2—suPAR—
BNP

PA/BSA
≥ 16.6 mm/m2 0.698 0.618–0.778 <0.001 0.60 0.74 0.34

sST2—suPAR—
hsTN

PA/BSA
≥ 16.6 mm/m2 0.559 0.449–0.669 0.294 0.57 0.61 0.18

sST2—suPAR—
cTnI

PA/BSA
≥ 16.6 mm/m2 0.699 0.574–0.823 0.005 0.76 0.66 0.42

sST2—BNP—
hsTN

PA/BSA
≥ 16.6 mm/m2 0.708 0.609–0.807 <0.001 0.62 0.74 0.36

sST2—BNP—cTnI PA/BSA
≥ 16.6 mm/m2 0.688 0.553–0.823 0.013 0.81 0.53 0.34

GDF-15—H-
FABP—IGF-BP2

PA/BSA
≥ 16.6 mm/m2 0.698 0.570–0.825 0.005 0.57 0.79 0.36

GDF-15—H-
FABP—suPAR

PA/BSA
≥ 16.6 mm/m2 0.627 0.544–0.711 0.003 0.75 0.51 0.26

GDF-15—H-
FABP—BNP

PA/BSA
≥ 16.6 mm/m2 0.699 0.619–0.779 <0.001 0.82 0.54 0.36

GDF-15—H-
FABP—hsTN

PA/BSA
≥ 16.6 mm/m2 0.610 0.499–0.720 0.051 0.70 0.64 0.34

GDF-15—H-
FABP—cTnI

PA/BSA
≥ 16.6 mm/m2 0.635 0.496–0.774 0.061 0.48 0.83 0.31

GDF-15—IGF-
BP2—suPAR

PA/BSA
≥ 16.6 mm/m2 0.695 0.567–0.823 0.006 0.50 0.86 0.36

GDF-15—IGF-
BP2—BNP

PA/BSA
≥ 16.6 mm/m2 0.727 0.590–0.864 0.004 0.74 0.67 0.41
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Table 6. Cont.

Values Prediction AUC 95%CI p-Value Sensitivity Specificity Youden
Index

GDF-15—IGF-
BP2—cTnI

PA/BSA
≥ 16.6 mm/m2 0.732 0.600–0.863 0.002 0.58 0.90 0.48

GDF-15—suPAR—
BNP

PA/BSA
≥ 16.6 mm/m2 0.699 0.619–0.779 <0.001 0.69 0.64 0.32

GDF-15—suPAR—
hsTN

PA/BSA
≥ 16.6 mm/m2 0.594 0.486–0.702 0.095 0.72 0.49 0.21

GDF-15—suPAR—
cTnI

PA/BSA
≥ 16.6 mm/m2 0.653 0.516–0.790 0.034 0.63 0.76 0.39

GDF-15—BNP—
hsTN

PA/BSA
≥ 16.6 mm/m2 0.707 0.607–0.806 <0.001 0.51 0.85 0.36

GDF-15—BNP—
cTnI

PA/BSA
≥ 16.6 mm/m2 0.648 0.500–0.797 0.056 0.71 0.65 0.36

H-FABP—IGF-
BP2—suPAR

PA/BSA
≥ 16.6 mm/m2 0.694 0.567–0.820 0.006 0.43 0.91 0.34

H-FABP—IGF-
BP2—BNP

PA/BSA
≥ 16.6 mm/m2 0.721 0.580–0.861 0.005 0.52 0.91 0.43

H-FABP—IGF-
BP2—cTnI

PA/BSA
≥ 16.6 mm/m2 0.724 0.593–0.855 0.002 0.54 0.93 0.46

H-FABP—
suPAR—BNP

PA/BSA
≥ 16.6 mm/m2 0.698 0.618–0.778 <0.001 0.82 0.55 0.37

H-FABP—
suPAR—hsTN

PA/BSA
≥ 16.6 mm/m2 0.627 0.518–0.737 0.024 0.68 0.62 0.30

H-FABP—
suPAR—cTnI

PA/BSA
≥ 16.6 mm/m2 0.668 0.536–0.801 0.019 0.82 0.51 0.33

H-FABP—BNP—
hsTN

PA/BSA
≥ 16.6 mm/m2 0.732 0.638–0.826 <0.001 0.87 0.56 0.43

H-FABP—BNP—
cTnI

PA/BSA
≥ 16.6 mm/m2 0.669 0.527–0.811 0.029 0.75 0.65 0.40

IGF-BP2—
suPAR—BNP

PA/BSA
≥ 16.6 mm/m2 0.720 0.584–0.856 0.004 0.52 0.88 0.40

IGF-BP2—
suPAR—cTnI

PA/BSA
≥ 16.6 mm/m2 0.726 0.600–0.852 0.002 0.54 0.93 0.46

IGF-BP2—BNP—
cTnI

PA/BSA
≥ 16.6 mm/m2 0.733 0.599–0.868 0.003 0.56 0.88 0.44

suPAR—BNP—
hsTN

PA/BSA
≥ 16.6 mm/m2 0.710 0.612–0.809 <0.001 0.70 0.66 0.36

suPAR—BNP—
cTnI

PA/BSA
≥ 16.6 mm/m2 0.689 0.552–0.826 0.013 0.85 0.62 0.46

PA: pulmonary artery; BSA: body surface area; BNP: brain natriuretic peptide; cTnI: cardiac troponin I; hsTN:
high-sensitive troponin; sST2: soluble suppression of tumorigenesis-2; GDF-15: growth/differentiation factor-15;
H-FABP: heart-type fatty acid-binding protein; IGF-BP2: insulin-like growth factor binding protein 2; suPAR:
soluble urokinase-type plasminogen activator receptor.
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Figure 6. Three-way biomarker combinations with corresponding AUROC analyses and diagnostic
strength; # YI ≥ 35; ## YI ≥ 40. BNP: brain natriuretic peptide; cTnI: cardiac troponin I; hsTN: high-
sensitive troponin; sST2: soluble suppression of tumorigenesis-2; GDF-15: growth/differentiation
factor-15; H-FABP: heart-type fatty acid-binding protein; IGF-BP2: insulin-like growth factor binding
protein 2; suPAR: soluble urokinase-type plasminogen activator receptor; YI: Youden Index.

Combinations of particular note were GDF15 + IGF-BP2 + cTnI (AUROC = 0.732,
95%CI = 0.600–0.863, p = 0.002, sensitivity = 0.58, specificity = 0.90, YI = 48), H-FABP
+ IGF-BP + cTnI (AUROC = 0.724, 95%CI = 0.593–0.855, p = 0.002, sensitivity = 0.54,
specificity = 0.93, YI = 0.46), IGF-BP2 + suPAR + cTnI (AUROC = 0.726, 95%CI = 0.600–0.852,
p = 0.002, sensitivity = 0.54, specificity = 0.93, YI = 0.46), and suPAR + BNP + cTnI (AU-
ROC = 0.689, 95%CI = 0.552–0.826, p = 0.013, sensitivity = 0.85, specificity = 0.62, YI = 0.46).

Almost all other combinations also reached a significant p-value ≤ 0.050.

3.9. Kaplan–Meier Analysis

One-year survival of patients with a PA/BSA < 16.6 mm/m2 and patients with a
PA/BSA ≥ 16.6 mm/m2 was compared using Kaplan–Meier curves, as shown in Figure 7.
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Figure 7. Kaplan–Meier curve for detection of 1-year survival in dependence of a PA/BSA cut-off
value ≥ 16.6 mm/m2. PA: pulmonary artery; BSA: body surface area.

Patients with a PA/BSA < 16.6 mm/m2 showed a lower risk of death during the 1-year
follow-up period at 28.3%, whereas patients with a PA/BSA ≥ 16.6 mm/m2 demonstrated
a death rate of 34.1%. However, the log-rank test did not show any significant difference
with p = 0.452.

4. Discussion

This study aimed to investigate the relationship between PA/BSA and different
biomarkers in patients with severe AS and co-existing PH, as there are currently few
studies exploring this relationship.

4.1. Can a PA/BSA ≥ 16.6 mm/m2 Be Used as Evidence for PH?

The PA/BSA cut-off value of 16.6 mm/m2 used in this study was determined using
different sPAP values (40–45–50 mmHg). As the current literature does not agree on a single
diagnostic sPAP cut-off value for PH diagnosis, to calculate a PA/BSA cut-off, AUROC
analyses of the different sPAP values were performed and the rounded average of the results
was used [3–8]. This value is also closely reflected in a study conducted by Sudo et al.
looking at a study population of 770 patients and concluded that a PA/BSA ≥ 1.68 cm/m2

(16.8 mm/m2) is associated with pre- and post-TAVR PH as well as right heart failure [22].
Other reports also shown that PA dilation is prominent in PH [11,23]. In general, these
previous studies show that PA/BSA could provide additional information regarding the
risk of death in patients undergoing TAVR. It should be mentioned, however, that severe
AS alone may lead to widening of the PA diameter due to vascular remodeling caused
by hemodynamic changes. Although PA/BSA tries to consider the variability of the PA
diameter in different body types by taking BSA into account, this value alone might not be
enough to accurately diagnose PH [23]. Therefore, this study mainly aimed to evaluate the
value of different biomarkers for this important task of diagnosing PH pre-TAVR.
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4.2. Can a PA/BSA ≥ 16.6 mm/m2 Be Used as a Prognostic Factor?

Luçon et al. postulated a pre-interventional sPAP ≥ 40 mmHg to be an indepen-
dent prognostic factor for patients with severe AS undergoing TAVR, regarding their
1-year risk of death [24]. In this work, for an sPAP ≥ 40 mmHg, a PA/BSA cut-off value
of 16.6 mm/m2 was calculated. Compared to the results found in the study investigat-
ing the prognostic value of sPAP ≥ 40 mmHg, the Kaplan–Meier calculation conducted
in this study did not yield a significant difference in 1-year mortality between patients
with a PA/BSA < 16.6 mm/m2 and patients with a PA/BSA ≥ 16.6 mm/m2 after TAVR.
However, a comparable study conducted by Sudo et al. found a significant difference
in mortality between patient groups classified by large or small PA/BSA. Patients with
PA/BSA ≥ 16.8 mm/m2 showed a cumulative 2-year mortality of 30.0%, compared to a
2-year mortality of 13.7% in the other group [22]. Compared to our work, this study evalu-
ated the two-year mortality as opposed to the one-year mortality, with a slightly different
PA/BSA cut-off value of 16.8 mm/m2 as opposed to 16.6 mm/m2. Moreover, the patient
cohort used was considerably larger than ours, with 770 patients compared to 188 patients.
These results lead us to believe that PA/BSA might be useful as a prognostic factor before
TAVR; however, to confirm this assumption, more research would be necessary.

4.3. Can a PA/BSA ≥ 16.6 mm/m2 Be Used Together with Biomarkers to Gain Additional
Information?

Due to the unconvincing results of the Kaplan–Meier calculation, we combined the
data collected through CT-angiography with certain biomarkers obtained through pre-
interventional laboratory measurements.

Matching the results of previous studies investigating the levels of BNP or NT-proBNP
in patients with PH, our work also found significantly increased levels of BNP/NT-proBNP
in patients with PA/BSA ≥ 16.6 mm/m2 [25–27]. In the available literature, however, PH
was defined by sPAP values obtained through echocardiography [27,28] or right heart
catheter measurements [26]. Considering the known stimuli for the release of BNP, which
encompass cardiovascular diseases such as severe AS, which leads to chronic hypertrophy
of the left ventricle, the worth of the calculated cut-off value for BNP (1172.0 pg/mL,
sensitivity = 0.51, specificity = 0.80) remains questionable [29].

Another significantly elevated cardiovascular biomarker was H-FABP, an organotropic
biomarker which is mainly secreted by cardiomyocytes [30]. Compared to a previous
study with patients suffering from severe AS, where concomitant PH was defined by an
sPAP ≥ 40 mmHg, no significantly different expression level of H-FABP could be observed
in patients “with” and “without” PH [31]. In a recently published study of our working
group, this apparent contradiction was explained by the ability of CT angiography to
assess vascular geometry and therefore give indirect information about right ventricular
strain [32].

Other novel cardiovascular biomarkers such as GDF-15 and IGF-BP2 also showed
significantly elevated levels in patients with a PA/BSA ≥ 16.6 mm/m2. GDF-15 is a
stress-induced cytokine which acts at multiple different sites in the body, as well as a cell-
autonomous regulator associated with senescence and apoptosis. It has been previously
found to be a predictive biomarker of all-cause mortality and adverse cardiovascular events
in pulmonary critical care [33]. GDF-15 levels have also been previously associated with
increased mean pulmonary artery pressure, which would, like the results of our study, mean
levels would be elevated in PH [34]. Similarly, IGF-BP2, a biomarker which potentially
plays a role in the pathobiology of PH, has been previously associated with worse outcomes
in pediatric PH patients. It has even been proposed as a potential mechanistic target in
pediatric PH [35].

5. Conclusions

Although PA/BSA aims to reduce the bias of the PA value caused by different body
compositions and sizes, it is still a controversial parameter for diagnosing PH. Combining
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the parameter with different cardiovascular biomarkers did not lead to a significant increase
in the diagnostic precision for detecting PH in patients with severe AS.

6. Limitation

The present study is based on data from a small cohort of two medical centers in Austria
over a circumscribed time period (2016–2018). Biomarker levels were only measured at base-
line without statements regarding expression after TAVR procedure. Additionally, technical
pitfalls in echocardiographic and radiological measurements which lead to misclassifica-
tions should always be conceded, even if examinations (echocardiography and computed
tomography measurements) were performed by experienced clinical investigators.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcdd10010022/s1; Figure S1: Overview of calculations of the
estimated sample size.
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Abbreviations

AS aortic stenosis
AUC area under the curve
AUROC area under the receiver operator characteristics
BNP brain natriuretic peptide
BSA body surface area
cTnI cardiac troponin I
ESC European Society of Cardiology
GDF-15 growth/differentiation factor-15
H-FABP heart-type fatty acid-binding protein
hsTN high-sensitive troponin
IGF-BP2 insulin-like growth factor binding protein 2
IQR interquartile range
IVC inferior vena cava
LVEF left ventricular ejection fraction
PA pulmonary artery
PA/BSA pulmonary artery diameter/body surface area
PH pulmonary hypertension
RAP right atrial pressure
SD standard deviation
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sPAP systolic pulmonary artery pressure
sST2 soluble suppression of tumorigenesis-2
suPAR soluble urokinase-type plasminogen activator receptor
TRV tricuspid regurgitant jet velocity
YI Youden Index
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