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Simple Summary: Naturally occurring diabetes mellitus (NODM) is one of the most common
endocrine disorders in dogs and is most similar to type 1 diabetes mellitus (T1DM) in human patients.
Immune responses in people with T1DM are abnormal and may contribute to a variety of long-term
complications. There is very little information regarding immune function in dogs with NODM.
Vitamin D deficiency is a relatively frequent finding in diabetic human patients. This is important
because vitamin D has several positive effects on the immune system. Therefore, it is unsurprising
that some studies demonstrate that vitamin D supplementation is beneficial in people with T1DM.
While vitamin D interacts with the immune system in dogs, there have been no studies evaluating
its effect in diabetic dogs. Therefore, our study sought to evaluate several components of immune
function and the modulatory effects of calcitriol in diabetic dogs. We found that like human patients
with T1DM, the diabetic state causes cytokine and phagocytic dysregulation in dogs. Vitamin D
affected leukocyte cytokine secretion but not phagocytosis. The level of clinical control in diabetic
dogs did not affect the immune function variables investigated in this study.

Abstract: Human patients with type 1 diabetes mellitus (T1DM) are susceptible to several long-term
complications that are related to glycemic control and immune dysregulation. Immune function
remains relatively unexplored in dogs with naturally occurring diabetes mellitus (NODM). Calcitriol
improves various aspects of immune function in a variety of species, but its effect in diabetic dogs
remains unexplored. Therefore, the objectives of this study were to (i) evaluate immune function in
dogs with NODM and determine if differences exist based on the level of clinical control and (ii) assess
the immunomodulatory effects of calcitriol. Twenty diabetic dogs (clinically controlled, n = ten, not
controlled, n = ten) and 20 non-diabetic, healthy control dogs were included in this prospective,
case–control study. Whole blood was incubated with calcitriol (10−7 M) or negative control, after
which the samples were divided for phagocytosis and leukocyte cytokine response experiments.
The phagocytosis of opsonized Escherichia coli (E. coli) was evaluated with flow cytometry. The
samples for leukocyte cytokine response evaluations were stimulated with lipopolysaccharide (LPS),
lipoteichoic acid (LTA), or phosphate buffer solution (PBS; negative control), and tumor necrosis factor
(TNF)-α, interleukin (IL)-6, IL-8, and IL-10 were measured in supernatant using a canine-specific
multiplex bead-based assay. The leukocytes from diabetic dogs produced higher concentrations
of IL-10 (p = 0.01), IL-6 (p < 0.0001), and IL-8 (p < 0.0001) than the control dogs while controlling
for the intervention and stimulant. Calcitriol decreased the supernatant concentrations of TNF-α
(p < 0.001) and IL-8 (p = 0.04) with concomitant increases in IL-6 (p = 0.005). Diabetic dogs had a
lower percentage of leukocytes undergoing phagocytosis (p < 0.0001) but a higher number of bacteria
phagocytized per cell (p = 0.001) when compared to the control dogs. Calcitriol had no effect on
phagocytic capacity. Lastly, the status of clinical control in diabetic dogs did not yield differences in
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immune function. These results support that dogs with NODM exhibit immune dysregulation and
warrant additional investigation.

Keywords: vitamin D; type 1 diabetes mellitus; whole blood culture; flow cytometry; inflammation;
canine

1. Introduction

Diabetes mellitus is a common endocrinopathy in dogs with an estimated prevalence in
pet populations that range from 0.2 to 1.3% [1–9]. A recent report estimated that 165,000 pet
dogs in the United States have diabetes mellitus [10]. The pathogenesis of diabetes mellitus
in dogs can vary; however, the most common clinically recognized form parallels type 1
diabetes mellitus (T1DM) in human patients [11]. Regardless of the underlying etiology,
dogs with naturally occurring diabetes mellitus (NODM) commonly demonstrate one or
more condition of polyuria, polydipsia, polyphagia, and weight loss because of protracted
hyperglycemia and glucosuria [12].

Diabetic complications in people, and likely dogs, are related to chronic hyperglycemia
and its downstream effects on contributing to cytokine dysregulation [13–18] and immune
dysfunction [19–24]. Moreover, a pro-inflammatory state in human patients with T1DM
has been linked to poor glycemic control [15,17,25,26]. Pro-inflammatory cytokines such as
tumor necrosis factor (TNF)-α contribute to insulin resistance by inhibiting the insulin recep-
tor tyrosine kinase activity and downregulating cellular glucose transporter genes [27,28].
In addition, increased TNF-α and interleukin (IL)-6 levels can lead to exaggerated leuko-
cyte activation and tissue damage, leading to impaired mucosal integrity and subsequent
infection [13]. There is abundant evidence highlighting the dysfunction of innate immunity
in humans with T1DM. Neutrophils from humans with T1DM show derangements in
almost all functions including migration, adhesion, the release of lytic proteases, phagocy-
tosis, killing capacity, and apoptosis [19–22]. Monocytes from diabetic patients also exhibit
abnormal functions [20,23,24]. There is a fraction of available information regarding the
cytokine profile and immune function in diabetic dogs [29–31]. Expanding the paucity of
literature related to the inflammatory milieu and immune function in dogs with NODM is
important to improving our understanding of this common endocrinopathy.

The active metabolite of vitamin D calcitriol improves several aspects of innate immune
function in many different species, including dogs, such as increased antimicrobial peptides,
microbial phagocytic and killing capacities, and the modulation of exaggerated proinflam-
matory cytokine responses [32–40]. Vitamin D deficiency is associated with poor glycemic
control and the development of various complications in people with T1DM [41–45]. Taken
together, it is unsurprising that adjunctive vitamin D supplementation in human patients
with T1DM has been shown in some studies to improve glycemic control and the risk
for diabetes-related complications [46–48]. More information regarding the immunologic
effects of calcitriol in diabetic dogs is needed, as evidence in people with T1DM suggests
that adjunctive vitamin D supplementation may have similar beneficial effects.

This prospective case–control study had three objectives (i) to compare the stimulated
leukocyte cytokine production and granulocyte/monocyte (GM) phagocytic capacity of
Escherichia coli (E. coli) in diabetic dogs and non-diabetic healthy controls, (ii) to determine
the effect that calcitriol has on leukocyte cytokine production and GM phagocytic capacity,
and (iii) assess whether the clinical control of diabetes mellitus affects these immune
function variables. We hypothesized that diabetic dogs would have different leukocyte
cytokine responses and phagocytic capacity compared with non-diabetic healthy controls.
Furthermore, we hypothesized that calcitriol and clinical control status of diabetes mellitus
would affect one or more of these immune function variables.
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2. Materials and Methods
2.1. Criteria for Selection of Dogs and Study Design

Client-owned dogs with NODM treated with ≥0.25 units/kg of insulin administered
once every 12 h and non-diabetic controls were prospectively identified by a combination
of emailing a recruitment flyer to primary care veterinarians in our geographic region and
an interrogation of the electronic medical records system at the Companion Animal Clinic
at Midwestern University College of Veterinary Medicine. Diabetic dogs were classified as
having clinically controlled diabetes mellitus if the dog exhibited no polyuria, polydipsia,
or polyphagia and there had been no insulin dose adjustments within 4 weeks of enrollment.
Dogs were excluded if they were obese or had received vaccinations within 1 month of
enrollment. Dogs with relevant comorbidities or concurrent illness within 60 days of
enrollment were also excluded. A board-certified small animal internist (JAJ) determined
whether a comorbid condition was clinically relevant. A second population of health-, age-
(i.e., ±2 years), breed-, and sex-matched non-diabetic healthy control dogs were enrolled.
Control dogs were included after a review of their clinical history, physical examination,
complete blood count, and serum chemistry by a single investigator (JAJ). Control dogs
were enrolled if they were non-obese, had no illnesses within 6 months of enrollment, and
no vaccinations within 1 month of enrollment. Informed written consent was obtained for
all dogs. This study was conducted in accordance with guidelines for clinical studies and
approved by the Midwestern University Animal Care and Use Committee (protocol: #2944;
approval date: 14 June 2019).

2.2. Data and Sample Collection

Medical records were reviewed for each dog enrolled. The age, sex, weight, body
condition score (BCS), and breed were recorded for each. Other relevant details were
recorded when indicated, such as maintenance diet information and insulin type and
dosage. Hematology, serum biochemistry, serum fructosamine, and urinalysis tests were
measured at a commercial laboratory (Antech Diagnostics, USA).

2.3. Calcitriol

Calcitriol (Sigma-Aldrich, St. Louis, MO, USA) was dissolved in 75% ethanol (Sigma-
Aldrich, St. Louis, MO, USA) to make a stock solution of calcitriol at 24 nmol/mL and
stored light-protected at 4 ◦C as previously described [40].

2.4. Blood Sample Collection and Calcitriol Treatment

A blood sample (6 mL) was collected from each dog into tubes containing lithium
heparin as an anticoagulant and processed within 1 h. Blood (3 mL) was allocated into
2 separate conical tubes and diluted 1:2 with RPMI 1640 culture medium (Thermo Fisher
Scientific, Carlsbad, CA, USA) containing 200 U of penicillin/mL and 200 mg of strepto-
mycin/mL. The blood–RPMI mixture was then incubated with calcitriol (final concentration,
10−7 M) or ethanol negative control diluent for 24 h at 37 ◦C in 5% CO2 in the dark as
previously described [40].

2.5. Leukocyte Cytokine Production

After incubation with calcitriol or ethanol for 24 h, samples from the conical tubes
were transferred to 96-well plates and stimulated with lipopolysaccharide (LPS) from
Escherichia coli O127:B8 (final concentration, 100 ng/mL, Sigma Aldrich, St Louis, MO,
USA), lipoteichoic acid (LTA) from Streptococcus faecalis (final concentration, 1 µg/mL,
Sigma-Aldrich, St Louis, MO, USA), or a phosphate-buffered saline (PBS) control substance.
Plates were incubated for 24 h at 37 ◦C in 5% CO2 in the dark. Following incubation,
plates were centrifuged (400× g for 7 min) at 21 ◦C as previously described [40]. The
supernatant was collected and stored at −80◦ C for batch analysis. For the analysis,
samples were thawed, and then TNF-α, IL-6, IL-8, and IL-10 were measured in supernatant
with a previously validated canine cytokine-specific multiplex bead-based assay (Milliplex
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MAP canine cytokine–chemokine panel, EMD Millipore Corp, Billerica, MA, USA). The
median fluorescence intensity and cytokine concentration in each sample was measured in
duplicate with the appropriate controls and associated data analysis software (Milliplex
Analyst version 5.1, EMD Millipore Corp, Billerica, MA, USA). The lower limit of detection
for TNF-α, IL-10, and IL-6 was 48.8 pg/mL, and for IL-8, it was 195 pg/mL.

2.6. Phagocytosis of E. coli

Phagocytic capacity was determined with a commercially available assay (PhagoTest,
Orpegen Pharma, Heidelberg, Germany), validated for use in canines. The blood mixture
that had been incubated with either calcitriol or ethanol for 24 h was incubated with FITC-
labeled, opsonized E. coli strain LE392. The control samples were incubated on ice for
10 min while test samples were incubated in a 37 ◦C water bath for 10 min. Phagocytosis
was then arrested with test samples being placed on ice, and a quenching solution was
added to extinguish surface-bound FITC-labeled E. coli. The cells were then washed, the
erythrocytes lysed, and the cells washed again before a DNA stain (propidium iodide) was
added to facilitate the exclusion of aggregated artifacts of bacteria or cellular debris without
intact DNA.

2.7. Flow Cytometry

Flow cytometry was performed at the Midwestern University College of Veterinary
Medicine Immunology Laboratory using a Guava easyCyte 12HT (Luminex Corporation,
Austin, TX, USA) and associated data analysis software (Guava-Soft 3.2, Luminex Corpora-
tion, Austin, TX, USA). A minimum of 20,000 events per sample were recorded. The gating
scheme has been previously reported [40]. Briefly, forward scatter height (FSC-H) vs. side
scatter height (SSC-H) cell size and granularity were used to define the primary population
of interest (GM). To further eliminate non-viable cells, DNA-positive staining cells were
gated and then applied to a histogram to determine the percentage of FITC-positive cells
and the mean fluorescent intensity. Phagocytic capacity was noted as (i) the percentage of
GM cells that had internalized FITC-labeled E. coli and (ii) the mean fluorescent intensity
(MFI), a method of quantifying the number phagocytosed bacteria per cell.

2.8. Statistical Analysis

Statistical analysis was performed by commercial software (SigmaPlot, Systat Software
version 14.5, and Stata Statistical Software version 18, StataCorp LLC, College Station, TX,
USA). Non-normally distributed continuous data were described as the median and in-
terquartile range (IQR). Continuous data with a normal distribution were presented as the
mean and standard deviation (SD). When the measured cytokine concentrations fell below
the lower limit of detection, data were recorded at the lower limit of detection for statistical
purposes. The relationship between leukocyte cytokine expression, diabetic status, and
exposure type (i.e., calcitriol or ethanol) was assessed for each cytokine via multilevel
mixed-effects generalized linear regression (MMEGLR) controlling for the stimulant with
dog as a random effect and using robust standard errors [49]. The relationships between
phagocytic capacity and diabetic status and controlled versus uncontrolled diabetic status
were similarly assessed. Models were built using forward selection and biological plausi-
bility. The model fit was assessed through standardized residuals and competing models
compared using Akaike information criterion (AIC)/Bayesian information criterion (BIC)
values. A p-value of <0.05 was considered significant. Data from this study are available
at https://www.kaggle.com/datasets/jaredjaffey/canine-nodm-immune-and-calcitriol
accessed on 22 April 2024.

3. Results
3.1. Animal Population

Forty-one dogs were eligible for inclusion in this prospective case–control study. One
dog was excluded because an appropriately matched control dog was not identified, leaving
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40 dogs (NODM, n = 20; controls, n = 20). The demographic information is presented in
Table 1. Diabetic dogs were maintained on either Neutral Protamine Hagedorn (NPH) (55%,
11/20) or porcine lente (45%, 9/20) insulin. The median dosage of insulin administered once
every 12 h to NODM dogs was 0.75 units/kg (IQR, 0.40–0.88; range, 0.3–1.2 units/kg). All
dogs were fed a commercially available pet food. Ten dogs each were clinically controlled
or uncontrolled. The diabetic dogs had greater serum glucose concentrations (median, IQR;
317 mg/dL, 237–501.3) than the control dogs (101 mg/dL, 90.5–106; p < 0.001). Similarly,
the diabetic dogs had greater serum fructosamine concentrations (median, IQR; 491 mg/dL,
433.3–603) than the control dogs (246.5 mg/dL, 233–278.5; p < 0.001).

Table 1. Descriptive characteristics in dogs with naturally occurring diabetes mellitus and non-
diabetic healthy controls.

Variable NODM Control p-Value

Number of dogs 20 20 ---

Age (years) a 9.3 (1.9) 9.5 (1.9) 0.78 c

Weight (kgs) b 7.6 (6.4) 8.4 (18.1) 0.59 d

BCS b 5 (1) 5 (1) 0.64 d

Sex (female, male) 9, 11 9, 11 1.0 e

Neutered (yes, no) 19, 1 19, 1 1.0 e

Breeds

Chihuahua (n = 8), Labrador Retriever mix (n = 4),
Bichon Frise (n = 2), Miniature Pinscher (n = 2),

Pomeranian (n = 2), Rottweiler (n = 2), Poodle mix
(n = 2), Havanese (n = 2), Australian Shepherd mix

(n = 2), Labrador retriever (n = 2), Jack Russel Terrier
mix (n = 2), Miniature Pinscher mix (n = 2),

Maltese–Poodle mix (n = 2), Rat Terrier (n = 2),
Australian Cattle Dog (n = 2), Yorkshire Terrier (n = 2)

---

BCS, body condition score; kgs, kilograms; NODM, naturally occurring diabetes mellitus. a Data presented
as mean (standard deviation). b Data presented as median (interquartile range). c Two-tailed Student’s t-test.
d Mann–Whitney rank sum test. e Fisher’s exact test.

3.2. Leukocyte Cytokine Responses

The 20 dogs from each group had leukocyte cytokine values generated for the six
combinations of intervention (calcitriol or ethanol) and stimulant (PBS, LPS, LTA), resulting
in 120 values for each type of leukocyte cytokine for each group (controls or NODM)
(Figure 1, Supplementary Table S1). The median supernatant concentration for IL-6 was
49 pg/mL (IQR, 49–85; range, 48–348 pg/mL) for the controls and 106 pg/mL (IQR, 49–368;
range, 49–1369 pg/mL) for the diabetic dogs. In MMEGLR (Poisson family), IL-6 was
216% greater for the diabetic dogs compared to the controls (p < 0.0001; 95% CI, 127–340)
controlling for stimulant and intervention (Table 2). In a similar model containing only
diabetic dogs, there was no difference (p = 0.53) in IL-6 based on the status of the clinical
control as the uncontrolled diabetics had a median of 168 pg/mL (IQR, 49–508; range,
49–1369) and the controlled diabetics had a median of 138 pg/mL (IQR 49–298; range
49–1255).

For IL-8, the median supernatant concentration was 7042 pg/mL (IQR, 4369–9911;
range, 88–18,442 pg/mL) for the controls and 12,724 pg/mL (IQR, 6869–19,698; range,
1430–50,122) for the diabetic dogs. Interluekin-8 concentrations were predicted to be
95% greater for the diabetic dogs (p < 0.0001; 95% CI, 40–172) using MMEGLR (nega-
tive binomial family). There was no difference in IL-8 for dogs with uncontrolled versus
controlled diabetes (p = 0.19), with a median of 10,505 pg/mL (IQR, 5573–18,244; range,
2828–28,210 pg/mL) and 16,526 pg/mL (IQR, 9981–22,730; range, 1430–50,122), respectively.
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Figure 1. Box and whisker plots illustrating leukocyte cytokine response for (a) IL-6, (b) IL-8,
(c) IL-10, and (d) TNF-α between control dogs and dogs with naturally occurring diabetes mellitus
(NODM), controlling for intervention (calcitriol or ethanol) or stimulant (phosphate-buffered solution,
lipopolysaccharide, lipoteichoic acid). Each of the 40 dogs, 20 per group (control or NODM), had a
cytokine value for each of the six unique combinations of intervention and stimulant for a total of
120 values per group for each plot. Line at median, bounds of box at the 25th and 75th percentile,
whiskers at the upper and lower adjacent values (Tukey method), and dots at outliers beyond the
adjacent values.

The median supernatant concentration for IL-10 was 829 pg/mL (IQR, 200–2243; range,
49–9044 pg/mL) for controls and 1802 pg/mL (IQR, 328–3205; range, 49–8170 pg/mL)
for diabetic dogs. In MMEGLR (negative binomial family), IL-10 concentrations were
predicted to be 60% greater for diabetic dogs (p = 0.01; 95% CI, 10–133) after excluding two
outliers with Pearson residuals greater than 4 (both values from the control dogs with PBS
incubation, one in calcitriol and one in ethanol). Although calcitriol was not significant in
the model (Table 2), the AIC and BIC values were lower for the model retaining calcitriol,
and the coefficient and p values did not change appreciably. The p value for diabetic status
was 0.09 without exclusion of the outliers, and the changes to the coefficients and standard
errors were less than 10%. Dogs with uncontrolled diabetes did not have a different
supernatant concentration of IL-10 compared to dogs with controlled diabetes (p = 0.91),
with a median of 1986 pg/mL (IQR, 328–3205; range, 49–6270 pg/mL) and 1537 pg/mL
(IQR, 360–3206; range, 49–8170 pg/mL), respectively.

Tumor necrosis factor-α had a median supernatant concentration of 280 pg/mL (IQR,
106–546; range, 49–6981 pg/mL) for controls and 636 pg/mL (IQR, 124–1192; range,
48–5048 pg/mL) for diabetic dogs. Tumor necrosis factor-α concentrations were not dif-
ferent between the diabetic and control dogs (p = 0.06; 95% CI, −1 to 127) after excluding
the same outliers as for IL-10 using MMEGLR (negative binomial family). The p value for
TNF-α without excluding the outliers was 0.23. No difference was found for the TNF-α
levels (p = 0.86) between dogs with uncontrolled diabetes, with a median of 594 pg/mL
(IQR, 107–1210; range, 49–3510 pg/mL), and controlled with a median of 677 pg/mL (IQR,
128–1164; range, 48–5048 pg/mL).
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Table 2. Multivariable mixed-effects linear regression model of the association of diabetic status
compared to controls, incubation in calcitriol compared to ethanol, and stimulation with LPS and
LTA compared to PBS. n = 240, 240, 238, and 238 for IL-6, IL-8, IL-10, and TNF-α, respectively, after
removal of outliers with Pearson residuals greater than 4.

Variable β
%

Change
Robust

Std. Error z p 95% CI

IL-6

NODM 1.2 216% 0.17 6.8 <0.001 0.8 127% 1.5 340%

Calcitriol 0.3 42% 0.13 2.8 0.005 0.1 11% 0.6 81%

LPS 1.5 365% 0.13 11.7 <0.001 1.3 259% 1.8 502%

LTA 1.3 274% 0.14 9.2 <0.001 1.0 182% 1.6 395%

IL-8

NODM 0.7 95% 0.17 3.9 <0.001 0.3 40% 1.0 172%

Calcitriol −0.1 −7% 0.04 −2.0 0.04 −0.1 −14% 0.0 0%

LPS 0.5 61% 0.09 5.2 <0.001 0.3 35% 0.7 92%

LTA 0.5 58% 0.09 4.9 <0.001 0.3 32% 0.6 90%

IL-10

NODM 0.5 60% 0.19 2.5 0.01 0.1 10% 0.8 133%

Calcitriol 0.1 13% 0.08 1.6 0.11 0.0 −3% 0.3 32%

LPS 2.5 1078% 0.15 17.0 <0.001 2.2 786% 2.8 1466%

LTA 2.2 780% 0.15 14.1 <0.001 1.9 550% 2.5 1091%

TNF-α

NODM 0.4 50% 0.21 1.9 0.06 0.0 −1% 0.8 127%

Calcitriol −0.4 −33% 0.09 −4.5 <0.001 −0.6 −44% −0.2 −20%

LPS 2.2 760% 0.12 18.5 <0.001 1.9 585% 2.4 980%

LTA 1.8 533% 0.12 15.7 <0.001 1.6 403% 2.1 697%

IL, interluekin; TNF, tumor necrosis factor; NODM, naturally occurring diabetes mellitus; LPS, lipopolysaccharide;
LTA, lipoteichoic acid; std, standard.

3.3. Effect of Calcitriol

In the same multivariable mixed-effects linear regression model (Table 2), incuba-
tion in calcitriol was found to increase IL-6 concentrations by 42% (p = 0.005; 95% CI,
11 to 81) compared to incubation in ethanol while controlling for the stimulant and group.
Interleukin-8 concentrations decreased by 7% (p = 0.04; 95% CI, −14 to 0), TNF-α con-
centrations decreased by 33% (p < 0.001; 95% CI, −44 to −20), and IL-10 (p = 0.11) was
not different.

3.4. Phagocytic Capacity of Opsonized-E. coli

The phagocytic capacity of opsonized E. coli was assessed at 24 h via percent phagocy-
tosis and MFI (i.e., average number of E. coli phagocytized per cell) for both the ethanol
and calcitriol interventions for the 20 dogs in each group (Figure 2). In MMEGLR (Pois-
son family), diabetic dogs had a 47% decrease (95% CI, −60 to −30; p < 0.0001) in the
percentage of cells phagocytizing E. coli (median, IQR; 23%, 16–29) compared to control
dogs (48%, 31–61). Diabetic dogs had 76% more phagocytized E. coli per cell (median, IQR;
8539 bacteria/cell, 6572–10,400) compared to control dogs (5318 bacteria/cell, 3370–6900),
irrespective of the intervention (p = 0.001) in MMEGLR (negative binomial family). There
was no difference in the percentage of cells phagocytizing E. coli (p = 0.3) or the number of
bacteria phagocytized per cell (p = 0.65) between the calcitriol and ethanol interventions,
irrespective of the group (Supplemental Figure S1), nor was there any difference in the per-
centage of cells phagocytizing E. coli (p = 0.71) or the number of bacteria phagocytized per
cell (p = 0.82) between uncontrolled and controlled diabetes, irrespective of the intervention
(Supplemental Figure S2).
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Figure 2. Box and whisker plots illustrating (a) percentage of granulocytes and monocytes (GM)
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4. Discussion

This prospective case–control study explored several aspects of immune function and
the ensuing modulatory effects of calcitriol in dogs with NODM. Moreover, subanalyses
were performed to assess whether the level of diabetic clinical control affected immune
function. We found that leukocytes from diabetic dogs produced higher concentrations
of IL-10, IL-6, and IL-8 in supernatant, controlling for the intervention (i.e., calcitriol
or ethanol) and stimulant (i.e., PBS, LPS, or LTA). Next, we found that calcitriol had
no differential effects on leukocyte cytokine responses in the diabetic and control dogs,
regardless of stimulant exposure. However, supernatant concentrations of IL-8 and TNF-α
were decreased, while IL-6 increased with the incubation of calcitriol while controlling for
the stimulant and group. Diabetic dogs exhibited an abnormal phagocytosis of opsonized
E. coli characterized by a decreased percentage of leukocytes performing phagocytosis with
a concomitant increase in the number of organisms phagocytized per cell. Lastly, the status
of the diabetic clinical control did not yield differences in immune function.

Leukocytes from diabetic dogs produced higher concentrations of IL-10, IL-6, and
IL-8 in supernatant than the controls. The supernatant concentrations of TNF-α were
higher in diabetic dogs, but this difference was not statistically significant (p = 0.06).
These results reinforce that the diabetic state in dogs, similar to people, elicits cytokine
dysregulation [13–16,18,25,29,30,44]. The prevailing theory used to explain this phe-
nomenon is the progressive accumulation of endogenous advanced glycation end products
(AGEs) via the Maillard reaction that occurs as a byproduct of chronic hyperglycemia [50].
Advanced glycation end products exert their deleterious effects through direct irreversible
damage to proteins, which intensify reactive oxygen species (ROS) formation, stimulate
pro-inflammatory events, and alter intracellular signaling [51–53]. Diabetic dogs have been
shown to have increased plasma AGEs compared to control dogs, and plasma AGEs had
a moderate positive correlation with blood glucose concentrations [54]. Cytokines have
been implicated in the development of many long-term complications in diabetic human
patients and may have a similar nefarious role in dogs with NODM. As such, additional
research focused on cytokine dysregulation in diabetic dogs is warranted.
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There was no difference in cytokine concentrations in supernatant from diabetic dogs
that were clinically controlled versus those that were not. These results are in contrast to
our hypothesis and are dissimilar to previous studies in diabetic people [14,15,17,25]. One
possible explanation for our contrasting results is the criteria used to classify diabetic control.
We stratified dogs based on the level of clinical control rather than using a surrogate marker
for glycemic control, as was conducted in some human studies [15,25]. Fructosamine are
glycated proteins in blood that have historically been used to monitor glycemic control
in diabetic dogs [55]. However, recent research has highlighted the inadequacy of serum
fructosamine to predict glycemic control in diabetic dogs [56–58]. Kulseng et al.’s [14] study
in (1996) measured cytokines in supernatant after the antigen stimulation of peripheral
blood mononuclear cells in people with T1DM at the time of diagnosis and again 3 months
later after the glycemic control improved. The results from that study demonstrated that
antigen-stimulated TNF-α production in supernatant decreased over time in patients as the
glycemic control improved [14]. A future similarly designed longitudinal study in diabetic
dogs would circumvent the inaccuracy of a single serum fructosamine result to dictate
glycemic control.

The incubation of peripheral blood leukocytes with calcitriol, while controlling for
the stimulant and group (i.e., controls or NODM), resulted in decreased supernatant
concentrations of TNF-α and IL-8 along with increases in IL-6. There were no differences
in cytokine concentrations between diabetic dogs and controls or based on the clinical
control status in diabetic dogs. Calcitriol directly and indirectly blocks the transcription
of NF-κβ and the MAPK-mediated production of pro-inflammatory cytokines (e.g., IL-
1β, TNF-α, IL-6, IL-8) in various cell types from people and mice [59–66]. Several in vitro
studies have demonstrated that the incubation of peripheral blood leukocytes with calcitriol
decreases supernatant concentrations of TNF-α in dogs [38–40,67]. To date, no canine
studies have identified an effect of calcitriol on the leukocyte production of IL-6 [38,68],
and investigations focused on IL-8 are lacking. The finding of increased supernatant
concentrations of IL-6 was unexpected and cannot be reasonably explained from our
data. These results contradict in vivo and ex vivo studies in people that demonstrate the
consistent downregulation of IL-6 by calcitriol [69–71].

Diabetic dogs displayed a dysregulated phagocytic function of opsonized E. coli
characterized by a decreased percentage of leukocytes performing phagocytosis with a
concomitant increase in the number of bacteria phagocytized per cell. The overall net effect
on phagocytic function is unknown. The level of diabetic clinical control had no effect on
phagocytosis. No other studies have investigated phagocytic capacity in dogs with NODM;
however, leukocyte microbicidal activity is impaired in human patients with T1DM and
non-obese diabetic mice [21,72–74]. Studies in rabbits highlight that hyperglycemia impairs
phagocytosis in both neutrophils and monocytes, and insulin administration reverses this
dysfunction [75,76]. Our study focused on a singular pathway of phagocytic capacity in
an otherwise expansive and coordinated system of pathogen recognition, signaling, and
internalization. Therefore, the results from the study herein should not be interpreted as a
comprehensive evaluation of phagocytosis in dogs with NODM. Additional studies that
interrogate a variety of immune cell pathogen recognition and killing pathways are needed
to better understand phagocytic function in diabetic dogs.

The leukocyte phagocytic capacity of opsonized E. coli was not affected by incuba-
tion with calcitriol in this study. Calcitriol augments the phagocytosis of immune cells
from people, rats, and cows [34,37,77,78]. However, two previous studies in dogs failed
to show that calcitriol affected the GM phagocytic capacity of E. coli [40,68]. One possi-
ble reason for these conflicting results is that the dog studies focused on the phagocyto-
sis of E. coli, whereas the previously mentioned studies in other species used Mycobac-
terium bovis, heat-killed baker’s yeast, fluorescent carboxyl microspheres, and Pseudomonas
aeruginosa [34,37,77,78]. There are conflicting reports on the benefit of calcitriol against
E. coli. [79,80]. Therefore, it is possible that calcitriol induces variable host immune re-
sponses dependent on the encountered pathogen.
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Our study had several limitations. We utilized whole blood cultures to evaluate vari-
ous aspects of immune function and the modulatory effects of calcitriol. These methodolo-
gies were purposefully expansive to allow cellular reactions to occur in a more physiologic
milieu. This approach may improve the translational relevance of the in vitro results. With
that said, different results may have been identified if immune function testing was as-
sessed in specific cell types. We investigated phagocytic function in the context of leukocyte
interactions with E. coli alone, and thus, our results do not provide a comprehensive outlook
on phagocytosis in dogs with NODM. Our investigation focused on supernatant concentra-
tions of TNF-α, IL-6, IL-10, and IL-8 because these cytokines are most commonly implicated
as being aberrant in humans with T1DM [13–16,18,25,44]. However, a more expansive
profile of cytokines must be evaluated in order to determine whether diabetic dogs have a
specific cytokine immunosignature. Diabetic dogs were stratified into subgroups based
on the level of clinical control, which is not necessarily always congruent with glycemic
control. This was an imperfect solution in an exploratory study to the lack of an accurate
and reliable surrogate marker of glycemic control in diabetic dogs.

5. Conclusions

In conclusion, our study provides evidence that diabetic dogs exhibit cytokine and
phagocytic dysregulation, which is not affected by the status of clinical regulation. Calcitriol
altered leukocyte cytokine production without differential effects based on whether a dog
had diabetes or not. These results provide a foundation for the further refinement and
development of studies to assess immune responses and modulation by calcitriol in dogs
with NODM.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/vetsci11050193/s1, Figure S1: Comparison of phagocytosis in
samples incubated with calcitriol or ethanol; Figure S2: Comparison of phagocytosis in diabetic dogs
that are clinically controlled and uncontrolled. Table S1: Descriptive data for each cytokine by group,
intervention, and stimulant.
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