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Abstract: Brain tissue segmentation plays a critical role in the diagnosis, treatment, and study of brain
diseases. Accurately identifying these boundaries is essential for improving segmentation accuracy.
However, distinguishing boundaries between different brain tissues can be challenging, as they
often overlap. Existing deep learning methods primarily calculate the overall segmentation results
without adequately addressing local regions, leading to error propagation and mis-segmentation
along boundaries. In this study, we propose a novel mis-segmentation-focused loss function based
on a two-stage nnU-Net framework. Our approach aims to enhance the model’s ability to handle
ambiguous boundaries and overlapping anatomical structures, thereby achieving more accurate brain
tissue segmentation results. Specifically, the first stage targets the identification of mis-segmentation
regions using a global loss function, while the second stage involves defining a mis-segmentation loss
function to adaptively adjust the model, thus improving its capability to handle ambiguous bound-
aries and overlapping anatomical structures. Experimental evaluations on two datasets demonstrate
that our proposed method outperforms existing approaches both quantitatively and qualitatively.

Keywords: deep learning; brain tissue segmentation; nnU-Net; loss function

1. Introduction

Brain tissue segmentation is a pivotal medical image processing technique employed
to delineate and distinguish various tissues within the brain, including gray matter, white
matter, and cerebrospinal fluid [1]. Its significance lies in its contribution to the diagnosis,
treatment, and investigation of brain disorders, facilitating more precise identification of
brain lesions and the formulation of effective treatment strategies [2]. Thus, precise brain
tissue segmentation holds paramount importance in both medical research and clinical
practice, as it not only deepens our comprehension of brain disorders but also fosters the
refinement of diagnostic approaches and therapeutic interventions.

Current deep learning methods in medical image segmentation primarily use loss
functions to measure the disparity between network predictions and Ground-Truth labels,
guiding parameter updates [3]. However, these loss functions typically concentrate on
segmentation in the whole image, calculating loss in a global region, which is known
as global loss. The application of global loss often leads to the neglect of certain local
regions in the image, including boundaries or mis-segmentation regions. Existing deep
learning methods prioritize global region feature extraction and overall segmentation
optimization, neglecting local region information at boundaries in magnetic resonance
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imaging (MRI), causing segmentation results to appear blurry or discontinuous. The
complexity of segmentation tasks in brain tissue segmentation is due to the adjacency of
different tissues and varying intensity characteristics, posing challenges for traditional
loss functions. Consequently, segmentation errors such as mis-segmentation, omission,
or over-segmentation at boundaries compromise overall segmentation accuracy. In short,
despite significant progress, their focus is on the global region, neglecting local regions
where segmentation errors often occur.

The segmentation of brain tissue relies heavily on local regions due to overlapping
boundaries between different brain tissues. The local region is crucial for accurate brain
tissue segmentation tasks. Gray matter, white matter, and cerebrospinal fluid often exhibit
overlapping intensities and textures in MRI images, complicating the distinction between
them. The boundaries between gray and white matter are typically indistinct, as they
share similar intensity and texture characteristics. Currently, some methods calculate loss
based on local regions (known as local loss), often focusing on boundary regions for loss
calculation. Although boundary regions are frequently prone to errors in brain tissue
segmentation, the regions where mis-segmentations occur are not confined to these edges
alone. Therefore, it is essential to conduct research on loss calculation methods specifically
targeting mis-segmentation.

The aim of this study is to address the limitations of existing deep learning methods
in brain tissue segmentation, particularly regarding the oversight of crucial information
at image boundaries. Recognizing the significance of accurate boundary delineation,
especially in MRI images for diagnosing brain tissue abnormalities, our research endeavors
to design a novel loss function that effectively leverages both global and local regional
information based on an improved nnU-Net baseline architecture. The two-stage training
strategy serves to address segmentation errors effectively. In the first stage, the network
is optimized by calculating the loss of the global region, while the second stage involves
defining a mis-segmentation loss function to adaptively adjust the model, thus improving
its capability to handle ambiguous boundaries and enhancing segmentation accuracy.

The main contributions are as follows:

• We propose a novel mis-seg-focus (MSF) loss function that guides the network to focus
on mis-segmented regions, improving the segmentation accuracy of mis-segmented
regions. This allows for more precise segmentation of brain tissues.

• We propose a two-stage training strategy. In the first stage, the network undergoes
training using global loss to grasp overall structural information. In the second stage,
we use the MSF loss, enabling the network to train based on both global and local
information. The global loss assists the network in capturing global information, while
the MSF loss focuses on refining the mis-segmentation regions.

• We validate the efficiency of the proposed method on different datasets, including
a dHCP dataset about infants and an OASIS dataset about the elderly population.

2. Related Work

Traditional brain tissue segmentation methods mostly rely on image processing tech-
niques and machine learning algorithms, such as thresholding, region growth, and graph
cuts. These methods achieve segmentation through manually designed features and rules.
Tools like FSL and FreeSurfer [4,5], for instance, employ such methods to process adult
brain tissue images. Additionally, there are tools specifically designed for pediatric brain
tissue segmentation, such as iBEAT [6]. However, the effectiveness of these traditional
methods is often influenced by factors like image quality and noise, and they exhibit cer-
tain limitations when dealing with complex scenarios involving blurry boundaries and
overlapping anatomical structures.

With the rapid development of deep learning, significant progress has been made
in brain tissue segmentation methods based on deep learning [1]. These methods use
deep learning models such as Convolutional Neural Networks (CNNs) to learn feature
representations from large amounts of data, enabling them to automatically learn more dis-
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criminative features and achieve better performance in brain tissue segmentation tasks [7–9].
In order to address the challenges encountered in brain tissue segmentation, researchers are
continuously exploring new methods. Currently, the application of deep learning in brain
tissue segmentation primarily relies on U-Net and its derivative networks [10–13], such as
dual-encoder U-Net [14], dynamic U-Net [15], and U-Net integrated with fuzzy informa-
tion [16]. Additionally, there are brain tissue segmentation networks based on improved
Transformer structures, including Swin UNETR [17], which can extract features at different
resolutions, and Transformer structures with varying weight configurations [18]. Fabian
Isensee and his colleagues have developed a self-configuring method called nnU-Net based
on U-Net [19]. On brain tissue segmentation datasets, the excellent architecture of nnU-Net
enables it to achieve outstanding performance, demonstrating its strong adaptability and
efficiency [20]. Despite the remarkable achievements of deep learning in the field of brain
tissue segmentation, it still faces some challenges. Current deep learning methods tend to
overlook mis-segmentation regions when processing segmentation results, which leads
to suboptimal performance in handling complex scenarios such as blurry boundaries and
overlapping anatomical structures.

In current brain tissue segmentation tasks, adjustments to the loss function have been
shown to effectively improve the segmentation performance of the network. For instance,
Zhang, X. and his team have introduced contrastive learning loss, using feature maps as
key inputs for contrastive learning [21]. Meanwhile, Wan, X. and others use preset total loss
functions to update the parameters of the student model [22]. Additionally, calculating loss
based on edge regions is also a commonly used approach [23,24]. However, these methods
still need improvement in guiding the network to more precisely focus on mis-segmentation
regions at the edges of multi-label brain tissue.

Two-stage training methods have demonstrated their strengths in image segmentation,
particularly in refining edge regions and enhancing segmentation accuracy. Typically, these
methods involve a first stage of rough segmentation followed by a second stage of fine
segmentation, making them suitable for challenging tasks such as vessel segmentation [25].
Additionally, nnU-Net incorporates a two-stage cascaded U-Net architecture that can
further refine the coarse segmentation results obtained in the first stage. However, the
current two-stage segmentation methods still need improvement in their ability to precisely
segment mis-segmentation regions.

3. Materials and Methods
3.1. Overall Architecture

The architecture of the proposed framework is shown in Figure 1. The proposed
model is based on nnU-Net. We improve the model structure by employing deeper filters to
enhance feature extraction capabilities. We have proposed a novel mis-seg-focus (MSF) loss
function, implemented by using a two-stage training strategy. In the first stage, we train
the model using a global loss to locate mis-segmentated regions. In the second stage, we
employ the mis-segmentation region extraction block (MS block). This block, at the end of
each training epoch, calculates the intersection over Union between the network predictions
and the corresponding Ground-Truth labels, thereby precisely extracting mis-segmentation
regions for each label. Subsequently, we perform dilation on these regions and merge the
mis-segmentation regions from different brain tissues. Finally, we compute the loss on
these processed mis-segmentation regions, incorporating both global loss and our proposed
MSF loss for the second stage of training.
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Figure 1. Overall architecture of the multi-label brain tissue segmentation method. It includes
the enhanced nnU-Net main network framework (comprising nnU-Net network preprocessing,
an enhanced nnU-Net network framework, and nnU-Net network post-processing), network frame-
work information description, and MS region extraction section.

3.2. Improved Network Architecture

The nnU-Net framework is an improved version based on the U-Net architecture,
featuring a U-shaped design consisting of an encoder and a decoder. We have made further
adjustments to the network architecture based on the original nnU-Net framework, deep-
ening the overall network structure and increasing the number of filters in the encoder. In
addition, we have adopted an asymmetric network design to better adapt to multi-label
datasets, thereby enhancing the network’s capacity and expressive ability. The network
incorporates a five-round downsampling dual convolution process. Notably, during the
first three rounds of downsampling, the depth of the filter layers gradually doubles, signifi-
cantly increasing the total number of network parameters. Furthermore, skip connections
are utilized to fuse feature information from different network levels, improving feature
extraction efficiency. Simultaneously, the deep supervision module collects feature maps of
different sizes generated during the downsampling process and integrates this information
into the loss function calculation.

3.3. Mis-Seg-Focus (MSF) Loss
3.3.1. Mis-Segmentation Region Extraction

The extraction of mis-segmentation regions in the MSF loss is accomplished by the MS
region extraction module. There are some specific regions formed by mis-segmentation
between the network result and the Ground Truth. In order to more accurately identify
and extract these regions, we utilize the rich pixel information contained in the last three
stages of the upsampling process. We extract feature maps from these stages and apply
the sigmoid function to compress the values between 0 and 1, making it easier to represent
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probabilities or perform binarization. Finally, the processed feature maps are output to
the MS region extraction module to locate and extract the mis-segmentation regions in the
MSF loss.

To facilitate region calculation and the extraction of mis-segmentation, the feature
layer is first processed using argmax to convert it into three-dimensional data y

′
n. As shown

in the global block diagram in Figure 1, the yn data are separated by labels, where N
represents the number of labels, resulting in N label output results from y

′
1 to y

′
N . The same

operation is performed on the Ground Truth (GT) to obtain GT y1 to yN for N labels. Label
extraction is performed separately for the N labels, yielding the mis-segmented region Mn
for the nth label, as shown in Equation (1).

Mn = (yn ∪ ŷ′n)− (yn ∩ ŷ′n) (1)

Due to the need for partial global regions during region calculation, the mis-segmentation
regions of each label are dilated to obtain Mdn. The mis-segmentation regions of all labels
are superimposed to obtain the global mis-segmentation region, as shown in Equation (2).

Md =
N

∑
n=1

Mdn (2)

3.3.2. Mis-Seg-Focus (MSF) Loss Function

Mis-seg-focus (MSF) loss is a method of calculating loss specifically targeted at mis-
segmentation regions. By utilizing this approach, the network can more effectively concen-
trate on those areas that have been incorrectly segmented, thereby enhancing the accuracy
of segmentation.

Set A as the set of all pixel points in the whole MRI image, and extract Md as the set of
all discrete segmentation error regions from the MS region, which is a subset of A, Md ⊂ A.
Therefore, the network output and GT for the mis-segmentation region are ŷ′ and ŷ′, as
shown in Equations (3) and (4). The y′ and y regions in the formula belong to the global
region set A, while the ŷ′ and ŷ regions belong to the mis-segmentation region set Md.

ŷ = Md ⊙ y (3)

ŷ′ = Md ⊙ y′ (4)

The segmentation loss function uses a compound loss consisting of Dice loss and
Cross Entropy loss. The segmentation loss function is shown in Equation (5). The global
region loss calculation is shown in Equation (6), and the MSF loss calculation is shown in
Equation (7).

Lloss(y1, y2) = ∑dn
j=1 αj[LDice(y1, y2) + ω ∗ LCE(y1, y2)] (5)

LGlobal = Lloss(y, y′) (6)

LMSF = Lloss(ŷ, ŷ′) (7)

As shown in Equation (5), y1 and y2 in the loss function Lloss represent the Ground
Truth and the network’s prediction results in the region, respectively, where weights ω are
used to balance the three loss functions. The Dice loss function is shown in Equation (8),
and the CE loss function is shown in Equation (9).

LDice(y, y′) = −
2∑N

i=1 (yi∗y′i)

∑N
i=1 yi + ∑N

i=1 y′i
(8)

LCE(y, y′) = − 1
N ∑N

i=1 [yi log(y′i) + (1 − yi) log(1 − y′i)] (9)

where aj in Equation (5) represents the weight of the deep supervision module, and the
specific formula is shown in Equation (10), where dn represents the total number of layers
in the deep supervision module, and j = 1 represents the first layer in the decoding stage.
The feature maps in the decoding stage are all output through Sigmoid and added to
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the loss function, and their weights increase as the size of the upsampling feature map
increases, allowing gradient information to be injected deeper into the network.

aj =
1

[∑dn
j=1 1/2(j−1)]2(j−1)

(10)

3.4. Two-Stage Training Strategy

By implementing a two-stage training strategy, we can effectively handle difficult
regions in segmentation.

In the 3D cascade network in nnU-Net, although the first U-Net operates on downsam-
pling images and the second U-Net can be trained to refine the segmentation map created
at full resolution by the previous one, it still only performs segmentation on the global
target of the previous stage, without significant improvement for difficult segmentation of
tissue edges. To address this issue, we adopted a two-stage segmentation network joint
training strategy.

In the first stage, the network undergoes global training to initially determine the
segmentation results, using a global loss to perform coarse segmentation on images, as
shown in Equation (11). When evaluation metrics such as Dice and HD95 cannot be
improved, the training set has been fully fitted. At this point, there are some difficult-to-
distinguish regions in the mis-segmentation and global areas. Through matrix calculation
of the network output results and Ground Truth, the mis-segmentation regions are formed.
In this study, the first-stage training epoch is 300.

In the second stage, an MSF loss function is used in the network to constrain and
correct the erroneous segmentation regions that appeared in the first stage. A novel MSF
loss is proposed, as shown in Equation (12). The proportion of global loss and MSF
loss is weighted through the weight λ. This staged approach enables the network to
more accurately handle complex segmentation tasks, especially in difficult regions of
tissue boundaries.

Lloss1 = LGlobal (11)

Lloss2 = LGlobal + λ ∗ LMSF (12)

4. Results
4.1. Datasets

Two sets of data were used to evaluate the feasibility of the proposed method. One
is from the Developing Human Connectome Project (dHCP), and the other is from the
Open Access Series of Imaging Studies (OASIS). Informed consent was obtained from the
imaging subjects in compliance with the Institutional Review Board.

The dHCP dataset is an international collaborative project aimed at studying infant
brain development. All infants were born at term (37–44 weeks of gestation) and underwent
imaging. It included T1 modal data from 40 neonatal subjects, axial slice stacks with an
in-plane resolution of 0.8 × 0.8 mm2, and 1.6 mm slices overlapping by 0.8 mm. The
Ground Truth contains nine labels, including gray matter, white matter, cerebrospinal fluid,
background, ventricles, cerebellum, deep gray matter, brainstem, and hippocampus. The
dataset is split into training and testing sets in a 4:1 ratio, and all training data underwent
5-fold cross-validation.

The OASIS dataset is a collection of MRI datasets used to study brain structure
and function in the adult population. This group comprises 416 subjects aged between
18 and 96 years. Each subject has three or four separate T1-weighted MRI scans obtained
during a single scanning session. All the subjects are right-handed and include both
males and females. The image dimensions of the OASIS dataset are 208 × 176 × 176
(height × width × slices), where each axial scan encompasses 176 slices. The Ground
Truth contains four labels, including gray matter, white matter, cerebrospinal fluid, and-
cortex. The dataset is split into training and testing sets in a 4:1 ratio, and all training data
underwent 5-fold cross-validation.
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4.2. Evaluation Metrics

We adopted the Dice coefficient (Dice) and the 95th percentile of the Hausdorff distance
(HD95) as the primary evaluation metrics to comprehensively evaluate the performance of
the proposed methods.

The Dice coefficient, as an effective indicator for measuring the similarity between
two samples, is used to quantify the degree of overlap between the model prediction result
and the true label, thereby accurately reflecting the segmentation accuracy of the model.
This indicator pays particular attention to the consistency of the overall pixel distribution,
that is, the degree of agreement between the model prediction result and the actual brain
tissue structure.

The HD95 focuses on measuring the fineness of the model in boundary processing. It
reflects the model’s ability to grasp boundary details by calculating the maximum mismatch
between the model segmentation result and the true value, that is, the furthest distance
between two sets of points. Since Hausdorff distance is extremely sensitive to boundary
anomalies in segmentation results, HD95 can effectively reveal minor deviations in the
boundary processing of the model.

4.3. Implementation Details

Our improved model is implemented in PyTorch 2.0, a GPU-based neural network
framework, and optimized based on the nnU-Net integration framework. Code testing and
network training were performed on Ubuntu 20.04 systems and accelerated using NVIDIA
RTX3090Ti (with 24GB of video memory) GPUs. The following are the hyperparameter
settings for the experiment.

The network training framework uses the 3D U-Net network framework in nnU-Net,
and the optimizer uses Adam with a Leaky ReLU activation function. The initial learning rate
is 3 × 10−4, and there are 250 batches per epoch with a batch size of two. The learning rate
training strategy is to calculate the exponential moving average loss of the training set and the
validation set. If the exponential moving average loss of the training set does not decrease by
5 × 10−3 within the last 30 epochs, the learning rate is attenuated by a factor of five.

4.4. Comparison Experiment
4.4.1. Experiment Settings

We employed several state-of-the-art deep learning methods (including 3D U-Net,
DynUNet, and Swin UNETR) that are based on the U-Net structure, all of which feature
3D network architectures. Additionally, we utilized two publicly available datasets: the
dHCP dataset, containing nine labels (including gray matter, white matter, cerebrospinal
fluid, background, ventricles, cerebellum, deep gray matter, brainstem, and hippocampus),
and the OASIS dataset, containing four labels (including gray matter, white matter, cere-
brospinal fluid, and cortex). To ensure the fairness of the experiments, all methods used
the same compound loss function for network training, with 600 training epochs. Due to
the difficulty of ensuring fairness in data augmentation and network parameters among
various algorithms, we tried to use the original source code in the comparative experiments
and adopted similar parameter settings.

4.4.2. Segmentation Results on dHCP

As shown in Table 1, the performance of the original nnU-Net parameter framework
is compared with the enhanced nnU-Net network parameter framework (referred to as
DP, shorthand for “deep network”). The experimental results indicate that across various
tissues, the deep network exhibits significant improvements in both the Dice coefficient
and HD95 metrics. Furthermore, when MSF loss (MSF) is incorporated alongside DL, the
experimental outcomes are further enhanced. Compared to the original nnU-Net, our
proposed method achieves an improvement of 0.4 percentage points in the mean Dice
metric and a reduction of 1.3 in the mean HD95 metric, with notable improvements across
all tissues. Especially for small labeled tissues, like the hippocampus and ventricles, the
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segmentation performance is optimal. When compared to other state-of-the-art deep learn-
ing approaches and commonly used traditional methods (BET2), our method outperforms
them by 5.8–8.8 percentage points in the mean Dice metric and achieves a reduction of
5.3–9.6 in the mean HD95. These findings convincingly demonstrate the superiority of our
approach to brain tissue segmentation tasks.

Table 1. Quantitative evaluation results of the segmentation on the dHCP dataset. The results of
advanced deep learning methods and our proposed method with 5-fold cross-validation. Using Dice
and HD95 as evaluation metrics, we show the segmentation results and mean results for nine brain
tissues and present the best results in a deep representation.

Methods Metrics CSF GM WM Background Ventricle Cerebellum dGM Brainstem Hippocampus Mean

U-Net

Dice

0.8711 0.8919 0.9103 0.8523 0.8518 0.9388 0.9524 0.9248 0.8227 0.8912
DynUNet 0.8957 0.9115 0.9389 0.8691 0.8752 0.9621 0.9567 0.9464 0.8878 0.9159

Swin
UNETR 0.9077 0.9195 0.9433 0.8755 0.8861 0.9651 0.9528 0.9495 0.8620 0.9179
nnU-Net 0.9676 0.9752 0.9829 0.9314 0.9546 0.9841 0.9807 0.9816 0.9425 0.9667
proposed 0.9707 0.9782 0.9849 0.9341 0.9603 0.9879 0.9849 0.9848 0.9507 0.9707

U-Net

HD95

16.9027 21.8376 19.1212 24.1954 20.9448 16.8331 12.1901 10.9936 7.9166 16.7706
DynUNet 10.7693 18.6973 18.4298 20.5206 21.0848 14.4878 13.9697 8.4157 6.9788 14.8171

Swin
UNETR 10.5709 16.3282 17.7961 20.3646 19.2571 17.5318 21.9199 20.3314 27.8359 19.1040
nnU-Net 15.8713 5.8862 6.9321 21.7541 14.1419 12.5969 10.9906 4.2461 4.4866 10.7673
proposed 15.1320 5.5934 6.7090 19.0621 7.5722 12.2246 11.0764 4.0602 3.8079 9.4709

As shown in the visualization results in Figure 2, we performed visualization on the
coronal, sagittal, and axial planes and presented the multi-label segmentation results and
mis-segmentation results (red areas) of the network. Due to nnU-Net’s excellent post-
processing module, the edges of its segmentation results are smoother compared to other
segmentation methods. The segmentation results obtained by our proposed method are
very close to the Ground-Truth labels, with good edge segmentation effects, especially in
the multi-label intersection areas. By comparing the red mis-segmentation areas, it can be
clearly seen that our method produces the fewest mis-segmentation areas compared to
other comparison methods.
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4.4.3. Segmentation Results on OASIS

To further validate the generalization capability of our two-stage nnU-Net training
method based on MSF loss, we tested our model on the OASIS dataset. The OASIS brain
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tissue segmentation has a total of four segmentation labels, namely gray matter, white
matter, cerebrospinal fluid, and cortex, with the last column representing the average
of the four labels. As shown in Table 2, our method achieved the best segmentation
performance in terms of average Dice and average HD95 compared to other segmentation
networks. Compared to segmentation networks such as DynUNet and Swin UNTER, the
Dice improved by approximately 2 to 3 percentage points, while the HD95 varied between
approximately 0.2 and 3.63. Compared to the original nnU-Net framework, our method
improved Dice and HD95 by 0.61 and 0.5032, respectively, and there was an improvement
in the evaluation metrics for each label.

Table 2. Quantitative evaluation results of the segmentation on the OASIS dataset. The results
of advanced deep learning methods and our proposed method with 5-fold cross-validation. Using
Dice and HD95 as evaluation metrics, we show the segmentation results and mean results for four
brain tissues.

Methods Metrics Cortex GM WM CSF Mean
U-Net

Dice

0.9221 0.9471 0.9182 0.9269 0.9286
DynUNet 0.9342 0.9608 0.9654 0.9559 0.9541

Swin UNTER 0.9420 0.9524 0.9599 0.9488 0.9463
nnU-Net 0.9414 0.9653 0.9711 0.9603 0.9595
proposed 0.9497 0.9713 0.9782 0.9633 0.9656

U-Net

HD95

13.6718 11.2451 8.1022 9.8977 10.7292
Dyn U-Net 5.0010 5.8043 8.0469 9.9561 7.2021
Swin U-Net 11.2250 9.9171 6.7285 9.8577 9.4321

nnU-Net 5.6299 6.6751 6.7099 11.3947 7.6024
proposed 5.3959 6.4759 6.3539 10.1710 7.0992

As shown in the visualization results in Figure 3, we have performed visualization on
the coronal, sagittal, and axial planes and presented the multi-label segmentation results
and mis-segmentation results (red areas) of the network. These results demonstrate the
effectiveness of our proposed method on different multi-label brain tissue segmentation
tasks, improving the network’s edge segmentation capability and enhancing the accuracy
of brain tissue segmentation.
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4.5. Ablation Study
4.5.1. Design of MSF Loss Function

To verify the effectiveness of the MSF loss and determine the optimal hyperparameter
settings for mis-segmentation regions, we conducted a series of ablation experiments on
MSF region extraction. Under the same training strategy and network hyperparameters,
we trained multiple network models. As shown in Table 3, by comparing the results of
nnU-Net and the best results, we confirmed that the MSF loss can improve the performance
of the model, as reflected in a 0.31 increase in the Dice index and a 0.36 increase in the HD95
index. In the process of exploring the hyperparameters for mis-segmentation regions, we
tried three different settings for the expansion coefficient: an expansion coefficient of 2, an
expansion coefficient of 5, and an expansion coefficient of 10. After detailed testing, we
found that the setting of the expansion coefficient of 2 weighted performed the best on the
evaluation metrics, especially on the HD95 index, achieving good parameter optimization.

Table 3. Experiment on mis-segmentation region dilation factor on the dHCP dataset. Dice and
HD95 are used as evaluation metrics. dilation N: N represents the dilation factor.

Metrics CSF GM WM Background Ventricle Cerebellum dGM Brainstem Hippocampus Mean

nnU-Net +
dilation10

Dice
0.9681 0.9745 0.9834 0.9292 0.9557 0.9840 0.9811 0.9803 0.9448 0.9661

nnU-Net +
dilation5

0.9695 0.9768 0.9843 0.9318 0.9585 0.9865 0.9822 0.9835 0.9494 0.9692

nnU-Net +
dilation2

0.9697 0.9774 0.9847 0.9325 0.9590 0.9868 0.9831 0.9848 0.9498 0.9698

nnU-Net +
dilation10

HD95
15.7291 7.1113 7.1927 19.2956 14.5516 15.2341 10.2597 4.8211 4.0154 10.9123

nnU-Net +
dilation5

15.5127 12.9591 8.6446 21.3913 8.0140 12.1365 18.1506 3.9420 4.0858 11.6485

nnU-Net +
dilation2

15.2935 6.2203 7.9551 19.7980 13.6532 12.4585 10.0997 3.9866 4.2801 10.4161

4.5.2. Segmentation Loss Selection

We conducted a series of ablation experiments covering Dice loss, CE loss, and joint
loss functions in order to determine the optimal brain tissue segmentation loss. We main-
tained the same nnU-Net network architecture, removed the influence of network archi-
tecture and two-stage training strategies, and relied solely on different loss functions for
network training. For each experiment, we applied different loss functions to calculate
the Dice evaluation metrics in Table 4 and visually displayed the comparison results in
Figure 4. The joint loss Dice and CE performed best in terms of Dice scores across all tissues.
We experimented with four different values for the weight λ of the mis-segmentation loss
function, including 0.5, 1, 10, and 100. As shown in Figure 4, the best results were achieved
when the weight was set to 1.

Table 4. Experiment on the selection of the loss function on the dHCP dataset. Dice is used as an
evaluation metric.

Loss CSF GM WM Background Ventricle Cerebellum dGM Brainstem Hippocampus Mean

Dice 0.9645 0.9736 0.9818 0.9297 0.9502 0.9818 0.9767 0.9799 0.9331 0.9635
CE 0.9651 0.9713 0.9802 0.9319 0.9482 0.9852 0.9751 0.9801 0.9313 0.9632

Dice + CE 0.9676 0.9752 0.9829 0.9314 0.9546 0.9841 0.9807 0.9816 0.9425 0.9667
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Figure 4. Experimental results with different weights. The ordinate of the coordinate chart is Dice
as an evaluation metric, which shows a total of nine kinds of brain tissue and average results.

4.5.3. Effect of the Two-Stage Training Strategy

To verify the effectiveness of the two-stage training strategy, we conducted tests under
the same network parameters and hyperparameters for MSF loss, with both the first and
second stages trained for 300 epochs. As shown in Table 5, by comparing Experiment 1 and
Experiment 2, we observed that the network had already achieved a state of training fit,
indicating that the evaluation metrics could not be further improved. Next, we tested the
scenarios of using only global loss and only MSF loss in the second stage separately, and the
results showed that the segmentation performance in both cases was inferior to using both
global and MSF losses. In Experiment 4, although both stages employed a combination
of global and MSF losses for training, the large mis-segmentation regions in the first stage
led to a high variation rate in loss values, which affected the final segmentation results. In
summary, it can be concluded that using global loss in the first stage and adopting MSF
loss functions in the second stage can achieve the best segmentation results.

Table 5. Results of the 5-fold cross-validation of the two-stage training ablation experiment on the
dHCP dataset. Dice is used as the evaluation metric. Global refers to the global loss, MSF refers to
the MSF loss, and Total refers to the Global + MSF.

First
Stage

Second
Stage CSF GM WM Background Ventricle Cerebellum dGM Brainstem Hippocampus Mean

Global NA 0.9676 0.9752 0.9829 0.9314 0.9546 0.9841 0.9807 0.9816 0.9425 0.9667
Global Global 0.9657 0.9751 0.9838 0.9317 0.9546 0.9852 0.9803 0.9819 0.9427 0.9669
Global MSF 0.9677 0.9764 0.9840 0.9105 0.9544 0.9854 0.9812 0.9806 0.9418 0.9647
Total Total 0.9696 0.9772 0.9847 0.9289 0.9588 0.9866 0.9825 0.9840 0.9504 0.9692

Global Total 0.9697 0.9774 0.9847 0.9325 0.9590 0.9868 0.9831 0.9848 0.9498 0.9698

As shown in Figure 5, the first column in the figure shows the mis-segmentation
regions of the whole brain (represented in red), while the second to fourth columns present
the segmentation results for three tissues: the hippocampus, ventricle, and white matter,
with yellow indicating correctly segmented regions and red indicating mis-segmentation
regions. In the first stage, we adopted the segmentation results from the 100th epoch and
the last epoch, and it can be clearly seen that there are still many mis-segmentation regions
represented in red in the nnU-Net training results, which constitute the MSF loss regions.
In the second stage, we applied both global and MSF losses, and it can be observed that as
the epochs increase, the originally difficult-to-converge mis-segmentation regions gradually
decrease. This observation strongly validates the effectiveness of combining global and
MSF losses, as well as the two-stage training strategy.
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Figure 5. Comparison of the mis-segmentation regions in different epochs of the two stages on
the dHCP dataset. Three types of brain tissues (hippocampus, ventricle, and white matter) and the
whole brain are visualized. The last epoch is the final round result of this stage. The red region is the
mis-segmentation region.

4.5.4. Ablation Study on Network Architecture

To verify the feasibility of the improved network framework, we conducted ablation
experiments. In this part of the experiment, we adopted the same training strategy and loss
function. As shown in Table 6, our proposed method achieved better segmentation results
compared to the original network framework, specifically with a 0.9 increase in the Dice
coefficient, and corresponding improvements were observed in every tissue.

Table 6. Results of the 5-fold cross-validation of the network architecture improvement abla-
tion experiment on the dHCP dataset. Dice is used as the evaluation metric. The best results
are highlighted.

CSF GM WM Background Ventricle Cerebellum dGM Brainstem Hippocampus Mean

nnU-Net 0.9697 0.9774 0.9847 0.9325 0.9590 0.9868 0.9831 0.9848 0.9498 0.9698
proposed 0.9707 0.9782 0.9849 0.9341 0.9603 0.9879 0.9849 0.9848 0.9507 0.9707

5. Discussion

The dHCP dataset is specifically designed for labeled data collection for infant brain
tissues, while the OASIS dataset provides labeled data for adult brain tissues. Through com-
parative experimental validation, our proposed method has achieved optimal performance
on both of these publicly available datasets, fully demonstrating its wide applicability.
Since the adult brain has fully developed, with high contrast between tissues, our method
performs well in segmenting adult brain tissues. However, segmenting infant brain tissues
poses more challenges due to their ongoing development and relatively small differences
among various tissues, especially when it comes to smaller tissue segments. Nonetheless,
our method is still capable of effectively segmenting infant brain tissues.

The MSF loss function focuses the network’s attention on mis-segmentation regions
by calculating losses specifically for those areas. We have chosen Dice and Cross Entropy
losses to calculate the losses for both mis-segmentation and global regions. Combined with
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a two-stage training strategy, the first stage involves training with global loss, enabling
the network to learn global information until the evaluation metrics can no longer be
improved. In the second stage, both global loss and MSF loss are used for training, allowing
the network to acquire both global and local information simultaneously. Here, “local
information” refers specifically to the mis-segmentation regions. After the first stage,
there may be some mis-segmentation regions along tissue edges. Since this stage employs
commonly used global loss functions, the network tends to focus on global information. In
the second stage, the network is trained using both global and MSF losses, enabling it to
concentrate on the mis-segmentation regions and, thereby, improve segmentation accuracy.

However, due to significant size differences among various brain tissues, especially
for smaller structures like the hippocampus, which require high segmentation accuracy, we
can adopt different mis-segmentation region extraction methods based on the size of the
brain tissue in subsequent work.

6. Conclusions

Experimental results demonstrate that our proposed two-stage nnU-Net framework
training method with MSF loss achieves optimal segmentation outcomes in brain tissue seg-
mentation tasks. By adopting a deeper and wider network architecture, the model captures
more intricate details and features in multi-label brain tissue segmentation. Compared
to other advanced deep learning methods, including the original nnU-Net, our approach
proves its effectiveness on publicly available datasets such as dHCP and OASIS, with
improvements across various evaluation metrics. This indicates that our method excels at
handling complex and variable brain tissue structures, enhancing segmentation accuracy.
Notably, it stands out when dealing with intricate and diverse brain anatomies. Future
work can explore optimizing the loss function and enhancing the generalization capabilities
of the network model to tackle more challenging brain tissue segmentation tasks.
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