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Abstract: In response to the subjectivity, low accuracy, and high concealment of existing attack
behavior prediction methods, a video-based impulsive aggression prediction method that integrates
physiological parameters and facial expression information is proposed. This method uses imaging
equipment to capture video and facial expression information containing the subject’s face and
uses imaging photoplethysmography (IPPG) technology to obtain the subject’s heart rate variability
parameters. Meanwhile, the ResNet-34 expression recognition model was constructed to obtain
the subject’s facial expression information. Based on the random forest classification model, the
physiological parameters and facial expression information obtained are used to predict individual
impulsive aggression. Finally, an impulsive aggression induction experiment was designed to verify
the method. The experimental results show that the accuracy of this method for predicting the
presence or absence of impulsive aggression was 89.39%. This method proves the feasibility of
applying physiological parameters and facial expression information to predict impulsive aggression.
This article has important theoretical and practical value for exploring new impulsive aggression
prediction methods. It also has significance in safety monitoring in special and public places such as
prisons and rehabilitation centers.

Keywords: impulsive aggression; imaging photoplethysmography technology; heart rate variability;
facial expression

1. Introduction

Impulsive aggression is a term used to express the tendency of individuals to act
aggressively without careful consideration [1,2]. Compared with normal individuals,
special individuals (such as those who are compelled to undergo treatment and those who
are imprisoned) have higher impulsiveness [3]. They are prone to quick and unplanned
reactions, ignoring the negative consequences of these reactions in response to internal
or external stimuli. This behavioral tendency poses a threat to site management and
personnel safety. Therefore, it is very important and practically significant to screen and
predict special individuals with impulsive aggression in advance, reducing the possibility
of impulsive aggressive behavior through intervention and treatment.

However, the existing research methods for assessing impulsive aggression primarily
rely on questionnaires. Questionnaires are dependent on the subjective perceptions and
judgements of the subjects concerning their own feelings. As each individual may have
varying perceptions and experiences regarding the same issues, the measurement outcomes
tend to be subjective. While behavioral and neurological measures offer a more objec-
tive approach, they cannot fully replace questionnaire measures due to their demanding
requirements for measurement environments and equipment.

At the same time, multiple studies have shown that there is a significant correlation
between impulsive aggression and negative emotions, particularly anger, anxiety, and other
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negative emotions [4–6]. Moreover, studies have also found that individuals often exhibit
intensified negative emotions when engaging in aggressive behavior [7]. Thus, it is possible
to predict impulsive aggression by detecting an individual’s negative emotions [8].

Heart rate variability (HRV) refers to fluctuations in the time interval between con-
secutive heartbeats and is usually used to reflect the functional activity of the autonomic
nervous system [9]. Previous studies have shown that when individuals experience nega-
tive emotions, their sympathetic nervous system activity increases, their respiratory rate
accelerates, their heart rate (HR) significantly increases, the high frequency (HF) of the
power spectrum of heart rate variability decreases, and the ratio of low frequency to high
frequency (LF/HF) increases, especially when experiencing emotions such as anger and
anxiety [9]. Conversely, when individuals experience positive emotions, such as happiness,
their RR intervals become longer, their heart rate slows down, and the low-frequency
power (LF) of their heart rate variability power spectrum also decreases [9]. The regula-
tion of heart rate variability is associated with the functional activities of the sympathetic
and parasympathetic nervous systems, where the high-frequency component is mainly
controlled by the parasympathetic nervous system, and the low-frequency component is
regulated by the sympathetic nervous system [10]. Thus, by analyzing the time-domain and
frequency-domain parameters of heart rate variability, it is possible to analyze an individ-
ual’s current autonomic nervous system state and further analyze their emotional state [11].
Facial expressions can also reflect an individual’s current emotional and psychological
states [12]. Ekman and Friesen defined the six culturally universal facial expressions that
represent six basic emotions (happiness, disgust, surprise, sadness, anger, and fear) in the
1970s [12]. When experiencing negative emotions, individuals typically express emotions
such as disgust, sadness, anger, and fear, while when experiencing positive emotions, they
express emotions such as happiness and surprise [13]. As impulsive aggression is closely
related to an individual’s emotional state, analyzing an individual’s facial expressions to
predict and prevent impulsive aggression is possible.

Therefore, this study breaks through the traditional questionnaire survey method
and proposes an impulse attack behavior prediction method that integrates physiological
parameters and facial expression information. The method uses video to extract the
subject’s heart rate variability and facial expression information through IPPG technology
and facial recognition technology, then predicts impulsive aggression by fusing heart rate
variability characteristic parameters with facial expression information. This method is non-
contact and non-interfering and can realize the early screening and prediction of impulsive
aggression tendencies in special individuals. It is more objective than questionnaires and
has important significance for exploring new impulsive aggression prediction methods.

The remainder of this paper is organized as follows: In Section 2, we provide an
overview of related works in the field. Section 3 outlines our proposed video-based impulse
attack behavior prediction method, providing comprehensive and detailed descriptions.
The experimental setup and introduction are presented in Section 4, followed by a display
of the experimental results in Section 5. Finally, in Section 6, we present our conclusion,
summarizing the key findings and contributions of this study.

2. Related Works

In recent years, numerous scholars have conducted research on the psychological
status of special populations. For instance, Maria et al. conducted predictive research
on the trait aggression of recidivists [14], while Ricarte et al. studied suicidal behavior of
incarcerated males [15]. These studies utilized the Buss–Perry aggression questionnaire
and impulsive premeditated aggression scale to assess whether the subjects exhibited
impulsive aggression.

Additionally, Hausam et al. scored and classified prisoners’ aggression based on
information at the time of imprisonment and observations of their behavior through prison
guards during the initial weeks of incarceration [16]. Seid et al. measured antisocial per-
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sonality disorder (ASPD) through face-to-face interviews and The Diagnostic and Statistical
Manual of Mental Disorders (DSM-5) [17].

Furthermore, Wang et al. proposed an “implicit-based and explicit secondary ‘im-
plicit + explicit’” screening evaluation system [18] to assess impulsiveness among special
individuals. Shi et al. developed the “Rain Man” painting test to evaluate the impulsive
aggression of individuals compelled to undergo treatment [19]. This test evaluates psycho-
logical pressure and aggressiveness by scoring different details of the drawn pictures.

Overall, the evaluation of the psychological status of special individuals currently
relies predominantly on questionnaires, inquiries, and observations. The assessment criteria
are subject to the tester’s subjective understanding and judgment, and the measurement
results can be significantly influenced by subjective factors, as the subjects may conceal
information in the questionnaire survey. The summary of related works is showed in
Table 1.

Table 1. Summary of related works.

Year Purpose Measures

Maria et al. [14] 2019 Trait aggression of recidivists Questionnaire

Ricarte et al. [15] 2021 Self-injurious behaviours and suicide
attempts among incarcerated people Questionnaire

Hausam et al. [16] 2020 Scored and classified prisoners’
aggression Behavior rating scale

Seid et al. [17] 2022
Measured antisocial personality
disorder (ASPD) of incarcerated

people

Face-to-face interviews and
scale

Wang et al. [18] 2019 Screening for highly impulsive
aggressive behavior in drug addicts

Behavioral tasks and
questionnaire

Shi et al. [19] 2021 Measuring stress in drug addicts Draw-a-Person-in-the-Rain
(DAPR) test

3. Materials and Methods
3.1. Overall Process

The overall framework of this study model is shown in Figure 1. Firstly, the subjects’
facial videos were captured via a camera and saved in a .AVI format. Then, the face
detection algorithm was used to obtain the facial image in each frame of the video. The
physiological parameters and expression information were extracted from the selected
facial images. Finally, the physiological parameters and expression information were input
into the random forest classification model to predict the level of impulsive aggression of
each subject.
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Figure 1. Overall flowchart. Firstly, the face video of the special individuals is captured by the cam-
era and saved in video format. Then, the face detection algorithm is used to obtain the face image 

Figure 1. Overall flowchart. Firstly, the face video of the special individuals is captured by the camera
and saved in video format. Then, the face detection algorithm is used to obtain the face image of
each frame of the video. The physiological and facial parameters are extracted from the selected face
images. Finally, the physiological and facial parameters are input into a random forest classification
model simultaneously to obtain the impulsive aggression prediction results of the special individuals.

3.2. Physiological Parameters

Imaging photoplethysmography (IPPG) is a non-invasive biomedical detection method
which is widely used for non-contact collection of an individual’s heart rate and heart
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rate variability parameters [20,21]. This technology uses imaging equipment to collect
video information containing the measured area, record the pulse signal that changes the
light intensity caused by blood volume changes in the form of video images, and extract
physiological parameters such as heart rate and blood oxygen saturation through video
image processing [22,23]. This study used this method to collect the subjects’ physiological
parameters, as shown in Figure 2.
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Figure 2. Process of non-contact extraction of physiological parameters. In order to extract the
parameters, we obtained the video signal first. Then, using facial detection and tracking, along with
key point detection, we successively selected the region of interest area. After that, we extracted the
channel and preprocessed the signal. Finally, by extracting the pulse waves, we calculated the heart
rate variability characteristic parameters.

Using a CCD camera with a frame rate of 100 fps, a video containing the face was
obtained. The face detection algorithm was used to obtain the facial image in each frame
of the video, and the tracking was performed. Next, the key point detection model was
used to obtain the facial key point information in the image and select the region of interest.
To avoid interference from areas such as the eyes and lips, this study selected the cheek
area with relatively rich facial capillaries as the region of interest (ROI) [24], as shown in
Figure 3.
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Figure 3. Key point detection and ROI area selection. (a) Schematic diagram of 68 key points on the
face. (b) The image detected by the 68 facial features. The green box is the selected region of interest.
A and B are the two vertices of the box, which are A (X37, Y29) and B (X46, Y34).

The selected ROI area is indicated by the green box in the figure, and its specific
position is determined by two facial key points: A (X37, Y29) and B (X46, Y34). After
obtaining the sensitive area, the IPPG signal of the G channel was extracted for data
preprocessing [24], including smoothing prior filtering (SPA), moving average detrending,
Butterworth bandpass filtering, wavelet filtering, and other methods. Firstly, the low-
frequency interference of the signal was removed using the smoothing prior method. The
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smoothing prior filter uses a relatively universal parameter estimation algorithm known as
regularized least squares, as shown in Equation (1):

∧
θλ = argmin

θ

{
‖Hθ − z‖2 + λ2‖Dd(Hθ)‖2

}
(1)

where θ is the regression parameter, λ is the regularization parameter, H is the observation
matrix, Dd is the discrete approximation of the d-order derivative operator, and z is the RR
interval time series, which can be expressed as:

z = (R2 − R1, R3 − R2, . . . , RN − RN−1)
T (2)

where N is the number of R peaks detected.
There was still high frequency noise in the signal after filtering, which exceeded the

frequency of the pulse wave information. This was filtered out using moving average
filtering. The formula is:

y(n) =
x(n) + x(n + 1) + · · ·+ x(n + M− 1)

M
(3)

where x(n) is the input signal, y(n) is the output signal, and M is the step length.
After the moving average filtering, the signal was input into a Butterworth bandpass

filter (0.83–3.33 Hz) corresponding to the individual heartbeat frequency range. The signal
is then subjected to multi-level Daubechies wavelet decomposition, and the high-frequency
components of the 5th, 6th, and 7th layers were reconstructed to obtain the final signal.
Finally, the preprocessed signal was normalized, and the pulse wave information was
extracted to calculate heart rate variability (HRV) parameters.

This paper analyzes HRV information based on three aspects: time domain, frequency
domain, and nonlinear domain [25,26]. The extracted HRV parameters are shown in Table 2.

Table 2. Heart rate variability characteristic parameters.

Index Definition Unit

Mean HR Average number of heartbeats per minute ms

PNN50
Heart rate of adjacent R–R intervals greater than 50 ms as a

percentage of all NN intervals %

LF Low frequency power (0.04–0.15 Hz) ms2

HF High frequency power (0.15–0.4 Hz) ms2

LF/HF Power ratio of low frequency band to high frequency band %
SD1 Standard deviation of the vertical line in the Poincare chart ms
SD2 Standard deviation along the marked line in the Poincare chart ms

SD2/SD1 Correlation dimension —
Table 2 shows the name, definition, and unit of the Heart rate variability characteristic parameters. Here, the mean
HR and PNN50 are the time domain parameters. LF, HF, and LF/HF are the frequency domain parameters, and
SD1, SD2, and SD2/SD1 are the nonlinear domain parameters.

3.3. Expression Parameters

In order to achieve accuracy and stability in facial expression recognition, this study
adopted the ResNet-34 residual network model for expression recognition [27]. This is
currently a commonly used facial expression recognition network. The problem of gradient
disappearance and gradient explosion is solved through residual block avoidance, and
at the same time, deeper features can be learned to capture complex facial emotion and
expression information. The detailed structure of ResNet-34 is shown in Figure 4.
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Figure 4. ResNet-34 residual neural network framework. The ResNet-34 residual neural network
includes a convolutional layer, a pooling layer, a series of residual structures, average pooling
downsampling, and a fully connected layer to obtain the final output.

The selected dataset was the JAFFE facial expression dataset [28], which includes
7 facial expressions: 0—anger, 1—disgust, 2—fear, 3—happy, 4—sad, 5—surprise, and
6—neutral. The negative emotions are anger, disgust, fear, and sadness, while the positive
emotions include happy and surprise. An increase in the proportion of overall negative
emotions to the total number of emotions indicates a heightened likelihood of the individual
being in a negative emotional state. Consequently, during such times, they are more
susceptible to experiencing higher levels of impulsive aggression and are more prone to
engaging in impulsive aggressive behavior [7]. Therefore, this study used the impulsive
emotion value EMO to quantify an individual’s facial expression information, which was
calculated as follows:

EMO =
Semo

Nemo
× 100% (4)

where Nemo represents the total number of facial expressions in the video and Semo repre-
sents the number of facial expressions corresponding to negative emotions in the video.

3.4. Random Forest Model

Based on the extracted feature parameters of heart rate variability and facial expres-
sion information, the individual’s impulsive aggression were predicted using a random
forest classification model [29]. Random forest is an ensemble learning method that com-
bines multiple decision trees to achieve accurate prediction. Its decision function can be
expressed as:

H(x) =

{
cj, ∑T

i=1hj
i(x) > 0.5∑N

k=1∑
T
i=1hk

i (x)

reject, other
(5)

where x is the sample, H is the final outcome, T is the total number of learners, hi is the
learner, N is the total number of categories, cj is the category, hj

i denotes the output of hi on
category cj, and i, j, and k are summation variables.

The structure of the random forest model is shown in Figure 5. The model consists
of multiple decision trees, each of which is trained using Bagging ensemble learning
technology. During classification, the physiological parameters and facial expression
information extracted above are input as features into the random forest model. After
passing through each decision tree, a classification result is obtained, and the final result is
selected by voting based on the most frequently occurring result. Compared with a single
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decision tree, the random forest model can effectively overcome the overfitting problem of
the decision tree and has better tolerance for noise and outliers.
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Figure 5. Random forest model structure. The x is the input of the model, and Tree 1 to Tree T are the
different decision trees in the model. Inputting x into each decision tree will result in the classification
result h1 to hT. Finally, by voting on the results of all trees, we obtain the classification result H of
the model.

4. Experimental Setup and Study Description

The experimental setup is shown in Figure 6. The light source was directed towards
the participant’s face and reflected onto a color CCD industrial camera. The collected
data were transmitted to a computer for processing via a data line. At the same time, a
contact-based physiological parameter detection (CBPPD) device was used for synchronous
detection to ensure the accuracy of the non-contact measurement results. The frame rate
of the CCD industrial camera (GS3-U3-23S6C-C) was set to 100 fps with a resolution of
1024 × 1024, and the lens was a Kanda Mark M1214-MP2 industrial lens with a light
intensity of 1000 lx and a color temperature of 4000 K. In order to improve the accuracy of
the data collection, the participants were required to maintain a sitting position before the
experiment and keep their head relatively fixed during the experiment. Figure 7 shows the
actual experimental setup.
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image and sent the data to the desktop to calculate the result.
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Figure 7. Experimental setup (dark room for actual experiments). The actual experiment was carried
out in a dark room. The contact-based physiological parameter detection (CBPPD) device was
attached to the index finger of the subject’s left hand for PPG signal detection. The LED provided
uniform illumination of 1000 lx. The camera captured the subject’s facial video image and sent it to
the desktop to calculate the result.

This experiment collected samples from 23 volunteers between the ages of 18 and 28,
including 11 men and 12 women. All the volunteers were informed of the purpose, methods,
and content of the experiment and participated with informed consent. All the volunteers
were healthy and had no heart-related diseases. Two hours before the experiment, the
subjects were asked to maintain a calm state, not to consume food or beverages that could
excite or relax the nerves, and not to engage in intense exercise. During the experiment,
8 items related to impulsive aggression were selected from the State-Trait Anger Expression
Inventory to assess the participants’ current emotional experience and impulsiveness [30].
Each item contained four options, with scores of 0, 1, 2, and 3, for a total score of 24. If the
questionnaire score exceeded 12 points, the subject was considered to be in an impulsive
and aggressive state.

As research suggests, behaviors such as violence and bullying have a higher likelihood
of triggering negative emotions and impulsive aggression in individuals [31]. Thus, for our
experiment, we deliberately selected a 5 min segment from the film and television work
titled “The Glory”, which revolves around school violence and revenge, as our emotional
induction material. To ensure the efficacy of the emotional induction process, we enlisted
the assistance of several volunteers to watch the selected video segment and complete
questionnaires. This was done to confirm the video’s ability to genuinely induce negative
emotions and impulsive aggression in the subjects.

In order to ensure the effectiveness of the experiment, all the subjects watched this
video content for the first time, then filled out the questionnaire honestly and without
deliberate concealment to verify the accuracy and authenticity of the data. The specific
information of the volunteers is shown in Table 3.

Table 3. Volunteer information.

Test Information Statistical Results (Mean ± Standard Deviation)

Age (years) 22.5 ± 3.5
Gender (Male:Female) 11:12

Height (cm) 173.6 ± 14.8
Weight (kg) 60.7 ± 15.7

The specific experimental procedure is shown in Figure 8. First, the subjects rested for
30 min in a quiet room to keep their body in a relaxed state. After 30 min, the subjects were
asked to sit still in a chair while their facial video was collected for a period of 5 min. These
data served as the baseline data for the subjects’ calm state, and the subjects were also
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asked to complete the State-Trait Anger Expression Inventory questionnaire, which served
as the score for the subjects’ emotional experience and impulsiveness in their calm state.
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Figure 8. Experimental flow chart showing the experiment process. First, the subjects rested for
30 min to ensure that they were in a calm state. Then, video footage was captured when they
were calm to serve as the control data, and they were asked to complete the questionnaire. Next,
negative emotions were induced in the subjects, and video footage was captured simultaneously
as the experimental data in the impulsive aggression state. Finally, the subjects completed the
questionnaire again.

After a 5 min rest, the subjects began the emotional induction experiment. While
watching the film, the subjects’ emotions were induced using guided language, and their
facial videos were collected using a camera for a duration of 5 min. These data served as the
data for the subjects’ negative emotional state. After the emotional induction experiment
ended, the subjects were immediately asked to complete the State-Trait Anger Expression
Inventory questionnaire again, and the score from this round was used as the score for the
subjects’ emotional experience and impulsiveness in their induced emotional state. If there
was a significant difference between the questionnaire results obtained after the task and
those obtained in the calm state survey, it was considered successful in inducing negative
emotions and impulsive aggression in that volunteer. Only the samples that generated
negative emotions and impulsive aggression were used to evaluate the establishment of
the model.

In order to ensure the effectiveness of the experimental method and the model we
proposed, before the formal experiment, we used the same experiment and model to
perform binary classification detection on the basic emotion “anger”, and the result accuracy
was 93.67%. Therefore, we considered the experiment and the proposed model to be reliable
in the subsequent detection and classification of impulsive aggression.

5. Results and Discussion

In the experiment, a total of 20 valid samples were collected after removing three
invalid samples. Next, the samples were processed using a sliding window, with a window
length of 3 min and a sliding step of 30 s, resulting in 100 groups of experimental data. The
average values of all the data are shown in Table 4.

After obtaining the experimental characteristic parameters, we screened the charac-
teristic parameters using an ANOVA (with a significance level of α < 0.05). The selected
characteristic parameters should meet two requirements. First, there should be a clear
difference between the parameter in the calm state and the impulsive state so the model can
distinguish between whether the individual is in a calm state or an impulsive state. Second,
the differences in parameters between different individuals in the same state should be
small, so as to avoid misjudgment due to individual differences. The sum of squares
between groups (SSB) is used to measure the difference or variability between different
groups. When αSSB < 0.05, we can consider that there is a significant difference between
the calm state and the impulsive state. The sum of squares within groups (SSW) is used
to measure the degree of dispersion of individual observations within a group. When
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αSSW > 0.05, we can consider that there is not a significant difference between different
individuals in the same state. The SSB and SSW of each feature are shown in Table 5.

Table 4. Comparison of characteristic parameters.

Index Calm State Impulsive State

Mean HR (BPM) 76.18 82.06
PNN50 (%) 40.09 51.62
SDNN (ms) 92.36 91.75
RMSSD (ms) 58.93 99.58

LF/HF 0.50 0.86
SD1 (ms) 94.57 147.60
SD2 (ms) 95.71 176.66
SD2/SD1 1.01 1.19
EMO (%) 20.95 47.60

The data in the table are the comparison results of one of the subject’s parameters before and after emotion
induction (corresponding to a calm state and impulsive state).

Table 5. ANOVA table of feature parameters.

Index SSB SSW

Mean HR 6.7 × 10−25 0.42
PNN50 1.7 × 10−22 0.03
SDNN 0.18 0.48
RMSSD 1 × 10−31 0.02
LF/HF 5.9 × 10−34 0.16

SD1 1 × 10−79 0.04
SD2 1 × 10−79 0.04

SD2/SD1 4.2 × 10−17 0.37
EMO 1.2 × 10−33 0.90

The data in the table are the results of the ANOVA for each parameter. SSB represents the between-group analysis
result, and SSW represents the within-group analysis result.

After screening, the selected feature parameters that met the requirements included
the mean HR, LF/HF, SD2/SD1, and EMO parameters. Figure 9 shows the distribution of
these feature parameters in the calm and impulsive states as boxplots. Compared to the
calm state, when subjects were in an impulsive aggressive state, their mean HR, LF/HF,
SD2/SD1, and EMO increased.

The selected four HRV and facial expression parameters were used to train the impul-
sivity classification model. The training was performed using a random forest classification
model, and a five-fold cross-validation was applied due to the small sample size. The
model parameters were also controlled to prevent overfitting, and the optimal parameters
were determined using a grid search method. The final parameters and the accuracy of the
model classification results are shown in the Table 6 below:

Table 6. Results of model training.

Model Max Depth Min Samples
Leaf

Min Samples
Split Estimators Accuracy/%

Random
Forest 30 4 5 10 89.39

The table shows the accuracy of the random forest classification model used in the study. The selected model is
the random forest classification model, with a maximum depth of 30, a minimum leaf node size of 4, a minimum
sample size of 5 on each leaf node, and 10 decision trees. At this setting, the accuracy of the classification model
was 89.39%.
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Figure 9. Box plot of feature parameters. The figure shows boxplots of four selected feature parame-
ters: (a) mean HR, (b) LF/HF, (c) SD2/SD1, and (d) emotion. In each boxplot, the red color represents
the distribution of data in the calm state, while the green color represents the distribution of data in
the impulsive state.

After searching for model parameters, the final determined parameters are shown in
the table. The model selected is the random forest classification model, with a maximum
depth of 30, a minimum leaf node size of 4, a minimum sample size of 5 on each leaf node,
and 10 decision trees. At this setting, the accuracy of the classification model was 89.39%,
effectively categorizing whether an individual was in an impulsive aggression state and
predicting their impulsive aggressiveness.

In order to verify the performance of the model, we also established impulsive aggres-
sion prediction models based on physiological parameters (containing only HRV feature
parameters) and impulsive aggression prediction models based on expressions (containing
only expression parameters) as comparative analyses. The accuracy of the prediction results
for the three models are shown in Table 7 below.

Table 7. Comparison of the experimental results.

Model Accuracy/%

Physiological parameter 80.65
Expression parameter 75.32

Physiological and expression parameters 89.39
The table shows that the accuracy of the model based on physiological parameters was 80.65%. The accuracy
of the model based on the expression parameters was only 75.32%, while the accuracy of the model integrating
physiological and expression parameters was the highest: 89.39%.

Table 7 shows an accuracy comparison between our proposed model and the single
models. It can be seen that our prediction model is more accurate than the others.



Bioengineering 2023, 10, 942 12 of 13

6. Conclusions

This study proposes a model for predicting impulsive aggression based on the fusion
of physiological and facial expression information from video images. Compared with ex-
isting methods for predicting aggressive behavior, this model overcomes the shortcomings
of strong subjectivity, low accuracy, and high concealment. The method utilizes imag-
ing photoplethysmography (IPPG) and the ResNet-34 facial recognition model to extract
physiological and facial expression information. It also uses a random forest classification
model to predict an individual’s impulsive aggression. The experimental results show
that the accuracy of the model reached 89.39%, which was higher than single models. It
could effectively classify individuals in impulsive aggression states, and it predicted an
individual’s impulsive aggression. This method is non-contact and non-invasive and can
be used to screen and predict the tendency of impulsive aggression in special individuals
in advance, making it more objective. Moreover, this method also provides important
reference value for exploring new methods for predicting impulsive aggression. However,
the current experiment also has the problem of a small experimental sample dataset. In
the future, we hope to obtain more samples and further train the model to obtain more
accurate results.
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