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Abstract: Despite extensive genetic and biochemical characterization, the molecular genetic basis
underlying the biosynthesis of β-diketones remains largely unexplored. β-Diketones and their
complexes find broad applications as biologically active compounds. In this study, in silico molecular
docking results revealed that two β-diketone derivatives, namely 2-(2-(4-fluorophenyl)hydrazono)-
5,5-dimethylcyclohexane-1,3-dione and 5,5-dimethyl-2-(2-(2-(trifluoromethyl)phenyl)hydrazono)
cyclohexane-1,3-dione, exhibit anti-COX-2 activities. However, recent docking results indicated that
the relative anti-COX-2 activity of these two studied β-diketones was influenced by the employed
docking programs. For improved design of COX-2 inhibitors from β-diketones, we conducted
molecular dynamics simulations, density functional theory (DFT) calculations, Hirshfeld surface
analysis, energy framework, and ADMET studies. The goal was to understand the interaction
mechanisms and evaluate the inhibitory characteristics. The results indicate that 5,5-dimethyl-2-
(2-(2-(trifluoromethyl)phenyl)hydrazono)cyclohexane-1,3-dione shows greater anti-COX-2 activity
compared to 2-(2-(4-fluorophenyl)hydrazono)-5,5-dimethylcyclohexane-1,3-dione.

Keywords: β-diketone; COX-2; DFT; Hirshfeld surface; ADME

1. Introduction

Currently, the realm of β-diketones stands as a captivating focus of exploration ow-
ing to its noteworthy biological impact [1–3]. Analytical chemistry frequently employs
β-diketones as a group of spectrophotometric reagents due to their remarkable ability to
form complexes [4–9]. Additionally, derivatives of these compounds play a pivotal role in
the treatment of inflammatory diseases with antioxidant and antiviral attributes [10–12].
Various β-diketones and their complexes serve as biologically active compounds [10,12]. In
addition to substituted reagents and laser chelates [13], the chemical and photochemical cat-
alysts [14] derived from these compounds are valuable in managing inflammatory diseases.

Cyclooxygenase-2, COX-2, facilitates the conversion of arachidonic acid into
prostaglandin (PGH2). PGH2, a crucial precursor of prostacyclin, is expressed during
inflammation. While COX-2 remains unexpressed under normal conditions in most cells,
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elevated levels are observed in cells where prostaglandins are upregulated during inflam-
mation. Moreover, COX-2 expression is heightened in many cancers, possibly due to the
conversion of its product, PGH2, into prostaglandin E2 by prostaglandin E2 synthase. This
compound can stimulate cancer progression. Consequently, inhibiting COX-2 could offer
benefits in preventing and treating cancer [15,16].

The effectiveness of nonsteroidal anti-inflammatory drugs (NSAIDs) lies in their inhi-
bition of prostaglandin production by COX-1 and COX-2. NSAIDs that selectively inhibit
COX-2 are less likely to induce gastrointestinal side effects compared to conventional drugs.
However, they may contribute to cardiovascular events such as heart failure, myocardial
infarction, and stroke. Numerous pieces of evidence suggest that this is linked to the
suppression of COX-2-dependent cardioprotective prostaglandins, particularly prostacy-
clin [17]. The selective COX-2 inhibitors can selectively inhibit the COX-2 enzyme without
inhibiting COX-1 due to the structural difference of COX-1 with respect to COX-2. For
example, COX-1 contains isoleucine (Ile523) in its critical position, whereas COX-2 features
valine (Val523) at the same site. Although such structural difference might be minor, it
could result in substantial consequences, such as the binding packet of COX-2 being larger
than that of COX-1, a secondary binding packet being unlocked, and the polar amino acid
ARG513 being uncovered [18].

Moreover, except for aspirin (acetylsalicylic acid), which can irreversibly bind to the
serine in the active center of cyclooxygenase through its acetyl group, thereby irreversibly
inhibiting cyclooxygenase activity, the inhibitory effect of most NSAIDs on cyclooxygenase
is reversible and therefore weak. Since this is the case, research on COX-2 inhibitors to
replace NSAIDs has drawn attention [19]. This study presented the syntheses, characteri-
zations, DFT studies, Hirshfeld surfaces, and energy frameworks of two new β-diketone
derivatives. Moreover, an in silico investigation was performed into their capacities to
behave as COX-2 inhibitors.

2. Materials and Methods
2.1. Chemistry

With this section, Scheme 1, Reaction 1 demonstrates the synthesis of target compound
(1) [2-(2-(4-fluorophenyl)hydrazono)-5,5-dimethylcyclohexane-1,3-dione] by employing the
diazotization of different aromatic amine by using 5,5-dimethylcyclohexane-1,3-dione. As
a further output of the research, 5,5-dimethyl-2-(2-(2-(trifluoromethyl)phenyl)hydrazono)
cyclohexane-1,3-dione (2) had been synthesized (Scheme 1, Reaction 2).
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Scheme 1. The synthesis of 2-(2-(4-fluorophenyl)hydrazono)-5,5-dimethylcyclohexane-1,3-dione (1)
and 5,5-dimethyl-2-(2-(2-(trifluoromethyl)phenyl)hydrazono)cyclohexane-1,3-dione (2).

2.2. General

The response and purity of the substances were tracked using TLC (Sorbil). The
examination of the substance structures was conducted employing the “Bruker APEX II
CCD” diffractometer, operating at a temperature of 100 K, with λMoKα-radiation, a graphite
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monochromator, and both φ- and ω-scanning capabilities, reaching a maximum 2θ value
of 560. NMR spectra were recorded on Jeol 400 Mhz NMR spectrometer.

General Procedure for the Synthesis of 2-(2-(Aryl)hydrazono)-5,5-dimethylcyclohexane-
1,3-diones (1 and 2)

2-(2-(4-fluorophenyl)hydrazono)-5,5-dimethylcyclohexane-1,3-dione (1)

In a three-necked flask, 6.25 mmol (0.69 g) of an aromatic amine and 6.25 mmol (0.35 g)
of potassium hydroxide (KOH) were dissolved in distilled water. Subsequently, 0.0225 mol
(1.55 g) of sodium nitrite (NaNO2) was dissolved in 2 mL of distilled water and introduced
into the mixture, which was then subjected to stirring under the influence of a magnetic
stirrer. To this mixture, 2 mL of hydrochloric acid (HCl) was added dropwise, maintaining
a temperature of 0 ◦C, and the stirring continued for 30 min.

Following this, 6.25 mmol (0.88 g) of 5,5-dimethylcyclohexane-1,3-dione and 6.25 mmol
(0.51 g) of sodium acetate (CH3COONa) were dissolved in 10 mL of ethyl alcohol (C2H5OH).
The temperature of this new mixture was lowered to 0 ◦C, and it was added drop by drop
to the previously prepared mixture, which was left to stir for an additional hour at 0 ◦C.
The resulting product was then filtered and subjected to recrystallization in ethanol. (Yield:
74%), Tm.p = 198–200 ◦C, C14H15N2O2F; calculated for (%): C 64.12; H 5.72; N 10.68; F
7.25. Found (%): C 64.21; H 5.59; N 10.71, F 7.15. 1H-NMR (400 MHz) (DMSO-d6) δ:
ppm; 0.97–1.09 (6H, 2CH3), 2.64–2.71 (4H, 2CH2), 6.61–6.99 (4H, CH-Ph), 8.21 (1H, NH).
13C-NMR (DMSO-d6) δ: m.h.; 26.92 (2CH3), 30.61 (C), 50.51, 51.12 (2CH2), 119.9, 116.58
(4CH, Ph), 137.91 (C=N), 137.9 (C-NH), 156.92 (C-F), 187.23 (2CO).

5,5-dimethyl-2-(2-(2-(trifluoromethyl)phenyl)hydrazono)cyclohexane-1,3-dione (2)

In a three-necked flask, 6.25 mmol (1.00 g) of an aromatic amine and 6.25 mmol
(0.35 g) of potassium hydroxide (KOH) were dissolved in distilled water. Concurrently,
0.0225 mol (1.55 g) of sodium nitrite (NaNO2) was dissolved in 2 mL of distilled water and
subsequently introduced into the mixture, followed by stirring under the influence of a
magnetic stirrer. A solution of 2 mL of hydrochloric acid (HCl) was added dropwise to the
mixture, and the stirring continued for a duration of 30 min under a temperature of 0 ◦C.

Subsequently, a solution comprising 6.25 mmol (0.88 g) of 5,5-dimethylcyclohexane-
1,3-dione and 6.25 mmol (0.51 g) of sodium acetate (CH3COONa) in 10 mL of ethyl alcohol
(C2H5OH) was prepared. The temperature of this solution was reduced to 0 ◦C, and it
was gradually added drop by drop to the previously established mixture, which was left
to stir for an additional hour under a temperature of 0 ◦C. The resultant product was
subjected to filtration and subsequently underwent recrystallization in ethanol. (Yield:
73%), Tm.p. = 100–102 ◦C. C15H15N2O2F3; calculated for (%): C 57.69; H 4.80; N 8.97; F
18.26. Found (%): C 57.79; H 4.65; N 8.73; F 18.42. 1H-NMR (400 MHz) (DMSO-d6) δ:
ppm; 0.97–1.06 (6H, 2CH3), 2.64–2.69 (4H, 2CH2), 6.55–7.49 (4H, CH-Ph), 8.16 (1H, NH).
13C-NMR (DMSO-d6) δ: m.h.; 26.71, 27.12 (2CH3), 29.94 (2C), 50.2, 51.6 (2CH2), 119.1, 133.2
(4CH, Ph), 135.49 (C-CF3), 137.34 (C-NH), 137.72 (C=N), 125.4 (CF3), 187.01 (2CO).

2.3. The DFT Optimizations

The gas-phase structure of the title compounds was optimized using the density
functional theory. The DFT was calculated utilizing the B3LYP hybrid functional that is
based on Becke’s idea of mixing the DFT exchange with the exact one (HF) using the B3
functional and combining the LYP correlation functional [20,21]. The B3LYP calculation was
performed with the 6-311++G** basis set [22]. A similar theoretical level has been proved
to obtain reliable results about the thiophene carboxamide derivatives [23]. Following the
acquisition of the converged geometry, the harmonic vibrational frequencies were computed
at the same computational level to verify that the imaginary frequency associated with the
stationary point is zero. Both the optimization of the gas-phase geometry and the analysis
of the vibrational frequencies were performed using the Gaussian 16 suite program [24].
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2.4. The Hirshfeld Surface and Energy Framework Analysis

The delineation of a molecule within the condensed phase and the identification of dis-
tinct entities in molecular liquids and crystals represent fundamental concepts in chemistry.
Leveraging Hirshfeld’s partitioning scheme, Spackman introduced a method for parti-
tioning the electron distribution around a crystal into molecular fragments [25–28]. The
proposed method could determine intermolecular interactions between specific molecules
or within crystal structures. Since it has been raised from the Hirshfeld partition, the result-
ing surface is thus called the Hirshfeld surface. Lately, the energy framework has emerged
as a potent tool for enhancing the clarity of understanding regarding how molecules ar-
range themselves in a crystal. In this review, both Hirshfeld surface analysis and the energy
framework of the title compound were executed utilizing the CrystalExplorer program [29].

2.5. Molecular Docking

The structural and chemical features of the two studied β-diketones, which may inhibit
COX-2, were discovered using theoretical computation in this contribution. The COX-2
enzyme structure was downloaded in the PDB format from the Protein Data Bank website
(PDB code 4PH9). Since several references have already shown that the used molecular
docking software might affect the accuracy of the result [30–33], three molecular docking
tools, iGemDock, Autodock 4, Glide and Autodock vina, were then used [34–38]. The
Autodock 4 and Autodock vina dockings were conducted with the aid of the AMDock
program [39].

2.5.1. The Preparations of the Ligands

The DFT-calculated results of the respective ligand was converted into the .mol file by
the gOpenBabel [40].

2.5.2. The Preparations of the Targets

The .pdb format of the target was downloaded from the Protein Data Bank website
and then treated by the UCSF Chimera 1.16 to delete the co-crystal ligands and water
molecules [41,42]. Notably, one of the co-crustal ligands in the chosen COX-2 structure was
ibuprofen (IBF) (see Figure 1). IBF is a NSAID commonly used to relieve pain, reduce fever,
and reduce inflammation, and it was cited as the reference to investigate the inhibitory
efficiencies of the studied β-diketones toward COX-2.
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2.5.3. Protocol Used for Docking Using Glide

We conducted molecular docking studies using Schrödinger Maestro Molecular Mod-
eling software (Glide, Schrodinger, LLC, New York, NY, USA, 2023). The crystal structure
of PREP (PDB: 4PH9) was chosen for its high resolution (1.81 Å) and the presence of co-
crystallized ligand IBF, aiding binding site identification. Protein preparation involved
the Maestro Protein Preparation Wizard (Maestro 13.2, Schrodinger, LLC, NY, 2023) with
default preprocessing settings. Exceptions included missing loops and sidechains built
using Prime, and “Epik” generated heteroatom states at pH 7.4. We eliminated acetate
ions and glycerol, assigned hydrogen bonds, removed waters with <3 hydrogen bonds,
and minimized the structure with the OPLS3e force field. Ligands, prepared with Lig-
Prep using the OPLS-2005 force field, underwent no tautomer or stereoisomer generation.
Docking utilized Glide with XP-peptide precision, employing receptor grids tailored for
peptide docking with dimensions set at 15 Å (X and Y) and 10 Å (Z) around the ligand
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center. Ligands remained flexible, and the OPLS-2005 force field was applied throughout
the process.

2.6. The ADMET Study

ADME is an acronym for “Absorption, Distribution, Metabolism, and Elimination”
in pharmacokinetics and pharmaceutics, which describes the distribution of drugs in an
organism. ADME affects the levels of drugs and the exposure of drugs in the tissues, which
affects the potency and bioactivity of compounds in drugs. In this study, the AMDE study
was conducted in SwissADME [43].

2.7. Molecular Dynamics Simulation

In our molecular dynamics simulation (MDS) analysis, simulations were executed
for the COX-2:1 and COX-2:2 complexes employing the “Desmond” module (Desmond,
Schrödinger, Inc., New York, NY, USA, 2023, Free academic version) for a duration of
150 nanoseconds. The simulations utilized an explicit solvent model, incorporating TIP3P
water molecules, and employed the OPLS-2005 force field. The simulation was performed
within a periodic boundary solvation box with dimensions of 10 Å × 10 Å × 10 Å. To
maintain a charge balance of 0.15 M, sodium ions (Na+) and NaCl solutions were introduced
to mimic physiological conditions. This comprehensive approach followed the MD protocol
from the previous studies [44–49].

3. Results
3.1. The Crystal Structures of the Studied Compounds

The triclinic structure of 2-(2-(4-fluorophenyl)hydrazono)-5,5-dimethylcyclohexane-
1,3-dione (1) was deposited at the Cambridge Crystallographic Data Centre (CCDC 1475293)
and depicted as shown in Figure 2. The lattice parameters of crystal a = 5.993(2) Å,
b = 10.446(4) Å, c = 10.731(4) Å, α = 97.765(8)◦, β = 102.860(8)◦, γ = 98.925(8)◦, space
group P-1, Z = 2; V = 637.0(4) Å3, Dx = 1.368 g/cm3, µ = 0.102 mm−1. Crystal sizes
0.330 × 0.260 × 0.220 mm. The molecular structure of compound (1) is shown below.
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Figure 2. Molecular structure of 2-(2-(4-fluorophenyl)hydrazono)-5,5-dimethylcyclohexane-1,3-dione (1).

The monoclinic structure of 5,5-dimethyl-2-(2-(2-(trifluoromethyl)phenyl)hydrazono)
cyclohexane-1,3-dione (2) was deposited at the Cambridge Crystallographic Data Centre
(CCDC 1484656) and depicted as shown in Figure 3. The lattice parameters of crystal
a = 15.5610(12) Å, b = 6.1069(5) Å, c = 15.6267(12) Å, β = 97.3588(13)◦, V = 1472.8(2) Å3,
Z = 4, space group P21/n, Dx = 1.315 g/cm3, µ = 0.120 mm−1. Crystal sizes 0.630 × 0.220
× 0.150 mm.

3.2. The DFT-B3LYP Study

In order to elucidate the connection between intrinsic electronic properties and the
chemical reactivities (biological activities) of the title compounds, a gas-phase density func-
tional theory (DFT) functional study was conducted using B3LYP. The B3LYP-optimized
geometries are depicted in Figure 4 and Supplementary Materials for reference. As de-
picted in Figure 4, the individual bond length is as expected, which shows that the chosen
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theoretical level should be reliable. Moreover, the two C=O groups in both 1 and 2 have a
difference in the bond length. The difference in the two C=O bond lengths was 0.023 Å, and
0.019 Å for 1, and 2, respectively. The converged geometry of the title compound, which
was represented by the Cartesian coordinates of the respective atoms, was provided as the
supporting information.
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The pivotal aspect of the frontier orbital theory lies in its emphasis on the highest
occupied and lowest unoccupied molecular orbitals (HOMO and LUMO). Instead of solely
contemplating the total electron density within the nucleophile, it is more instructive to
focus on the electron density distribution within a molecule’s HOMO. Electrons in the
HOMO exhibit the highest probability of engaging in nucleophilic attacks. Conversely, the
electron density distribution in the LUMO serves as a reliable indicator for characterizing
electrophilicity. Therefore, the frontier orbitals of the title compounds were further inves-
tigated in this study. As depicted in Figure 5, the frontier orbital of 1 or 2 was the linear
combination of the π or π* orbital of the π-bonded moieties within 1 or 2.
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Molecular electrostatic potentials (MEPs) serve as a fundamental metric for gauging
the strength of interactions among nearby charges, nuclei, and electrons at specific positions.
This enables the examination of charge distribution and associated molecular properties.
To enhance the interpretability of electrostatic potential information, a visual representation
utilizing different colors was employed. Generally, regions in red signify the lowest
electrostatic potential, rendering them susceptible to electrophilic attacks. Conversely,
regions in blue indicate the highest electrostatic potential, making them susceptible to
nucleophilic attacks. In this investigation, the total density matrix was utilized to derive the
total density of the title compounds, and the resultant MEP was mapped onto their surfaces.
As illustrated in Figure 6, oxygen atoms in the title compounds were identified as the sites
prone to nucleophilic attack. Despite fluorine atoms possessing higher electronegativity
than oxygen, those in both compounds 1 and 2 did not reside in the reddest region, where
the MEP is not particularly negative. This can be elucidated by acknowledging that
contributions to the molecules’ MEP arise from both electrons and nuclei.

3.3. Hirshfeld Surface Analysis

The Hirshfeld surfaces of the title compounds at standard resolution are illustrated
in Figure 7. Transparency was applied to these surfaces to enable the visualization of
the molecular moieties in a consistent orientation across all structures for which they
were computed. The 3D dnorm surfaces serve to identify closely positioned intermolecular
interactions. Negative (positive) values indicate that the intermolecular contacts are shorter
(longer) than the van der Waals radii. The dnorm values are color-coded in red, white, or
blue. Red regions signify closer contacts with negative dnorm values, whereas blue regions
indicate longer contacts with positive dnorm values. Additionally, white areas represent
contacts at the van der Waals separation with a zero value.
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Comparing the shape index and curvedness of 1 with those of 2, we can find that the
π-π stacking interaction should be stronger in crystalline 2 than crystalline 1.

The 2D fingerprint plots elucidate the interaction between the specific atom pairs and
facilitate the dissection of the overall fingerprint into contributions from various interaction
types. Employing a standard view ranging from 0.6 to 2.4, with the de and di distance
scales depicted on the graph axes and incorporating reciprocal contacts (Figure 8), it was
observed that the most noteworthy interaction involving hydrogen in both title compounds
was the H···H contact. A comparison between the 2D fingerprint plots of 1 and those of 2
revealed that the H···F contact exhibited a more substantial contribution to the intra- or
intermolecular interactions in 2 compared to those in 1.
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3.4. Energy Framework Analysis

Energy frameworks were constructed based on interaction types (electrostatic, polar-
ization, dispersion, and exchange-repulsion) utilizing density functional theory (CE-B3LYP)
in conjunction with the 6-31G(d,p) basis set. A cluster of molecules within a 3.8 Å radius
was formed and considered around the central molecule, after which energy calculations
were conducted. The interaction energy can be partitioned into

E_tot = k_eleE_ele + k_polE_pol + k_disE_dis + k_repE_rep (1)

where k represents the scale factor, E_ele = electrostatic component, E_pol = polarization
energy, E_dis = dispersion energy and E_rep = exchange-repulsion energy. As indicated
in Tables 1 and 2, the results demonstrate that the dispersion interaction significantly
influences the interaction between the central molecule and its adjacent molecules in
both crystalline 1 and 2. It is noteworthy that, despite the scale factor of the electrostatic
component (k_elec) being the largest among all scale factors for both 1 and 2 (as detailed in
Table 3), the dispersion interaction plays a predominant role. These interactions are visually
depicted in Figure 9.

Table 1. The energy framework of 1. (energy in kJ/mol and R in Å).

N Symop R Electron Density E_ele E_pol E_dis E_rep E_tot

2 x, y, z 10.45 B3LYP/6-31G(d,p) −0.2 −0.1 −10.1 3.4 −7.1

1 −x, −y, −z 13.23 B3LYP/6-31G(d,p) −6 −0.4 −7 0 −12.8

2 x, y, z 5.99 B3LYP/6-31G(d,p) −12.4 −3.8 −37.8 23 −34.6

1 −x, −y, −z 5.48 B3LYP/6-31G(d,p) −19.8 −6.3 −51.1 34.8 −48.6

1 −x, −y, −z 6.89 B3LYP/6-31G(d,p) −6.5 −5.5 −14.7 9.8 −17.6

1 −x, −y, −z 6.55 B3LYP/6-31G(d,p) −22.8 −5.5 −24.3 33.2 −28.9

1 −x, −y, −z 5.63 B3LYP/6-31G(d,p) −5.7 −1.2 −49.7 22.7 −36.2

2 x, y, z 12.82 B3LYP/6-31G(d,p) −5.5 −0.4 −11 0 −15.7

1 −x, −y, −z 12.43 B3LYP/6-31G(d,p) −2.5 −0.8 −15.4 0 −16.6

1 −x, −y, −z 15.97 B3LYP/6-31G(d,p) −1 −0.1 −1.2 0 −2.1

1 −x, −y, −z 15.11 B3LYP/6-31G(d,p) −0.3 0 −4.2 0 −4

Table 2. The energy framework of 2. (energy in kJ/mol and R in Å).

N Symop R Electron Density E_ele E_pol E_dis E_rep E_tot

0 x + 1/2, −y + 1/2, z + 1/2 12.67 B3LYP/6-31G(d,p) 0 −5.8 0 0 −4.3

0 −x + 1/2, y + 1/2, −z +
1/2 7.88 B3LYP/6-31G(d,p) −2.4 −6.8 −27.9 8 −26.8

0 x, y, z 6.11 B3LYP/6-31G(d,p) 22.8 −18.8 −44.2 16.7 −18

0 −x, −y, −z 8.12 B3LYP/6-31G(d,p) 15.3 −24.3 −49 27.4 −27.5

0 X + 1/2, −y + 1/2, z + 1/2 11.78 B3LYP/6-31G(d,p) −14.2 −5.1 −13.5 4.4 −27.9

0 −x, −y, −z 7.94 B3LYP/6-31G(d,p) 35.1 −17.5 −23.3 1.4 4.8

0 −x + 1/2, y + 1/2, −z +
1/2 8.84 B3LYP/6-31G(d,p) −15.4 −4.1 −16.4 5.5 −30.2

0 −x, −y, −z 9.03 B3LYP/6-31G(d,p) 3.9 −17.7 −17.2 7.2 −19.5

0 −x, −y, −z 8.87 B3LYP/6-31G(d,p) −4.2 −5.6 −21.5 30.2 −8.7
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Table 3. The scale factor for CE-B3YLP model energies with B3LYP/6-31G(d,p) monomer electron
densities.

k_ele k_pol k_disp k_rep

1 1.057 0.651 0.901 0.811
2 1.057 0.740 0.871 0.618
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3.5. The Molecular Docking Study

As mentioned earlier, β-diketones have been widely used as biologically active com-
pounds, and then chosen to study and emphasize their possible target. According to the
predicted result of the SwissTargetPrediction [50], the most probable target for 1 is COX-2.
Hence, the anti-COX-2 activities of 1 and 2 were studied by the molecular docking in this
study. IBF was taken as the reference to investigate the anti-COX-2 activities of the titled
chemicals. Therefore, the .cif file of the IBF was downloaded from the PDB and converted
into a .mol2 file by the gOpenBabel program [40]. Then, the MM2 method implemented in
the Chem3D program was used to minimize the structure of IBF. Afterward, the geometry-
optimization result of IBF was also saved as a .mol2 file. COX-2 (Cyclooxygenase-2) is a
crucial enzyme involved in pain medication. When tissues are injured or inflamed, COX-2
is upregulated. It catalyzes the conversion of arachidonic acid into prostaglandins, partic-
ularly PGE2. Prostaglandins are lipid molecules that act as local messengers, sensitizing
nerve endings to pain signals and promoting inflammation. PGE2 lowers the pain thresh-
old by stimulating pain receptors (nociceptors) and increasing blood flow to the injured
area. This amplifies pain perception and triggers the inflammatory response. Blocking
COX-2 with specific inhibitors like NSAIDs (nonsteroidal anti-inflammatory drugs) reduces
prostaglandin production, ultimately alleviating pain and inflammation.

Thus, for the synthesized derivatives, we aimed to analyse the possibility of bindings
of compounds 1 and 2 toward COX-2 (PDB ID:4PH9; Resolution: 1.81 Å; R-Value Observed:
0.162). Before starting the actual docking, we validated the entire protocol with Glide,
Schrodinger, LLC, NY, 2023 and the concern value of RMSD was obtained as 0.50 Å for
re-docking the co-crystallized ligand, IBF. As depicted in Figure 10C, compound 1 had the
majority of the hydrophobic interactions with amino acid residues such as Val117, Leu532,
Leu360, Tyr356, Val350, Leu353, and Val524. It is also worth mentioning that we noticed
one amide-Pi stacking with amino acid residue Gly527. Conversely, compound 2 had
hydrophobic interactions with Val117, Leu532, Leu360, Leu353, and Tyr356 (Figure 10D).
Moreover, the fluorine atom had interacted with Tyr386 via H-bonding. The amide-Pi
interacting residue, i.e., Gly527 was retained for compound 2 as similar to 1. It is noticeable
that the appearance of H-bond for compound 2 led the enhanced binding of COX-2, as
evident from docking scores (Glide Dock Score, XP: –9.36 and –9.79 kcal/mol, respectively).

The standard IBF, however, showed interactions with amino acid residues like Arg121,
Val117, and Tyr 356 via H-bonding (Figure 11) (Glide Dock Score, XP: -7.98 kcal/mol).
Other hydrophobic interactions were also seen for Leu360, val524, Val350, and Ala528
(alkyl or π-π interactions).

Notably, the Autodock 4 and Autodock vina were both performed via AMDock
program [39], in which the pH was set to be 7.4 and the other docking parameters were
set automatically by the used program. Table 4 listed the comparison of the anti-COX-2
activities of the titled compounds and IBF obtaining by the iGemDock program [34,35].
Table 4 shows that both 1 and 2 have better anti-COX-2 activity than the chosen reference.
Furthermore, the activity of 1 was larger than that of 2, which may be due to the fact 1
could form stronger hydrogen bonding with COX-2 than 2 could. Both of the Autodock 4
and Autodock vina docking results were summarized as Table 5 showed. Similar to the
iGemDock results, both the Autodock 4 and Autodock vina results also have shown that
1 and 2 have larger anti-COX-2 activity than the reference, IBF. However, the Autodock
vina results showed that 2 should have a larger activity than 1, which disagreed with the
iGemDock results.
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Table 4. The iGemDock docking results.

1 2 IBF

Energy −86.7525 −85.0493 −81.2119

Van Der Waals −70.4011 −75.6551 −81.2119

Hydrogen Bond −16.3514 −9.39419 0

Electrostatic 0 0 0

Table 5. The docking results using the AMDock program.

1 2 IBF

Autodock
4

Autodock
Vina

Autodock
4

Autodock
Vina

Autodock
4

Autodock
Vina

Affinity
(kcal/mol) −8.57 −8.4 −8.4 −8.9 −7.7 −6.7

Estimated
Ki

522.58 696.25 696.25 299.41 2.27 12.27

Ki units nM nM nM nM uM uM

Ligand
Efficiency −0.45 −0.44 −0.38 −0.40 −0.51 −0.45

3.6. Molecular Dynamics Analysis

We assessed the stability of both-docked ligands, denoted as COX-2:1 and COX-2:2,
using a 150 ns molecular dynamics simulation (MD) carried out with the “Desmond” soft-
ware by Schrodinger, LLC in 2023 (refer to Figures 12 and 13). The MD system comprised
a combined total of 58,768 atoms for COX-2:1 and 57,055 atoms for COX-2:2, inclusive
of 16,624 and 16,022 water molecules, respectively. In the case of the COX-2:1 complex,
553 residues with 8859 atoms were engaged, while for COX-2:2, the involvement comprised
553 residues with 8858 atoms. In our dynamic simulations, we gauged the average atomic
displacements over a specific time frame, employing the “RMSD” (Root Mean Square Devi-
ation) parameter. Our RMSD analysis consistently revealed stable conformations. When
ligands 1 and 2 were bound to the target 4PH9, the Cα-RMSD backbone values remained
below 2.8 Å and 2.0 Å, respectively (refer to Figure 12A,B and Figure 13A,B). Addition-
ally, the “Lig_fit_Prot” values consistently stayed below 2.5 Å for both simulations (see
Figures 12B and 13B), affirming the stability of the entire complexes over the 0–150 ns du-
ration. We delved into local protein chain variations using the “RMSF” (Root Mean Square
Fluctuation) plot (Figures 12B and 13B), showing minor fluctuations in selected proteins
without significant changes, highlighting the expected flexibility of these residues. Notably,
we observed fewer fluctuations in amino acid residues for COX-2:2 compared to COX-2:1.
Examining the “protein–ligand” interaction plot (Figure 12C), we discovered significant
interactions, including hydrophobic interactions with amino acid residues Val117, Val350,
Leu353, Tyr356, Leu360, Leu385, Tyr386, Phe519, and Leu532, but no ionic interactions
(Figure 12F) in the complex COX-2:1. Water bridges formed with His90, Arg121, Leu353,
Ser354, and Val524 for compound 1. Amino acid residues Gly527 and Ser531 established
H-bonds. Similarly, the “protein–ligand” interaction plot (Figure 13F) for compound 2
displayed significant interactions, including hydrophobic interactions with amino acid
residues Val117, Val350, Leu353, Tyr356, Leu360, Leu385, Tyr386, Phe519, and Leu532, with
no ionic interactions. Water bridges were observed with His90, Arg121, Leu353, Ser354,
and Val524.
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analysis; (C) Ligand–Protein contact plot; (D) Ligand RMSF; (E) Ligand torsion profile; (F) Protein–
Ligand interaction plot; (G) a timeline representation plot representing such interactions with amino
acid residues over the simulation period of 150 ns for compound 1.
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Figures 12G and 13G presents a timeline representation of these interactions with
amino acid residues over the 150 ns simulation period.

Figure 12C presents a “ligand–protein” contact plot, highlighting interactions that
persisted for over 5.0% of the simulation time within the selected trajectory (0.00–150.00 ns)
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for compound 1. Notable amino acid residues included Tyr356 (5% H-bonding), Arg121
(39% H-bond), Ser531 (5% H-bond), Phe519 (43% pi–pi interactions), and Tyr386 (16% pi–pi
interactions). Similarly, Figure 13C illustrates a “ligand–protein” contact plot for com-
pound 2, revealing interactions lasting more than 5.0% of the simulation time in the same
trajectory. Compound 2 had interacted with two key amino acids, as Glu525 and Tyr356
via H-bonding. Furthermore, the “ligand torsions plot” (Figures 12E and 13E) succinctly
summarizes conformational changes in each rotatable bond (RB) within the ligand over
the entire simulation duration (0.00–150.00 ns) for 1 and 2, respectively. In conclusion,
our results substantiate the stable conformations of the ligand–protein complexes over the
150 ns simulation period. The ligand RMSF plot for 2 (Figure 13D) had more fit to the
protein site compared to 1 (Figure 12D), suggesting better binding of 2 toward COX-2.

3.7. The ADMET Study

The drug-likeness including the Lipinski’s parameters and pharmacokinetic properties
of the titled compounds [51] were investigated by using the SwissADME online server.
After analyzing 90% of orally active drugs, Lipinski reported that the drugs that reached
phase II clinical testing have molecular weights ≤ 500 g/mol, number of hydrogen-bond
donors (no. of H-bond donors) ≤ 5, and number of hydrogen-bond acceptors (no. of
H-bond acceptors) ≤ 10 [51]. The SwissADME plot predicts additional physicochemical
parameters associated with drug-likeness such as lipophilicity, topological polar surface
area, solubility, and saturation [52–61]. The results could be summarized as shown in
Figure 14 and Table 6. The SwissADME plot of the drug-likeness of the title compounds
showed that all the physicochemical properties of the compounds were within the desirable
range. The predicted pharmacokinetics showed that the skin permeation (logKp) was
−6.08 cm/s, and −5.83 cm/s for 1, and 2, respectively. The more negative logKp of 1
indicated that 1 was less skin permeant than 2 [61].

Table 6. Summary of SwissADME predicted physicochemical descriptors and ADMET parameter of
the titled compounds.

1 2

Physicochemical Properties

Molecular weight in g/mol (≤500) 262.28 312.29
Saturation: fraction of carbons in the sp3 hybridization

(not less than 0.25)
0.36 0.40

Lipophilicity: XLOGP3 (desirable between −0.7 and +5.0) 2.56 3.34
No. rotatable bonds (not more than 9 rotatable bonds) 2 3

No. H-bond acceptors (H-bond acceptor ≤ 10) 4 6
No. H-bond donors (H-bond donors ≤ 5) 1 1

Topological polar surface area TPSA (between 20 and 130 Å2) 58.53 58.53
Solubility
log S (Ali) −3.44 −4.25

log S (ESOL) −3.18 −3.88

Pharmacokinetic properties

GI absorption High High
P-glycoprotein substrate No No

Skin permeation (logKP in cm/s) −6.08 −5.83
BBB permeation Yes Yes

Cytochromes P450 1A2, 2C19, 2C9, 2D6. 3A4 inhibitor Only for 1A2 Only for 2C19
Bioavailability score 0.55 0.55
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Figure 14. The SwissADME plots of drug-likeness of the title compounds. The pink area represents
the optimal range for each property (lipophilicity: XLOGP3 between −0.7 and +5.0, size: MW
between 150 and 500 g/mol, polarity: TPSA between 20 and 130 Å2, solubility: logS not higher than
6, saturation: fraction of carbons in the sp3 hybridization not less than 0.25, and flexibility: no more
than 9 rotatable bonds).

4. Conclusions

In this study, two following β-diketone derivatives 2-(2-(4-fluorophenyl)hydrazono)-
5,5-dimethylcyclohexane-1,3-dione, and 5,5-dimethyl-2-(2-(2-(trifluoromethyl)phenyl)
hydrazono)cyclohexane-1,3-dione were synthesized and characterized spectroscopically.
Since β-diketones have been widely used as biologically active compounds, we studied
them through molecular docking, molecular dynamics and the DFT as powerful techniques
to investigate and evaluate the biological activity of our compounds against COX-2. Then,
we analyzed ADMET further by the SwissADME plots and discovered that our compounds
are well adsorbed and neither toxic nor carcinogenic. Our structures were also optimized
through Hirschfeld surface analysis and energy framework, using the Crystal Explorer pro-
gram. According to the results of the molecular docking studies, the title chemicals might
have larger anti-COX-2 activities than IBF. However, since the predicted relative activity
results of Glide, iGemdock, and Autodock vina were opposite, we were convinced that the
in vitro anti-COX-2 activities of β-diketone derivatives are worth further study. To have
more clarity, the MD study pointed out that compound 2 had better binding toward COX-2
and also obtained the best docked candidate from the Glide calculations. Furthermore,
we firmly believe that the results of this paper should enlighten a broad spectrum in the
research field of developing NSAIDs as COX-2 inhibitors.
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