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Abstract: Accurate representation of the spatial distribution of snow water equivalent (SWE)
in mountainous basins is critical for furthering the understanding of snow as a water resource,
especially in the Western United States. To estimate the spatial distribution and total volume of
SWE over mountainous basins, previous work has either assumed uniform snow density or used
simple approaches to estimate density. This study uses over 1000 direct measurements of SWE and
snow depth (from which density was calculated) in sampling areas that were physiographically
proportional to a large (207 km2) mountainous basin in southwest Montana. Using these data,
modeled spatial distributions of density and depth were developed and combined to obtain estimates
of total basin SWE. Six estimates of SWE were obtained using varying combinations of the distributed
depth and density models and were compared to the average of three different models that utilized
direct measurements of SWE. Models utilizing direct SWE measurements varied by approximately
1% around their mean, while SWE estimates derived from combined depth and density models
varied by over 14% around the same mean. This study highlights the need to carefully consider the
spatial variability of density when estimating SWE based on snow depth in these environments.
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1. Introduction and Background

Water accumulated and stored in the winter snowpack of mountainous regions constitutes a
critical source of annual streamflow for much of the Western United States, providing approximately
75% of annual discharge [1]. Improved understanding of how snow water equivalent (SWE) is
spatially distributed in mountainous terrain can assist hydrologic models to provide better estimates
of total basin SWE and forecasts of the timing, magnitude and seasonal volume of snowmelt runoff.
Such information is valuable for a number of applications, such as agricultural planning, reservoir
management and flood forecasting, among others.

The spatial distribution of SWE can be highly variable in mountainous terrain [2], where its
understanding is most critical for quantifying snow as a water resource. Associations between
physiographic characteristics of a basin (e.g., elevation, radiation, vegetation, aspect, slope angle) and
SWE at a given point have been used to estimate the spatial distribution of SWE in mountainous terrain
using various field sampling and statistical methods, e.g., [2–9]. However, there are many substantial
challenges to such studies in both field data collection and modeling methods to provide the most
accurate representations of the spatial distribution and total volume of SWE in a basin. In particular,
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when SWE is not directly measured, but rather estimated using snow depth and either a fixed density
value or one that is varied based on a single parameter (e.g., elevation). Therefore, when using this
approach, one of the major challenges is the characterization of the spatial distribution of snow density,
which is a critical component to calculating SWE. This is important because while proportionally, the
differences in snow density may be conservative when compared to depth due to its limited range
of potential values, when used to calculate SWE, a relatively small change in density can have a
substantial impact on an estimate of total basin SWE [10].

Due to the highly dynamic nature of snow characteristics, particularly near the time of peak
accumulation, it is optimal for the field data collection to occur as quickly as possible to minimize the
bias from temporal changes in the snow. Because of the time-consuming nature of obtaining density
samples, previous field-based studies have sampled more intensively for depth than for density
(or SWE directly), e.g., [2,4–6,8]. This approach must be carefully balanced with an assurance that the
density data collected are representative of the time and place of interest. Previous research has stated
that snow depth varies more than snow density in alpine areas, so the major source of variation in
SWE is variation in snow depth, especially during the melt season [3,11]. However, few studies have
quantified these effects and how they vary near the time of peak accumulation. This challenge has also
been noted by Adams [12], who suggests that while variability in density lessens throughout the melt
season, before, the primary onset of melt density exhibits considerable variability. This can be further
exacerbated in high relief mountain areas where the timing of melt and, therefore, inhomogeneity in
density at a fixed point in time can be considerable.

The spatial arrangement of samples, both with respect to the greater basin and to each other,
in a given study can also have a substantial influence on the resulting analysis and modeling [13].
It is possible that variability in snow density that exists in the field may not be captured statistically
if sampling is not specifically designed to do so. Studies have attempted to capture the effects of
physiography on the spatial distribution of density [4,8] by choosing sample locations that qualitatively
represent the different elevations and aspects of the given watershed. This methodology may not
account for unique combinations (and interactions) of multiple physiographic parameters that may be
associated with density. Research has noted scale breaks in snow depth within which sampling should
take place [14], but no similar research has specifically been applied to density.

The spatial distribution of the snow density component of SWE models has been parameterized in
several ways in previous research. In some cases, a uniform spatial distribution of the average
of measured densities [6,8] is used due to the poor results of models correlating density to
independent variables. Other research has found significant correlations between density and basin
physiography [4,5], but with only a small number of density samples (n = 10 or less). Snow depth has
also been assumed to provide a direct corollary to SWE, making the assumption of uniform (although
not specified) density throughout a basin [7]. Many of these findings, often using small sample sizes,
have not quantified the effect varying parameterizations of depth and density may have on estimates
of SWE. Lopez-Moreno et al. [9] used three different model types to predict the spatial distribution of
snow density in three small (1–2 km2) plots in the Spanish Pyrenees, but these models were deemed
largely inadequate due to the marked variability in correlations between density and depth, as well as
other terrain characteristics examined.

This paper presents a comprehensive field study aimed at modeling the effect of the spatial
variability of snow density in estimating total basin SWE for a complex mountainous watershed.
A novel sampling strategy was used to collect a very large number of samples (>1000) of SWE and snow
depth (allowing for calculation of density) throughout a 207-km2 mountainous basin. Three models of
the spatial distribution of snow density were developed and combined with two models of the spatial
distribution on snow depth to obtain estimates of total basin SWE. An analysis of the effect of varying
parameterizations of snow depth and density on estimates of the total volume of SWE stored in a
basin is provided. This study highlights that snow density can be highly variable near the time of peak
accumulation, especially in a high relief basin. This indicates the importance of adequate sampling and
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modeling of snow density if separate depth and density models are to be used for SWE estimations, as
estimates of total basin SWE can vary widely depending on the models used.

2. Study Area

This study was conducted in the West Fork of the Gallatin River Basin (West Fork Basin) in
southwest Montana, approximately 45˝161N, 111˝261W (Figure 1). Elevations in the basin range from
1825 m at the confluence of the West Fork of the Gallatin with the Gallatin River to 3405 m at the top
of Lone Peak (1580 m of total vertical relief), covering an area of 207 km2. The West Fork Basin is
physiographically diverse, ranging from low elevation grass and sagebrush cover, to mid-elevation
conifer forests, to high elevation steep rocky alpine terrain. Approximately 52% of the basin contains
conifer forests, with the land cover in the remaining areas consisting primarily of grass and sagebrush in
the lower elevations and rocky alpine terrain at the higher elevations. The basin is partially developed,
containing a small community (Big Sky, MT, USA) and ski resorts on Lone Peak and Pioneer mountains
in the western portion of the basin.

The only automated SWE data for the basin is provided by the Lone Mountain SNOwpack
TELemetry (SNOTEL) site, located in a small meadow in the west-central portion of the basin at an
elevation of 2706 m. As of 1 April 2012 (the time of field sampling), the Lone Mountain SNOTEL site
was reporting 104% of median SWE based on a 21-year record (1991–2012), at 434 mm.

Hydrology 2016, 3, 3 3 of 17 

 

2. Study Area 

This study was conducted in the West Fork of the Gallatin River Basin (West Fork Basin) in 

southwest Montana, approximately 45°16′N, 111°26′W (Figure 1). Elevations in the basin range from 

1825 m at the confluence of the West Fork of the Gallatin with the Gallatin River to 3405 m at the top 

of Lone Peak (1580 m of total vertical relief), covering an area of 207 km2. The West Fork Basin is 

physiographically diverse, ranging from low elevation grass and sagebrush cover, to mid-elevation 

conifer forests, to high elevation steep rocky alpine terrain. Approximately 52% of the basin contains 

conifer forests, with the land cover in the remaining areas consisting primarily of grass and sagebrush 

in the lower elevations and rocky alpine terrain at the higher elevations. The basin is partially 

developed, containing a small community (Big Sky, MT, USA) and ski resorts on Lone Peak and 

Pioneer mountains in the western portion of the basin. 

The only automated SWE data for the basin is provided by the Lone Mountain SNOwpack 

TELemetry (SNOTEL) site, located in a small meadow in the west-central portion of the basin at an 

elevation of 2706 m. As of 1 April 2012 (the time of field sampling), the Lone Mountain SNOTEL site 

was reporting 104% of median SWE based on a 21-year record (1991–2012), at 434 mm. 

 

Figure 1. Location map showing the state of Montana, USA, with an inset of the West Fork of the 

Gallatin River Basin in southwest Montana; 100-m contour interval. The star shows the location of the 

Lone Mountain SNOTEL site. 

3. Methods 

3.1. Sampling Strategy 

Due to the relatively large size of the West Fork Basin, sampling throughout its entirety was not 

a practical option. To resolve this challenge, smaller portions of the basin, termed “sampling areas”, 

were defined that were physiographically proportional to the whole [15]. These definitions were 

based on unique combinations of defined ranges of elevation, potential incoming solar radiation and 

forest cover, as they are well accepted to be associated with SWE [2] (Table 1). These unique 

combinations will be referred to as physiographic strata. 

To define the physiographic strata, grids of elevation and potential incoming solar radiation 

were classified into five and four distinct categories, respectively, while the land cover grid was 

classified as either forested or un-forested. The solar radiation metric used was potential net 

accumulated 1 December 2011–1 April 2012 in watt-hours per square meter (Wh/m2), calculated using 

ESRI ArcGIS 10.0. Physiographic strata were defined through the use of map algebra applied to 

reclassified raster datasets of the aforementioned parameters through raster addition. Each 

parameter was classified on a different order of magnitude, so when added together, they provided 

Figure 1. Location map showing the state of Montana, USA, with an inset of the West Fork of the
Gallatin River Basin in southwest Montana; 100-m contour interval. The star shows the location of the
Lone Mountain SNOTEL site.

3. Methods

3.1. Sampling Strategy

Due to the relatively large size of the West Fork Basin, sampling throughout its entirety was not
a practical option. To resolve this challenge, smaller portions of the basin, termed “sampling areas”,
were defined that were physiographically proportional to the whole [15]. These definitions were based
on unique combinations of defined ranges of elevation, potential incoming solar radiation and forest
cover, as they are well accepted to be associated with SWE [2] (Table 1). These unique combinations
will be referred to as physiographic strata.

To define the physiographic strata, grids of elevation and potential incoming solar radiation were
classified into five and four distinct categories, respectively, while the land cover grid was classified
as either forested or un-forested. The solar radiation metric used was potential net accumulated
1 December 2011–1 April 2012 in watt-hours per square meter (Wh/m2), calculated using ESRI ArcGIS
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10.0. Physiographic strata were defined through the use of map algebra applied to reclassified raster
datasets of the aforementioned parameters through raster addition. Each parameter was classified on
a different order of magnitude, so when added together, they provided unique identifiers of which
unique combination of parameters comprises each strata, as seen in Table 1.

Table 1. Reclassification parameters for defining sampling strata.

Parameter Value(s) Classified Value

Elevation (m)

1820–2139 1000
2140–2453 2000
2454–2767 3000
2768–3081 4000
3082–3395 5000

Potential radiation (Wh/m2) 63,919–176,897 100

(1 December–1 April)
176,898–228,251 200
228,252–279,604 300
279,605–391,299 400

Forest cover
Unforested 0

Forested 10

As an example, if a given strata had an identifier of 1410, that strata is in the lowest elevation band
(1000), receives the highest levels of solar radiation (0400) and is forested (0010). Through this process,
36 unique strata were defined to identify and justify which portions of the basin were to be sampled.
Sampling areas were chosen based on accessibility and the physiographic representativeness of the
basin as a whole. Physiographic representativeness was determined by comparing the proportion of
each strata within the defined sampling areas to the proportion of the strata in the basin as a whole.

3.2. Data Collection

The field data collection campaign took place from 30 March to 3 April 2012 near the time of
peak SWE accumulation, as recorded at the Lone Mountain SNOTEL site. SWE and snow depth
measurements were acquired using Federal SWE Samplers, a process where a core of the snowpack
is acquired and weighed on a spring scale, which reports inches of water content in the sample [16].
These data and every sample location were recorded using Global Positioning System (GPS) receivers.
The positional accuracy of these points was sub-meter after post-processing and was adequate
given that the scale of the analysis rasters was 30 m. Sets of three samples were taken as 10-meter
equilateral triangles to minimize bias due to anisotropy [17]. These sets of three samples were acquired
at randomly-assigned distances that varied (as best estimated by sampling teams) from 30 m to
400 m between them (Figure 2) as teams of two travelled throughout the defined sampling areas.
Sampling teams travelled throughout the defined sampling areas acquiring SWE and snow depth
measurements at the pre-assigned random distances along their path. The range of spatial scales at
which sampling occurred was chosen based on the findings of Watson et al. [17] and the results of
pilot studies to ensure sampling teams could adhere to the sampling plan while travelling throughout
the entirety of a sampling area. By sampling at random distances over spatial scales of 10 m and
400 m, variations in snow depth were captured within multiple frequency intervals (as observed
by Trujillo et al. [14]). This allowed for the sampling of interactions between SWE depth and the
surrounding physiography over both small and large spatial extents. Additionally, given that any
point at a certain distance away from a random starting point (i.e., previously-sampled location) is
equally representative as any other point the same distance away, the effect of random sampling was
achieved through the systematic sampling of a random field [17,18].
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Figure 2. Example of the field data collection plan.

The randomization of the distances at which samples are taken allows for a more robust statistical
analysis [19]. Much of this sampling theory was also influenced by the importance of the scale triplet
in spatial sampling, where the spacing, extent and support of field samples collected are used to define
the spatial dimensions of a field study. In this context, the spacing is the distance between samples, the
extent is the size of the domain sampled and the support is the averaging area of one sample [13,20].
In total, 1043 direct measurements of SWE and snow depth (and therefore density) were measured
and recorded, the locations of which are shown in Figure 3. All sample points were acquired within
the defined sampling areas, which constituted approximately 25% of the total basin area. Samples also
well represented the distribution of physiographic strata in the basin [15]. A small subset of samples
(<5%) was acquired within ski area boundaries in areas minimally impacted by resort operations, as
recommended by ski patrol, with the goal of best mimicking natural conditions.
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Figure 3. The locations of all sampled points in the basin; 100-m contour interval.

3.3. Data Analysis

All GPS data collected in the field using Trimble GeoXH receivers were converted into a single
shapefile with SWE and snow depth values attached to each point feature as an attribute (from which
density was calculated). The GPS data were post-processed to obtain sub-meter accuracy for the
majority of points collected. Physiographic attributes of the point where a sample was collected were
then added as attributes of the point feature. These included elevation, potential incoming solar
radiation under clear sky conditions (total accumulated from 1 December–1 April as Wh/m2), land
cover (as forested or not), slope angle, aspect and degree of curvature (second derivative) of the land
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surface. All parameters, with the exception of land cover, were derived from a USGS 30-m DEM [8].
While no direct indices related to wind redistribution or wind exposure were included, as observed by
Golding [21] and Woo et al. [22], the degree of curvature could be correlated to wind, with snow being
removed from convex areas and re-deposited in concave areas.

Samples that were assumed to be inaccurate due to measurement or recording error were
identified and removed from the dataset by calculating the density for each sample and applying a
95% prediction interval to a simple linear regression of elevation on snow density. Observations that
occurred outside the prediction interval were assumed to have error in either measurement or recording
and were removed from the dataset, representing 26 data points. The dataset used for analysis consisted
of 1017 measurements of SWE, snow depth, snow density and the selected physiographic attributes of
each point, chosen based on the findings of Clark et al. [2].

3.4. Models for Quantifying Density, Depth and SWE

Multiple linear regression (MLR) [23] and binary regression tree analysis [24] were used to model
the spatial distribution of snow density using correlations to basin physiography. MLR is a method
for quantifying correlations between multiple physiographic parameters (e.g., elevation and potential
incoming radiation) and snow density, providing a means of estimating densities based on the basin
characteristics at any given point in the basin using linear relationships. Binary regression tree analysis
is a method that recursively splits the dataset based on physiographic parameters to minimize the
residual mean square error (RMSE) at each node in the tree. The optimal tree size for the data (number
of terminal nodes) is determined by defining a complexity parameter at which model performance no
longer substantially improves by including more nodes, based on a 10-fold cross-validated error.

These two types of models were chosen because of their different approaches to regression-based
modeling. This allows for a comparison of two sound statistical techniques that produce results in
notably different formats. The regression tree provides a discrete number of modeled densities, while
the MLR model produces a continuum of unique modeled values. The results of these statistical
models were applied to the gridded datasets of the significant physiographic parameters to estimate
their respective spatial distributions of snow density.

To model the spatial distribution of SWE and obtain estimates of total basin SWE, the spatial
distribution of snow depth was modeled using mixed effects multiple regression (MEMR) [25] and
binary regression tree analysis. The snow depth data collected in the field did not fully comply with
all of the assumptions of multiple linear regression (namely constant variance of the residuals [23]).
Because of this, an MEMR model was chosen for snow depth, because it provides a way to analyze
those data that do not require a data transformation, where information about important interactions
of the explanatory variables may be blurred or lost [25]. In this case, a fixed variance MEMR model
structure was used because it accounts for the non-constant variance in the residuals of depth as
elevation increases, which an MLR model is not able to do. Similar to the density models, the binary
regression tree was also chosen, as it provides a comparison to a notably different type of model output
to the MEMR model, which estimates a continuous distribution of values. Six unique combinations of
depth and density models were developed to model the spatial distribution of SWE and to estimate
total basin SWE. Estimates of total basin SWE derived from these models were compared to the
average of three models that utilized direct measurements of SWE using MEMR, binary regression tree
analysis and conditional inference (CI) tree analysis. CI tree analysis is a form of recursive partitioning
analysis that uses different splitting and stopping criteria than binary regression tree analysis and was
chosen as a way to compare the results of two different tree-based analysis methods. The size of a
tree is determined by a defined significance level required for a split to occur, a minimum number of
observations for a split and a minimum number of observations required for a final node (in this study;
95%, 60% and 30%, respectively), so cross-validation and pruning are not necessary for determining
the final tree size [26].
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4. Results

4.1. Field Observations

A wide range of SWE, depth and density values was observed during data collection.
Generally, the lowest SWE and snow depths and the highest density values were found in the low
elevation meadows of the basin and particularly on southerly aspects. Many low elevation areas of the
basin were entirely snow free at the time of sampling, most commonly on steep south-facing aspects,
but also in other isolated areas throughout the lower elevation portions of the basin. High elevation
areas held the most SWE and deepest snow; while the influence of radiation was still evident, it
appeared to have less influence at high elevation than in lower portions of the basin. The lowest
densities were observed in the higher elevations on northerly aspects. Summary statistics of the field
data are shown in Table 2.

Table 2. Summary of observed SWE and snow density data.

Data Type Minimum Mean Maximum Standard Deviation n

SWE (mm) 0 246 965 206 1017
Density (kg/m3) 190 349 500 61 1017

Depth (mm) 0 735 2740 620 1017

4.2. Results of Multiple Linear Regression Modeling for Snow Density

Initially, simple linear regression (SLR) [23] analysis was performed, testing all available
physiographic parameters to determine which had a significant correlation to snow density.
Elevation, radiation, slope angle and snow depth all had statistically significant correlations to snow
density (Table 3). Elevation had the strongest correlation, explaining 27% of the observed variance.
Snow depth also showed a strong correlation, explaining 18% of observed variance. Potential incoming
solar radiation on its own explained 13% of observed variance, while that of slope angle was minimal.

Table 3. Summary of the results of the simple linear regression (SLR) of physiographic parameters on
snow density.

Model Structure R2 p-Value

density~elevation 0.27 <2.2 ˆ 10´16

density~radiation 0.13 <2.2 ˆ 10´16

density~snow depth 0.18 <2.2 ˆ 10´16

density~slope angle 0.047 3.89 ˆ 10´10

Using the results of the SLR analysis, a stepwise MLR analysis was performed to determine which
combinations of parameters best estimate the spatial distribution of density. The model structure
utilizing elevation and radiation as predictors provided the best fit for the data, explaining 39%
of observed variance in density (Table 4). Using snow depth and radiation, the fit improved over
just using snow depth, but was still only slightly better than the SLR of density as a function of
elevation alone.

Table 4. Results of multiple linear regression (MLR) models for snow density.

Model Structure R2 p-Value

density ~ elevation + radiation 0.39 <2.2 ˆ 10´16

density ~ snow depth + radiation 0.28 <2.2 ˆ 10´16
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A model utilizing elevation and snow depth together was not used due to their high level of
correlation (r2 = 0.73). The MLR model that best describes the data is as follows:

Snow density pkg{m3q “ 479.5 ` ´0.1104 ˚ elevation pmq ` 0.0004878 ˚ radiation pWH{m2q (1)

This model structure estimated a range of snow densities from 184 to 406 kg/m3. The lowest
modeled densities are at the highest elevations on slopes that receive the least radiation, while
the highest densities are at low elevation on slopes receiving high levels of radiation. The spatial
distribution of snow density (Figure 4) was modeled by applying the above formula to raster datasets
of elevation and radiation using raster algebra.
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The continuous distribution of density values estimated using the MLR model can be seen
in Figure 4 through the smooth gradient of shades (representing densities) driven by the varying
continuums of elevation and incoming solar radiation. This continuous distribution of predicted
densities can also be seen in the residual plot in Figure 5. Residuals for this model were normally
distributed and slightly negatively skewed, underestimating measured densities by 29 kg/m3 on
average and with a mean absolute error (MAE) of 48 kg/m3.

4.3. Results of Regression Tree Modeling for Snow Density

The optimal regression tree for modeling density contained nine terminal nodes and utilized
elevation and radiation to model the spatial distribution of snow density throughout the basin
(Figure 6). The optimal tree size for this model was determined by pruning the tree back to the value
of the complexity parameter at which additional nodes no longer reduced the 10-fold cross-validated
error. This method provided a more restricted range of estimated densities (270–366 kg/m3) and a
different spatial distribution (Figure 7) than the MLR model. The tree model displayed a slightly
improved R2 value over MLR, explaining 41% of observed variance in the data.
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snow density.

The discrete nature of modeled density values resulting from the regression tree analysis can be
seen in Figure 7 through the very distinct changes in shade, representing changes in density. The abrupt
changes that are driven by a split in elevation may not provide the most realistic model of how a
change would occur in nature. However, these types of changes do occur over short distances resulting
from changes in incoming solar radiation, which are modeled well with the regression tree. This can
be seen throughout the basin in Figure 7 with a sharp contrast being commonly modeled between
south-facing and north-facing slopes. Another major difference between this and the MLR is that
this model estimates a substantial increase in density in the highest elevation range. This could
possibly be a result of sampling wind compacted snow in the alpine portions of the basin, but it is
anomalous compared to the other trends observed in this analysis. This is a potential weakness of
this model, as these conditions are likely not representative of all areas in the highest elevations of
the basin. A regression tree model utilizing snow depth in addition to elevation and radiation was
also developed and tested. While this model did contain two splits based on depth, it was not chosen
for the final analysis due to non-significant improvement over the chosen model and to allow for the
comparison between the MLR and regression tree models utilizing the same input parameters.
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Residual analysis of the regression tree model also shows residuals being normally distributed
with a slightly negative skew (Figure 8). On average, this model under-estimated measured density
values by 30 kg/m3, similar to the MLR model, and with a slightly smaller MAE of 46 kg/m3. While the
residuals from this model are relatively normally distributed, the residual plots in Figures 5 and 8 also
display the contrast between the continuous nature of estimated values from MLR versus the discrete
nature of values estimated with the regression tree.
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Figure 7. Modeled spatial distribution of snow density using a nine-node regression tree. The range of
modeled values is 270–366 kg/m3; 100-m contour interval.
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4.4. Snow Depth Models

Two spatially-distributed models of snow depth were developed to combine with the density
models for the purpose of estimating total basin SWE. The MEMR model utilized elevation, potential
incoming solar radiation and forest cover as variables to model a continuous range of snow depth
values throughout the basin. The MEMR snow depth model had an MAE of 212 mm, and the model
structure is shown below:

Snow depth “´2888 ` 1.79 ˚ elevation pmq ` ´0.00233 ˚ radiation pWH{m2q`

´13.2 ˚ land cover pwith 10 “ f orested and 0 “ un f orestedq
(2)

The optimal binary regression tree model was pruned to five terminal nodes based the complexity
parameter at which there was no substantial improvement to the 10-fold cross-validated error.
Splits were made primarily on elevation, with one split being made on radiation, as the forest cover
parameter was not found to provide significant improvement to the model. This model structure had
an MAE of 284 mm and is shown below in Figure 9. The modeled spatial distribution of snow depth
resulting from these models is shown in Figure 10.
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4.5. SWE Models from Direct Measurement

Three model structures were developed to estimate SWE utilizing direct field measurements
(MEMR, seven-node regression tree and 16-node CI tree). The different methods produced substantially
different spatial distributions and ranges of SWE values, but all estimated similar values of total basin
SWE, to within approximately 1% of their average (Table 5). MEMR analysis yielded the widest
range of modeled values (859 mm) and that most similar to the range of measured values (965 mm).
The binary regression tree and conditional inference tree models provided similar ranges of values,
501 mm and 486 mm, respectively. The CI tree provided the lowest MAE at 75 mm, followed by the
spatial average of models, MEMR and regression tree models at 82, 87 and 101 mm, respectively.

Table 5. Summary of modeled SWE values from all model structures.

Model Modeled Total
Basin SWE (m3)

Range of Modeled
SWE Values (mm)

Mean Absolute
Error (mm)

Number of Unique
Modeled SWE Values

MEMR 59,792,000 0–859 87 all unique
CI tree 60,935,000 0–486 75 16

Regression tree 61,195,000 43–545 101 7
Average of others 60,641,000 15–618 82 all unique

In addition to differences in the modeled ranges of SWE values and MAE values, the manner
in which SWE was distributed throughout the basin (Figure 11) also varied amongst the models.
The MEMR model provided the smoothest distribution of values throughout the elevation range.
This is in contrast to the regression tree, which modeled no SWE values between 162 and 359 mm, a
range of values that contains the mean and median for all measured and modeled values [15]. The CI
tree produced a more continuous distribution of modeled values than the regression tree.
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4.6. The Effect of Varying Density and Depth Models on Estimates of Total Basin SWE

Estimates of total basin SWE were acquired by combining two spatially-distributed models of
snow depth with the two spatially-distributed snow density models, as well as a spatially-uniform
model representing the average of measured densities (349 kg/m3 with an MAE of 52 kg/m3) to obtain
estimates of total basin SWE. These estimates of total basin SWE were then compared to the average
of total basin SWE as calculated by the three models (MLR, MEMR and regression tree) that utilized
direct SWE measurements (60,641,000 m3), shown in Table 6. Total basin SWE estimates derived from
models utilizing direct SWE measurements only varied within approximately 1% of their average;
these models will be referred to as the control models and their average as the control value. The SWE
models resulting from the combined depth and density models varied substantially, by 14.1% around
the control value. MAE values for all of the combined models were higher than those resulting from
direct measurement, with the exception of the binary regression tree model. The MAE values were
also within a relatively small range of each other, but because this metric is expressed as an absolute
value it does not capture the over-estimation or under-estimation bias of a given model, which can be
gathered from the resulting total basin SWE estimate.

Table 6. The effect of varying depth and density parameterizations on estimates of total basin SWE.
Comparisons are being made to the mean volume estimated by the three models utilizing direct
measurements of SWE (60,641,000 m3).

Depth Model Density Model Modeled Total
Basin SWE (m3)

% Difference from
Control Value

Mean Absolute
Error (mm)

MEMR MLR 55,973,813 ´8.3 92
MEMR Regression tree 56,728,045 ´6.9 91
MEMR Spatially uniform 59,409,463 ´2.1 89

Regression tree MLR 61,088,312 +0.7 88
Regression tree Regression tree 61,574,372 +1.5 91
Regression tree Spatially uniform 64,398,753 +5.8 92

All SWE models that used the MEMR snow depth model produced smaller estimates of total
basin SWE than the SWE models utilizing the regression tree snow depth model. SWE estimates
resulting from the MEMR depth model were all below the average of the control models, and those
resulting from the regression tree depth model were all above the control value. Variation in total
basin SWE estimates within the two depth models used also followed a consistent pattern amongst the
density models used. The MLR density model produced the lowest estimates of SWE; the regression
tree produced the middle estimates; and the spatially-uniform model produced the highest estimates
of total basin SWE. This pattern is most likely related to the modeled densities in the upper elevation
portions of the basin where snow depths are greatest, and therefore, have the most influence on
estimates of total basin SWE from varying modeled densities. The MLR model provided the lowest
densities at the higher elevations, followed by the regression tree model (Figures 5 and 8 respectively),
and the spatially-uniform model with progressively higher densities. Naturally, when these higher
density values were applied to the respective snow depths, larger estimates of total basin SWE resulted.

5. Discussion

Snow density displayed considerable spatial variability throughout the West Fork Basin at the
time of sampling, near peak accumulation. Significant correlations between the spatial distribution of
density and the independent variables of elevation and incoming solar radiation were found using both
regression tree and multiple linear regression modeling. Both methods showed density to decrease
with increasing elevation, increase with increasing radiation, and vice versa. One split of the regression
tree modeled a higher snow density with increasing elevation in the highest elevation areas, possibly
due to increased wind compaction of snow in the exposed alpine portions of the basin.
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Correlations with elevation and radiation are related to snow density, because they are both
physically-based parameters that heavily influence the snowpack energy balance at any given point in
a basin [4]. Snow density will increase with increased radiation, because the additional energy input
can speed near-surface metamorphism, leading to larger grains, decreased pore space, and therefore,
increased density. Additionally, areas that experience high radiation inputs will also be more likely
to have snow surface melt introducing liquid water to the snowpack. This also increases density
by filling pore space with liquid, as well as increasing grain sizes through liquid-ice interactions
and enhanced metamorphism from the introduction of latent heat deeper in the pack as this water
re-freezes [10]. Increasing elevation is related to decreased densities because of colder air temperatures
due to adiabatic cooling and deeper snow depths requiring more energy input to substantially lower
the average density through the entire snowpack profile. While Elder et al. [4] note slope angle to
be a significant predictor of density because of its relation to wind transport and avalanching, direct
statistical correlations between slope angle and density were not identified in this study.

Both MLR and regression tree models were able to account for similar quantities of observed
variation in snow density (39% and 41%, respectively), but provided notably different ranges of
modeled values and spatial distributions. The MLR model provided a wider range of modeled
densities and a continuous distribution of values, where the binary regression tree provided a narrower
range and modeled nine discrete densities in its terminal nodes. The narrow range resulting from the
regression tree model also emphasizes its inability to model outside of its observed range, which is
another potential weakness of that model type. Even with the MLR model providing a wider range of
estimates, both models estimated a narrower range of values than were measured in the field, resulting
in a very similar pattern in the distribution of their residuals from observed values. The negative trend
in Figure 12 displays how these narrower ranges (compared to observed values) led to over-estimation
of the lowest measured densities and under-estimation of the highest measured densities.
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Figure 12. Residuals from observed values showing general over-estimation for low densities and
under-estimation for higher densities from both model types.
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The continuous distribution of the modeled values resulting from MLR more accurately captures
the continuous distribution of values found in the field. It was also able to more accurately model
the tails of the distribution, which the regression tree model did not. Based on the similar measure
of model fit, it could be argued that either could be an appropriate representation of the spatial
distribution of snow density throughout the West Fork Basin for the purpose of estimating total basin
SWE. However, each model has its own advantages. The continuous nature and modeled tails of
the distribution resulting from the MLR model does provide a more realistic representation of how
snow densities are distributed in nature. The regression tree model, however (while only predicting
nine discrete density values to be modeled throughout the basin), did model large changes in density
over short distances due to changes in received radiation in a more realistic manner. Conversely, the
modeling of the 349-kg/m3 values in the highest elevations is anomalous compared to the general
observations throughout the basin. Overall, considering the benefits and disadvantages of both
model types, the MLR model is considered to provide a more realistic representation of the spatial
distribution of snow density in the West Fork Basin. Despite this, it is recommended that both methods
(and potentially additional) be developed and evaluated to determine which model, or a combination
thereof, provides the best representation of the spatial distribution of density for a given purpose.

A substantial body of work has been devoted to quantifying the spatial distribution of SWE in
mountainous terrain, generally utilizing separate characterizations of depth and density to obtain
SWE estimates. Some of these have used spatially-distributed models of density [4,5]. Others used
spatially-uniform models and after finding poor density model results [8] or no significant correlations
on which to model density [6]. Alternatively, Clark et al. [2] found minimal spatial variation in their
density measurements and decided to focus their analysis on snow depth instead of SWE. The lack
of significant correlations in these studies could be related to two primary factors. First, significant
differences in density simply may not have existed in the field when data were collected for previous
studies. Second, the quantity and/or spatial arrangement of samples acquired did not provide the
pertinent data to statistically correlate associations that may have existed in the field [13,20].

Two primary factors likely contributed to the strong correlations between density and
physiography in this study. First, both the elevation range (1580 m) and spatial extent (207 km2)
of the West Fork Basin are notably larger than basins analyzed in previous field-based studies of
SWE in mid-latitude mountainous regions (comparisons from Clark et al. [2]). This large extent
and elevation range led to widely-varying characteristics of the snowpack near peak accumulation.
Secondly, the acquisition of a large number of samples (n = 1017) in areas of the basin quantified to be
physiographically representative of the whole and over a range of spatial scales allowed for differences
in density to be statistically correlated to elevation and radiation.

When using these spatially-distributed density models and a spatially-uniform parameterization
of the average of measured densities to estimate total basin SWE, substantial differences in estimates
were observed. When combined with the MEMR depth model, resulting SWE estimates had a
range of 6.1% compared to the control models (in which estimates varied by ~1%), all estimating
less SWE. Estimates of SWE utilizing the regression tree model for snow depth varied by 5.1%,
with all estimates being higher than those derived from direct SWE measurements. The 14.1%
total range of SWE estimates resulting from the six different combinations of depth and density
parameterizations indicate that even with statistically-sound representations of the spatial distribution
of density (and depth), model choice can still substantially influence SWE estimates. Because of these
findings, it is recommended that if depth and density are to be combined to estimate SWE that a variety
of spatial models (including spatially uniform, if desired) be analyzed to determine which are best for
a given study. If multiple models are developed, estimates from the various models could also then be
averaged or otherwise combined to obtain a final estimate of SWE, either as the total basin volume or
a spatially-distributed representation.

Many important considerations exist when assessing the spatial distribution of snow density
and comparing other studies that have done so. Snow density can be highly dynamic, spatially and
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temporally, especially through the transition from the accumulation to the ablation season. The annual
timing, spatial patterns and rate of snowpack densification can vary substantially in different basins,
mountain ranges and snow climates. In addition to differences that exist in the field, methods of
sampling, data analysis and spatial modeling can also have an influence on the inferences obtained
from any given body of work. This research emphasizes the importance of careful consideration of
these factors, among others, when performing studies of the spatial distribution of snow density or
SWE or analyzing the conclusions drawn by other research.

6. Conclusions

This study utilizes an original and unique dataset and analysis that shows that snow density can
vary widely near the time of peak accumulation, and estimates of total basin SWE can vary widely from
combining different models of the spatial distribution of depth and SWE. While it is more time efficient
to sample for snow depth more intensely than for snow density or SWE directly, this can potentially be
problematic for making accurate estimates of SWE, particularly near the time of peak accumulation
when it is most important for water supply forecasting. The substantial differences that can occur in
estimates of total basin SWE from varying the parameterizations of snow depth and snow density
when making such estimates were quantified. The authors suggest that the importance of the spatial
distribution of snow density and how it is represented in models should not be underestimated when
using separate depth and density models to quantify the spatial distribution of SWE in mountainous
terrain. This importance exists both with respect to ensuring density is sampled for in a manner that
allows for the statistical capture of correlations that exist in the field and with respect to how the results
are modeled spatially. Recommended future work includes continuing to improve the accuracy of
spatially-distributed SWE models, as well as to expand the extent over which these are developed,
from basin, to mountain range, to regional scales.
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