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Abstract: Background: This study investigated how the expression of heat shock protein 27 (HSP27),
cellular FLICE-like inhibitory protein (cFLIP), and clusterin (CLU) affects the progression of cancer
cells and their susceptibility to doxazosin-induced apoptosis. By silencing each of these genes
individually, their effect on prostate cancer cell viability after doxazosin treatment was investigated.
Methods: PC-3 prostate cancer cells were cultured and then subjected to gene silencing using siRNA
targeting HSP27, cFLIP, and CLU, either individually, in pairs, or all together. Cells were then treated
with doxazosin at various concentrations and their viability was assessed by MTT assay. Results:
The study found that silencing the CLU gene in PC-3 cells significantly reduced cell viability after
treatment with 25 µM doxazosin. In addition, the dual silencing of cFLIP and CLU decreased cell
viability at 10 µM doxazosin. Notably, silencing all three genes of HSP27, cFLIP, CLU was most
effective and reduced cell viability even at a lower doxazosin concentration of 1 µM. Conclusions:
Taken together, these findings suggest that the simultaneous silencing of HSP27, cFLIP, and CLU
genes may be a potential strategy to promote apoptosis in prostate cancer cells, which could inform
future research on treatments for malignant prostate cancer.
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1. Introduction

Prostate cancer is one of the most commonly diagnosed cancers in men worldwide
and is responsible for a significant number of deaths. The early diagnosis of prostate cancer
through prostate-specific antigen testing can lead to a successful treatment with surgery
or radiation therapy. However, when prostate cancer progresses to castration-refractory
prostate cancer (CRPC), it becomes difficult to treat with conventional hormone therapy or
chemotherapy [1–3]. In these cases, α1-receptor blockers, such as doxazosin and terazosin,
are widely used as drugs for the treatment of CRPC [4,5]. These drugs have a chemical
structure known as a quinazoline nucleus, and many studies have suggested that they
can induce apoptosis in prostate cancer cells by inhibiting anoikis and prostate cancer cell
invasion [6–8].

Many signaling proteins are known to be involved in the apoptosis of prostate cancer
cells. Heat shock protein 27 (HSP27) is a cell survival factor synthesized in response to
stress, such as UV irradiation, oxidizing agents, inflammation, hypoxia, and tumors [9–11].
In the absence of stress, HSP27 plays an important role in maintaining cellular homeostasis
as a molecular chaperone that folds, assembles, and transports polypeptides. However,
HSP27 increases cell survival by inhibiting apoptosis by interfering with cytochrome c
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secretion from mitochondria, caspase 3 activity, and apoptosome formation [12–14]. In
prostate cancer, HSP27 is associated with the pathologic stage, Gleason score, lymph node
metastasis, shorter biochemical recurrence, and a poor clinical outcome [15,16].

Another protein involved in apoptosis regulation is the cellular FLICE-like inhibitory pro-
tein (cFLIP), which is expressed in three splice variants: cFLIPL, cFLIPS, and cFLIPR [17,18].
Each variant has different structures and properties, but they inhibit apoptosis by inter-
acting with the adaptor protein FADD in downstream of the death receptors Fas, DE4,
and DR5 [19]. The overexpression of cFLIP has been detected in various cancers, and
apoptosis is induced when cFLIP expression is downregulated by various cytokines and
drugs [17,20].

Clusterin (CLU) is a multifunctional glycoprotein complex found in body fluids and
cells that is known to have two opposing actions as an apoptosis factor or a cell survival
factor [21,22]. The overexpression of CLU protects cells from apoptosis induced by cellular
stresses, such as chemotherapy, radiotherapy, or androgen/estrogen depletion [23,24]. On
the other hand, CLU can also suppress survival genes in cancer cells, while increasing
apoptosis [25,26]. For this reason, CLU is used as a marker of apoptosis undergoing in
various benign and malignant tumor tissues [25,27].

Therefore, the aim of the study was to investigate whether the inhibition of the genes
that are known to protect against cell death caused by anticancer drugs could enhance the
efficacy of doxazosin-induced apoptosis in prostate cancer cells. To test this hypothesis,
small interfering RNA (siRNA) technology was used to simultaneously knock out all
three target genes in PC-3 prostate cancer cells. This approach was designed to determine
whether silencing these genes would make the cancer cells more susceptible to apoptosis
when treated with the drug doxazosin.

2. Materials and Methods
2.1. Cell Culture and Doxazosin Treatment

The human PC-3 cell line was obtained from the American Type Culture Collection
(Manassas, VA, USA). The cells were maintained in DMEM purchased from Gibco BRL
(Grand Island, NY, USA) and supplemented with 10% fetal bovine serum (Gibco BRL,
Grand Island, NY, USA) and 1% penicillin/streptomycin (Gibco BRL, Grand Island, NY,
USA). The cells were cultured in a humidified atmosphere at 37 ◦C with 5% CO2. When
the cells reached 70% confluence, the culture medium was replaced with fresh serum-free
medium, and then treated with 1, 10, and 25 µM doxazosin (Sigma-Aldrich, St. Louis, MO,
USA). A serum-free medium containing 0.25% DMSO (Sigma-Aldrich, St. Louis, MO, USA)
was used as the control.

2.2. MTT Assay

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was
used to evaluate cell viability. PC-3 cells were seeded at a density of 1.5 × 104 per well in
48-well plates and treated with 1, 10, and 25 µM of doxazosin. At 24, 48, and 72 h after
treatment, 50 µL of the MTT (Sigma-Aldrich, St. Louis, MO, USA) solution was added
to each well and incubated for 30 min. The supernatant was then removed and the MTT
formazan was dissolved in 500 µL of DMSO. The plates were further incubated for 1 h, and
the absorbance was measured at 595 nm using a spectrophotometer (Multiskan Ex, Thermo
Fisher Scientific, Waltham, MA, USA).

2.3. Annexin-V Staining

Apoptosis was demonstrated using Annexin V-FITC/Propidium Iodide (PI) double
staining. Cells were seeded in 8-well chamber slides, treated with doxazosin for 72 h, and
then double-stained with Annexin V-FITC (Invitrogen, Carlsbad, CA, USA) and propidium
iodide (Sigma-Aldrich, St. Louis, MO, USA). The cells cultured on the slides were washed
with PBS and incubated in a binding buffer, including Annexin V-FITC and PI, for 20 min.
After washing with distilled water, the nuclei were counterstained with Hoechst 33258
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(Sigma-Aldrich, St. Louis, MO, USA). The cells were observed under a fluorescence
microscope (TE-300, Nikon, Tokyo, Japan). The percentage of apoptosis was calculated
by counting all cells at three locations in a high-magnification (×400) field of view and
expressed as a percentage of the number of cells stained green with Annexin V-FITC.

2.4. siRNA Silencing of HSP27, cFLIP, and CLU Genes

To downregulate the expression levels of HSP27, cFLIP, and CLU mRNA in PC-3
cells, siRNA duplexes were transfected into PC-3 cells using Lipofectamine RNAiMAX
(Invitrogen, Carlsbad, CA, USA). Cells were seeded in plates in the Opti-MEM medium
(Gibco, Waltham, MA, USA) without penicillin/streptomycin. siRNA targeting HSP27
mRNA was purchased from Sigma (St. Louis, MO, USA), and cFLIP and CLU mRNA
were purchased from Invitrogen (Carlsbad, CA, USA). The mRNA target sequences for
HSP27 (Gene ID: 3315), cFLIP (Gene ID: 8837), and CLU (Gene ID: 1191) were designed
using a siRNA template design tool (Ambion, Austin, TX, USA). A final concentration of
5 µM siRNAs was used with Lipofectamine RNAiMAX in the Opti-MEM media. After
24 h, the transfection medium was removed and the cells were replenished with a complete
medium. The transfected cells were allowed to grow for 24, 48, and 72 h at 37 ◦C in a 5%
CO2 incubator.

2.5. Total RNA Extraction and qRT-PCR

The cultured cells were homogenized with Trizol (Invitrogen, Carlsbad, CA, USA),
according to the manufacturer’s instructions. The RNA was then extracted by precipitation
with chloroform and isopropyl alcohol (Sigma-Aldrich, St. Louis, MO, USA), washed
with 75% ethyl alcohol, and dissolved in RNase-DNase-free water (Invitrogen, Carlsbad,
CA, USA). The concentration and purity of the extracted RNA were measured using a
Nano-drop (Thermo Fisher Scientific, Waltham, MA, USA). Next, cDNA synthesis was
performed in two steps: first, using the extracted RNA and oligo dT, and second, using
dNTP (Takara Bio Inc., Shiga, Japan) and RTase (Invitrogen, Carlsbad, CA, USA) for double-
strand synthesis in the RT buffer (Invitrogen, Carlsbad, CA, USA). qRT-PCR was then
performed using the Light Cycler 480 real-time PCR system (Roche, Manheim, Germany)
with a buffer solution containing template cDNA, each primer, and SYBR Green (Roche,
Manheim, Germany).

2.6. Western Blot Analysis

Samples were homogenized in a lysis buffer. Equal amounts of proteins were separated
by 12% SDS-PAGE and transferred to the PVDF membranes (Amersham; GE Healthcare,
Buckinghamshire, UK). The membranes were incubated in a 3% casein-blocking solution
(Komabiotech, Republic of Korea). The membranes were incubated with rabbit anti-cFLIP
polyclonal antibody (H-202, Santa Cruz Biotechnology, Paso Robles, CA, USA), goat anti-
HSP27 polyclonal antibody (C-20, Santa Cruz Biotechnology, Paso Robles, CA, USA), rabbit
anti-clusterin polyclonal antibody (H-330, Santa Cruz Biotechnology, Paso Robles, CA,
USA), and mouse anti-β-actin monoclonal antibody (H-2202, Santa Cruz Biotechnology,
Paso Robles, CA, USA) at 4 ◦C overnight. The membrane was washed three times and
incubated with donkey anti-rabbit IgG-HRP (Santa Cruz Biotechnology, Paso Robles, CA,
USA) and donkey anti-mouse IgG-HRP (Santa Cruz Biotechnology, Paso Robles, CA, USA)
at room temperature for 1 h each. The membrane was then washed and detected with an
ECL Plus Western blot detection reagent (Amersham; GE Healthcare, Buckinghamshire,
UK). The relative protein levels were determined using ScionImage (National Institutes of
Health, Bethesda, MD, USA).

2.7. Statistical Analysis

The results are presented as the mean and the standard error of the mean (SEM). A
Student’s t-test and one-way ANOVA with Tukey’s test were used for the data analysis. A
p-value of less than 0.05 was considered statistically significant.
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3. Results
3.1. Cell Viability and Apoptosis after Doxazosin Treatment

To examine the potential cytotoxic effect of doxazosin on PC-3 cells, we conducted an
MTT assay to measure cell viability after treatment with 1, 10, and 25 µM doxazosin for 24,
48, and 72 h. The doxazosin treatment results in a dose- and time-dependent reduction in
cell viability, with the greatest reduction observed in cells treated with 25 µM doxazosin for
72 h, which showed a 29.1± 6.5% reduction compared to the untreated controls (Figure 1A).
To further elucidate the mechanism underlying this observed cytotoxic effect, we evaluated
whether doxazosin-induced cell death was due to apoptosis or necrosis using Annexin-V
and PI staining. Apoptotic cells, as evidenced by green fluorescence, were rarely detected
in the doxazosin-untreated PC-3 cells, but increased in a dose-dependent manner after the
doxazosin treatment. Conversely, only a negligible number of necrotic cells, as indicated
by red fluorescence, were observed (Figure 1B). Importantly, we observed a significant
increase in the rate of apoptosis with the 25 µM doxazosin (Figure 1C), suggesting that
doxazosin-induced cytotoxicity in PC-3 cells is predominantly mediated by apoptosis rather
than necrosis.
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Figure 1. Effect of doxazosin on the cell viability and apoptosis of PC-3 cells. (A) Viability of PC-3
cells after doxazosin treatment. PC-3 cells were treated with 0, 10, or 25 µM doxazosin for 24 h. Cell
viability assessed by MTT assay showed a significant decrease at 25 µM after 72 h compared to the
control. (B) Detection of apoptotic cells after doxazosin treatment. Annexin-V (green fluorescence)
revealed increased apoptosis correlating with doxazosin concentration. Conversely, necrotic cells
identified by PI staining (red fluorescence) were rarely observed. Nuclei in cells were counter-stained
with DAPI (blue fluorescence). Magnifications of ×200 and ×1000 (inset). (C) Percentage of apoptotic
cells after doxazosin treatment. Apoptosis rates were significantly increased at 25 µM doxazosin.
Data represent the mean ± SEM of three independent experiments performed in triplicate. Statistical
significance (p < 0.05) was determined by a Student’s t-test for comparisons of 0 µM vs. 10 and 25 µM.

3.2. Expression of Survival-Related Genes after Doxazosin Treatment

To investigate the effect of doxazosin on the expression of HSP27, cFLIP, and CLU
genes, the expression levels of each gene were measured by qRT-PCR after treatment with
25 µM doxazosin for 6, 12, and 24 h. The results show that the expression of HSP27 mRNA
gradually decreased and reached its lowest level after 24 h of treatment. On the other
hand, the expression of cFLIP mRNA exhibited a transient increase after 6 h of treatment,
followed by a decrease from 12 h. In contrast, the expression of CLU mRNA increased
steadily from 6 h after treatment and continued to increase until 24 h (Figure 2).



Medicines 2024, 11, 7 5 of 11

Medicines 2024, 11, x FOR PEER REVIEW 5 of 11 
 

 

3.2. Expression of Survival-Related Genes after Doxazosin Treatment 
To investigate the effect of doxazosin on the expression of HSP27, cFLIP, and CLU 

genes, the expression levels of each gene were measured by qRT-PCR after treatment with 
25 µM doxazosin for 6, 12, and 24 h. The results show that the expression of HSP27 mRNA 
gradually decreased and reached its lowest level after 24 h of treatment. On the other 
hand, the expression of cFLIP mRNA exhibited a transient increase after 6 h of treatment, 
followed by a decrease from 12 h. In contrast, the expression of CLU mRNA increased 
steadily from 6 h after treatment and continued to increase until 24 h (Figure 2). 

 
Figure 2. Gene expression of cell survival markers after doxazosin treatment in PC-3 cells. PC-3 cells 
were treated with 25 µM doxazosin for 6, 12, and 24 h. HSP27, cFLIP, and CLU mRNA levels were 
then quantified by qRT-PCR. HSP27 mRNA expression decreased progressively over 24 h, while 
cFLIP mRNA levels remained stable. In contrast, CLU mRNA expression showed a continuous in-
crease. Data represent the mean ± SEM of three independent experiments, each conducted in tripli-
cate. Statistical significance (* p < 0.05) was determined by a Student’s t-test for comparisons at 0 h 
vs. 6, 12, or 24 h. 

3.3. siRNA Efficiency of HSP27, cFLIP, and CLU Genes 
To assess the compatibility of siRNA targeting HSP27, cFLIP, and CLU genes in PC-

3 cells, we conducted a qRT-PCR and Western blot analysis to detect the expression levels 
of each gene and protein. The expressions of HSP27, cFLIP, and CLU genes were signifi-
cantly reduced after siRNA treatment for each gene (Figure 3A). In addition, the expres-
sion of all three protein types was reduced in the cells subjected to siRNA, similar to the 
qRT-PCR results (Figure 3B). 

 
Figure 3. Gene and protein expressions after the siRNA silencing of HSP27, cFLIP, and CLU genes 
in PC-3 cells. The efficiency of siRNA knockdown was verified by analyzing mRNA and protein 
levels by qRT-PCR and Western blotting, respectively. (A) After the siRNA treatment, the mRNA 
expression of HSP27, cFLIP, and CLU was significantly reduced. Data represent the mean ± SEM of 
three independent experiments, each conducted in triplicate. (B) siRNA-treated cells show a corre-
sponding decrease in the protein expression of these genes. 

3.4. Cell Viability after siRNA of HSP27, cFLIP, and CLU Genes 
We evaluated the effect of doxazosin on the cell viability of PC-3 cells after siRNA 

targeting the HSP27, cFLIP, and CLU genes. In the control PC-3 cells not subjected to 

Figure 2. Gene expression of cell survival markers after doxazosin treatment in PC-3 cells. PC-3 cells
were treated with 25 µM doxazosin for 6, 12, and 24 h. HSP27, cFLIP, and CLU mRNA levels were
then quantified by qRT-PCR. HSP27 mRNA expression decreased progressively over 24 h, while
cFLIP mRNA levels remained stable. In contrast, CLU mRNA expression showed a continuous
increase. Data represent the mean ± SEM of three independent experiments, each conducted in
triplicate. Statistical significance (* p < 0.05) was determined by a Student’s t-test for comparisons at
0 h vs. 6, 12, or 24 h.

3.3. siRNA Efficiency of HSP27, cFLIP, and CLU Genes

To assess the compatibility of siRNA targeting HSP27, cFLIP, and CLU genes in PC-3
cells, we conducted a qRT-PCR and Western blot analysis to detect the expression levels of
each gene and protein. The expressions of HSP27, cFLIP, and CLU genes were significantly
reduced after siRNA treatment for each gene (Figure 3A). In addition, the expression of all
three protein types was reduced in the cells subjected to siRNA, similar to the qRT-PCR
results (Figure 3B).
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Figure 3. Gene and protein expressions after the siRNA silencing of HSP27, cFLIP, and CLU genes
in PC-3 cells. The efficiency of siRNA knockdown was verified by analyzing mRNA and protein
levels by qRT-PCR and Western blotting, respectively. (A) After the siRNA treatment, the mRNA
expression of HSP27, cFLIP, and CLU was significantly reduced. Data represent the mean ± SEM
of three independent experiments, each conducted in triplicate. (B) siRNA-treated cells show a
corresponding decrease in the protein expression of these genes.

3.4. Cell Viability after siRNA of HSP27, cFLIP, and CLU Genes

We evaluated the effect of doxazosin on the cell viability of PC-3 cells after siRNA
targeting the HSP27, cFLIP, and CLU genes. In the control PC-3 cells not subjected to siRNA,
cell viability was 92.4 ± 5.3%, 89.7 ± 4.8%, and 83.5 ± 6.3% after treatment with 1, 10, and
25 µM doxazosin, respectively, showing that there was no significant decrease (Figure 4A).
In PC-3 cells subjected to single silencing targeting HSP27, cFLIP, and CLU genes, the
overall cell viability was decreased after doxazosin treatment compared to the siRNA
control group. Specifically, in cells subjected to siRNA targeting the CLU gene, cell viability
was significantly decreased to 72.7 ± 5.1% after treatment with 25 µM doxazosin. However,
in cells subjected to siRNA targeting HSP27 and cFLIP genes, cell viability was 80.4 ± 5.3%
and 78.7 ± 4.8%, respectively, which did not show a significant decrease (Figure 4A).
In cells subjected to dual silencing targeting HSP27 and cFLIP genes, cell viability was
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significantly decreased in all gene combinations compared to PC-3 cells subjected to single
siRNA targeting one gene after doxazosin treatment. In cells subjected to dual silencing
targeting HSP27 and CLU genes and cFLIP and CLU genes, cell viability was 62.6± 5.7 and
53.7 ± 6.9%, respectively, after 25 µM doxazosin treatment, indicating a significant decrease
compared to the siRNA control group (Figure 4B). Finally, in PC-3 cells subjected to triple
silencing of HSP27, cFLIP, and CLU genes, cell viability was significantly decreased at 10
and 25 µM doxazosin, with cell viability values of 52.1 ± 6.1 and 40.9 ± 7.1%, respectively.
Even at 1 µM doxazosin, cell viability was significantly reduced to 58.3 ± 4.5% compared
to the PC-3 cells subjected to dual siRNA targeting two genes (Figure 5).
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Figure 4. Effect of doxazosin on the viability of PC-3 cells subjected to single or dual siRNA silencing
of HSP27, cFLIP, and CLU genes. PC-3 cells were treated with 0, 10, or 25 µM doxazosin for 24 h, and
then cell viability was measured by the MTT assay. (A) Cell viability was significantly decreased at
25 µM doxazosin in cells with CLU gene silencing, while the silencing of HSP27 and cFLIP genes did
not show this effect. (B) Dual siRNA silencing (HSP27 and cFLIP, HSP27 and CLU, or cFLIP and CLU)
resulted in a significant decrease in cell viability at both 10 and 25 µM doxazosin. Data represent the
mean ± SEM of three independent experiments, each conducted in triplicate. Statistical significance
(p < 0.05) was determined by a one-way ANOVA and Tukey’s test followed by a Student’s t-test for
0 µM vs. 1, 10, and 25 µM comparisons.
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4. Discussion

Doxazosin is a drug of the quinazoline α1-blocker class that has been shown to be a cell
death inducer in both normal and cancerous prostate cells. Doxazosin has therefore been
used extensively in the treatment of prostate cancer. However, the efficacy of doxazosin as
a monotherapy is limited, prompting numerous efforts to improve its anticancer activity.
As one of these efforts, we investigated whether the deletion of genes associated with
cell survival, such as HSP27, cFLIP, and CLU, enhances the cell-death-inducing effect of
doxazosin.

Before deleting those genes in PC-3 cells, we first confirmed the effects of doxazosin on
cell viability and apoptosis using a prostate cancer cell line, PC-3 cells. Doxazosin induced a
decrease in cell viability and an increase in apoptosis in a time- and dose-dependent manner
in PC-3 cells after doxazosin treatment. These findings are consistent with many previously
published research results. In a study using the DU-145 and PC-3 cell lines, doxazosin and
terazosin were shown to induce apoptosis in the cells independently of alpha-adrenergic
receptors and hormone receptors [28]. Another study reported that apoptosis occurred
when doxazosin was exposed to normal prostate cells and PC-3 cells [29]. In addition,
doxazosin is known to increase apoptosis by altering the mitochondrial membrane potential
and increasing intracellular reactive oxygen species [30].

Next, we investigated whether HSP27, cFLIP, and CLU, as survival-related genes, were
involved in the apoptosis induced by doxazosin. As a result of analyzing the expression of
the three genes in PC-3 cells after doxazosin treatment, HSP27 mRNA expression decreased,
while cFLIP mRNA expression temporarily increased before returning to normal levels.
Conversely, CLU mRNA expression increased continuously after doxazosin treatment.

HSP27 is one of the well-known cell survival genes, and its expression decreases in
cancer cells undergoing apoptosis [31]. HSP27 is a cell survival factor that is synthesized
in response to cytotoxic stimuli and plays an important role in maintaining cell function
in the absence of stress. Conversely, under stress, HSP27 inhibits apoptosis and increases
cell survival by interfering with mitochondrial cytochrome c secretion and caspase-3
activation [32,33]. These results are not consistent with our results, showing that the
expression of HSP27 mRNA is reduced by doxazosin treatment. However, it is proposed
that HSP27 may not be involved in the doxazosin-induced apoptosis of prostate cells
and that doxazosin may induce a decrease in HSP27 mRNA expression. Meanwhile,
cFLIP is known as a cellular FLICE inhibitory protein that acts as an inhibitor of death
receptor-mediated apoptosis. cFLIP inhibits apoptosis by interacting with the adapter
protein FADD [34,35]. In addition, when FADD expression is downregulated by cFLIP
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silencing, drug-induced apoptosis is promoted [36,37]. In addition, CLU has been reported
to be overexpressed to protect cells from cell death induced by cellular stress and extrinsic
apoptotic signals [38]. CLU, also known as a testosterone-repressed prostate message-2
(TRPM-2), is reported to have a dual role as both an apoptosis factor and a cell survival
factor [39]. Aberrant CLU expression has been associated with apoptosis in several cancers.
It is also known that silencing the CLU gene in cancer cells reduces cell proliferation and
increases apoptosis [40].

In this study, we showed that apoptosis in prostate cancer cells can be regulated
by three genes important for cell survival, HSP27, cFLIP, and CLU. Apoptosis plays a
critical role in the regulation of tissue homeostasis and is a key factor in the development
and progression of cancer, including prostate cancer. Bcl-2 and Bax are two proteins
that are centrally involved in the regulation of apoptosis, and their roles are particularly
important in the context of prostate cancer. The overexpression of Bcl-2 has been frequently
observed in prostate cancer. It has been reported that high levels of Bcl-2 are associated
with the significant suppression of doxazosin-induced anoikis and cell invasion, which
contributes to the survival and proliferation of prostate cancer cells [41]. Recent studies
have reported that these cell survival genes, HSP27, cFLIP, and CLU, are associated with
Bcl-2 and Bax expression. The inhibition of Hsp27 in DU145 and PC-3 prostate cancer
cells not only reduced cell viability but also induced apoptosis by decreasing Bcl-2 levels
and increasing Bax levels [42]. RU486 enhanced TRAIL-mediated apoptosis through the
downregulation of Bcl-2 and cFLIP in human renal cell carcinoma Caki cells [43]. In
addition, clusterin appears to contribute to an anti-apoptotic environment in prostate
cancer cells, potentially influencing Bcl-2 activity and leading to increased cell survival,
although the direct activation of Bcl-2 by clusterin has not been fully established [44]. Taken
together, the reduction in HSP27, CFLIP, and CLU expression by doxazosin inhibits Bcl-2
function and thereby induces apoptosis in prostate cancer cells.

Considering these results, we hypothesized that the suppression of these genes could
accelerate the apoptosis of PC-3 cells by doxazosin and conducted the small interfering
RNA (siRNA) silencing of HSP27, cFLIP, and CLU genes in PC-3 cells. First, we examined
cell viability after a single knockdown of these genes. We observed a significant decrease in
cell viability in cells treated with CLU siRNA, but not in those treated with HSP27 and cFLIP
siRNA. Our results show that HSP27 and cFLIP mRNA expression either decreased or
remained unchanged, whereas CLU mRNA expression increased after doxazosin treatment.
Considering these results, it seems that the sensitivity of doxazosin-induced apoptosis in
PC-3 cells was enhanced by suppressing the expression of CLU mRNA, which is a survival
factor upregulated by doxazosin treatment.

In this study, we also evaluated cell viability in PC-3 cells subjected to the dual
silencing of HSP27, cFLIP, and CLU genes. Cell viability was significantly decreased in
cells subjected to the dual silencing of cFLIP and CLU genes after doxazosin treatment
compared with the control, but not in cells subjected to the dual silencing of HSP27 and
cFLIP genes or HSP27 and CLU genes. These results suggest that HSP27 may interact with
cFLIP and CLU, implying that silencing HSP27 gene expression compensates for the cell
survival function of cFLIP and CLU genes. Next, we performed the triple silencing of the
HSP27, cFLIP, and CLU genes to determine how the interactions of these genes affect the
cell viability of PC-3 cells treated with doxazosin. As expected, sensitivity to doxazosin was
increased in PC-3 cells subjected to the triple silencing of HSP27, cFLIP, and CLU genes, and
cell viability was significantly reduced even in cells treated with 1 µM doxazosin compared
to the control group. These results suggest that the triple silencing of HSP27, cFLIP, and
CLU genes is likely to be more effective than single or dual silencing.

5. Conclusions

Our study shows that the administration of doxazosin after a single knockdown of the
HSP27, cFLIP, and CLU genes in PC-3 cells, a prostate cancer cell line, leads to increased
apoptosis. We observed that, when we applied dual siRNA to each of these genes, thereby
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increasing sensitivity to doxazosin, the cell survival rate after treatment was further reduced
compared to the results with single siRNA. Notably, the simultaneous silencing of all three
genes resulted in the lowest cell survival rate, suggesting that triple silencing may be more
effective than single or dual silencing in inducing apoptosis in prostate cancer cells. This
study is the first to perform the triple gene silencing of survival-related genes in PC-3 cells.
We expect that these findings will provide fundamental data for future research in the
treatment of aggressive forms of prostate cancer.
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