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Abstract: Background: Hypoxia is a well-recognized characteristic of the tumor microenvironment
of solid cancers. This study aimed to analyze hypoxia-related genes shared by groups based on
tumor location. Methods: A total of 9 hypoxia-related pathways from the Kyoto Encyclopedia of
Genes and Genomes database or the Reactome database were selected, and 850 hypoxia-related genes
were analyzed. Based on their anatomical locations, 14 tumor types were categorized into 6 groups.
The group-specific genetic risk score was classified as high- or low-risk based on mRNA expression,
and survival outcomes were evaluated. Results: The risk scores in the Female Reproductive group
and the Lung group were internally and externally validated. In the Female Reproductive group,
CDKN2A, FN1, and ITGA5 were identified as hub genes associated with poor prognosis, while
IL2RB and LEF1 were associated with favorable prognosis. In the Lung group, ITGB1 and LDHA
were associated with poor prognosis, and GLS2 was associated with favorable prognosis. Functional
enrichment analysis showed that the Female Reproductive group was enriched in relation to cilia
and skin, while the Lung group was enriched in relation to cytokines and defense. Conclusions: This
analysis may lead to better understanding of the mechanisms of cancer progression and facilitate
establishing new biomarkers for prognosis prediction.

Keywords: bioinformatics; hypoxia; genomics; amino acids

1. Introduction

Hypoxia is a common feature of the tumor microenvironment of malignant solid
tumors that promotes invasive and metastatic tumor behaviors, and activates expression
of various hypoxia-related genes such as the hypoxia-inducible factor [1]. Hypoxic foci
are formed when cancer cells’ metabolic requirement surpasses the intravascular oxygen
available. By inducing epithelial-to-mesenchymal transition, hypoxic microenvironments
are associated with poor outcomes and reduced survival [2]. Several hypoxia-related
genes are biomarkers for the prognosis prediction of common malignancies such as breast,
colorectal, gastric, and thyroid cancers [3,4].
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Cancers originating in anatomically close organs may have similar genetic profiles.
For example, the mutational profiles of distal colon and rectal cancer are similar, although
the two cancers display distinct clinical behaviors [5]. Likewise, esophageal and gastric
adenocarcinomas share commonalities in targeted therapeutic strategies and clinical out-
comes, particularly in terms of mortality rates [6]. They also have similar mutational rates
in the APC, KRAS, PTEN, and SMAD4 genes [7]. In the context of urinary tract malignan-
cies, previous studies have demonstrated the similarity in the gene expression profiles of
urothelial carcinomas originating from both the upper tract (ureter and renal pelvis) and the
lower tract (bladder and urethra) [8]. These findings suggest the existence of comparable
pathogenic mechanisms governing the development of the tumors. Among the various
cancer mechanisms, hypoxia is commonly involved in tumor progression, and cancers
originating in organs situated close to each other may have similar expression profiles of
hypoxia-related genes.

The Cancer Genome Atlas (TCGA) database provides multiplatform genomic data of
more than 20 types of carcinomas [9]. It includes data about microsatellite instability, DNA
sequencing, miRNA sequencing, protein expression, mRNA sequencing, DNA methyla-
tion, copy number variation, clinical information, and clinical images. The TCGA project
produced genomic data under standardized and controlled conditions, making it an ideal
platform for pan-cancer analyses.

In this study, we hypothesized the involvement of specific hypoxia-related genes that
exhibit commonality across cancers originating from anatomically similar locations. To
investigate this hypothesis, we utilized the TCGA database to categorize 14 different cancer
types into 6 groups based on their anatomical origin, and analyzed the group-specific
genetic risk scores with mRNA expression levels. Subsequently, we sought to identify
the genes with the potential to predict survival outcomes through the analysis of gene
expression profiles associated with hypoxia.

2. Materials and Methods
2.1. Selection of Hypoxia-Related Genes

We compiled the hypoxia-related gene list by searching through the literature regard-
ing pan-cancer samples (Table S1), and gene ontology analysis was performed using data
from the Kyoto Encyclopedia of Genes (KEGG) and the Reactome database to find the
hypoxia-related gene pathways. Among the pathways, we manually selected 9 pathways
that hold clinical significance (Table 1). Then, we identified 850 genes that are involved in
the 9 hypoxia-related pathways.

Table 1. Hypoxia-Related Pathway list.

Database Pathways

KEGG

Pathways in cancer

Central carbon metabolism in cancer

PI3K-Akt signaling pathway

HIF-1 signaling pathway

VEGF signaling pathway

TNF signaling pathway

Reactome

Hexose transport

Signaling by NOTCH1

MAPK targets/Nuclear events mediated by MAP kinases
KEGG, Kyoto Encyclopedia of Genes.

Fourteen tumor types in the TCGA were categorized into six groups based on their
anatomical locations, as shown in Table 2. The Liver group comprised liver hepatocellular
carcinoma and cholangiocarcinoma; the Upper Gastrointestinal (GI) group comprised
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esophageal carcinoma and stomach adenocarcinoma; the Lower GI group comprised colon
adenocarcinoma and rectum adenocarcinoma; the Female Reproductive group comprised
uterine corpus endometrial carcinoma, cervical squamous cell carcinoma, and endocervical
adenocarcinoma; the Urinary group comprised bladder urothelial carcinoma, kidney renal
clear cell carcinoma, kidney renal papillary cell carcinoma, and kidney chromophobe;
and the Lung group comprised lung adenocarcinoma and lung squamous cell carcinoma
(Table 2).

Table 2. List of TCGA Tumor Types in Each Group.

Group Type (Abbreviation, Number of Samples)

Liver Liver hepatocellular carcinoma (LIHC, 368)
Cholangiocarcinoma (CHOL, 36)

Upper Gastrointestinal Esophageal carcinoma (ESCA, 185)
Stomach adenocarcinoma (STAD, 389)

Lower Gastrointestinal Colon adenocarcinoma (COAD, 434)
Rectum adenocarcinoma (READ, 154)

Female Reproductive
Uterine corpus endometrial carcinoma (UCEC, 531)

Cervical squamous cell carcinoma and
endocervical adenocarcinoma (CESC, 293)

Urinary

Bladder urothelial carcinoma (BLCA, 406)
Kidney renal clear cell carcinoma (KIRC, 532)

Kidney renal papillary cell carcinoma (KIRP, 288)
Kidney chromophobe (KICH, 65)

Lung Lung adenocarcinoma (LUAD, 504)
Lung squamous cell carcinoma (LUSC, 495)

TCGA, The Cancer Genome Atlas.

The TCGA pan-cancer RNA-seq data and the TCGA clinical data outcome resource
were downloaded from the PanCanAtlas publications page (accessed on 18 December 2020,
https://gdc.cancer.gov/about-data/publications/pancanatlas). A total of 4751 tumor
samples with TCGA-CDR outcome data were used for downstream analysis [10]. Among
the 850 hypoxia-related genes, 6 genes (LOC101928143, LOC102723407, MIR1281, PLA2G4B,
SLC5A10, and G6PC1) were excluded from the TCGA pan-cancer RNA-seq data; thus,
844 genes with RNA expression values were used in the analysis.

2.2. Group-Specific Genetic Risk Gene Identification

We compiled data encompassing all genes associated with hypoxia and then proceeded
to perform Cox regression analyses to compute individualized genetic risk scores for each of
the specified groups. Elastic net penalized Cox regression analysis was conducted based on
the RNA expression values of 844 hypoxia-related genes and each group’s overall survival
data. Genes with Cox regression model coefficients that were not equal to 0 were defined as
group-specific genetic risk genes. The group-specific genetic risk score, Rg, was calculated
using the following equation:

Genetic risk score, Rg = ∑n
i=1 bg,ixg,i

where g represents group classification according to anatomical location, i represents the
number of genes with coefficients not equal to 0, b represents the elastic net Cox regression
coefficient value of each gene, and x represents the RNA expression value of each gene.
The Glmnet R package was employed for elastic net Cox regression analysis [9].

2.3. Survival Analysis and Internal Validation

Group samples were classified as ‘high-risk’ or ‘low-risk’ based on the median value
of the group-specific genetic risk score. Survival analysis was conducted using Kaplan–

https://gdc.cancer.gov/about-data/publications/pancanatlas
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Meier survival curves. Log-rank tests were performed to compare survival curves between
high-risk and low-risk groups. Tumor types with log-rank test p-values between high-risk
and low-risk classes below 0.05 across all tumor types within each group were defined as
internally validated groups. The R package pROC was used for building receiver operating
characteristic (ROC) curves and survminer was used for the Kaplan–Meier plot and log-rank
test [11].

2.4. External Validation

To improve the validity and generalizability, external validation was performed on
the internally validated groups, using the dataset of the Gene Expression Omnibus (GEO).
Nineteen external validation datasets were obtained from the GEO database (accessed on
1 January 2022, https://www.ncbi.nlm.nih.gov/geo/, Table S1). Log2-transformed raw
expression values were used for risk score calculation. For each dataset, samples were
classified as high- and low-risk by their calculated genetic risk score. We calculated the
gene coefficients of the groups (Table 3). R packages GEOquery, Affy, Oligo, and Limma were
used for the pre-processing of external validation datasets. To detect and remove outliers,
the outlier_osd function of the R package survBootOutliers was applied. Survival analysis
was performed by dividing samples of each dataset into high- and low-risk classes based
on the median genetic risk score.

Table 3. Group Log-Rank Test Results and TCGA Internal Validation Results.

Group Group-Specific
Log-Rank p-Value Type Type-Specific

Log-Rank p-Value
Internal

Validated

Liver 5.12 × 10−18
LIHC 2.92 × 10−17

FALSE
CHOL 6.17 × 10−2

Upper Gastrointestinal 1.39 × 10−9
ESCA 1.99 × 10−2

TRUE
STAD 7.88 × 10−8

Lower Gastrointestinal 8.02 × 10−11
COAD 5.20 × 10−9

TRUE
READ 2.19 × 10−2

Female Reproductive 9.10 × 10−16
UCEC 1.51 × 10−7

TRUE
CESC 5.32 × 10−4

Urinary 9.86 × 10−47

BLCA 3.46 × 10−5

FALSE
KIRC 3.75 × 10−13

KIRP 7.53 × 10−5

KICH 8.29 × 10−2

Lung 1.51 × 10−6
LUAD 7.06 × 10−5

TRUE
LUSC 3.95 × 10−3

LIHC, liver hepatocellular carcinoma; CHOL, cholangiocarcinoma; ESCA, esophageal carcinoma; STAD, stomach
adenocarcinoma; CODA, colon adenocarcinoma; READ, rectum adenocarcinoma; UCEC, uterine corpus endome-
trial carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; BLCA, bladder
urothelial carcinoma; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; KICH,
kidney chromophobe; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma.

2.5. Functional Enrichment Analysis

Gene set enrichment analysis (GSEA) was conducted using the R package clusterPro-
filer [12]. KEGG pathway and Gene Ontology Biological Process terms from the Molecular
Signatures Database were used to perform functional annotation of differentially expressed
genes (DEGs) between high- and low-risk classes within each validated group. The top ten
enriched terms were extracted in this study. Among the genes with an average of more than
three RNA expression values, DEGs between high- and low-risk classes within each group

https://www.ncbi.nlm.nih.gov/geo/
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were identified with a cutoff value at Wilcoxon rank-sum test false discovery rate < 0.01
and absolute log2 fold change > 1.

2.6. Gene Ontology Analysis

Gene ontology analysis was conducted using the R package clusterProfiler [12]. KEGG
pathway and Gene Ontology biological process terms from the Molecular Signatures
Database were used to perform functional annotation of positive risk coefficient genes
within each validated group. The 844 hypoxia-related genes were used as a background
gene set. The top 10 terms among enriched terms with a q-value of less than 0.2 were
represented as dot plots.

3. Results
3.1. Selection of Hypoxia-Related Genes

From the hypoxia-related pathways, 850 genes involved in hypoxia-related pathways
were selected and defined as hypoxia-related genes. Among the 850 hypoxia-related genes,
6 genes (LOC101928143, LOC102723407, MIR1281, PLA2G4B, SLC5A10, and G6PC1) were
absent from the TCGA pan-cancer RNA-seq data; thus, 844 genes with RNA expression
values were used in the analysis.

3.2. Group-Specific Genetic Risk Score Identification

Group-specific genetic risk genes and coefficients are listed in Table 4 In accordance
with the coefficient’s direction, we have compiled the results into a table that distinguishes
positive and negative associations. The distribution of hypoxia genetic scores is shown
in the risk score plot (Figure 1). In the Female Reproductive group, 232 (79%) out of the
293 patients with the CESC tumor type were classified as high-risk. Risk scores were evenly
distributed across tumor types in the Upper GI, Lower GI, and Lung groups.

Table 4. List of Group-Specific Hypoxia Risk Genes.

Group Positive Risk Coefficient Negative Risk Coefficient

Liver

BIRC5, BIRC8, CUL2, EIF4E,
EPO, G6PD, GNA12, HDAC1,
HDAC2, HSP90AA1, IFNA13,
IL8, LDHA, MAPK7, NUP155,
PGF, PPP2R5B, RHEB, SLC1A5,
SLC2A1, SPP1, YWHAB

CCNA1, CNTN1, FLT3, G6PC2,
GHR, HES5, IFNA2, ITGB7,
NTRK1, PFKL, TNF, TP53, WNT1

Upper Gastrointestinal APH1B, SERPINE1, SLC2A3,
SOCS3, TF DAB2IP, MKNK2

Lower Gastrointestinal APC2, ENO3, HEYL, TIMP1,
WNT10B CTNNA1, MAPKAPK3, TMEM48

Female Reproductive
BDKRB1, CDKN2A, FN1, ITGA5,
PFKM, SLC45A3, TFRC, VEGFA,
WNT3, YWHAB, YWHAG

CD19, IL2RB, JMJD7-PLA2G4B,
LEF1, MDM2, RBPJ

Urinary
BIRC5, CCNE2, COL6A3, DVL3,
EIF4EBP1, FGF5, GLI2,
PPP2R2C, SLC7A5, THBS3

DAB2IP, ITGB7

Lung ITGB1, LDHA GLS2
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Figure 1. Risk score distribution plot of each group. The upper panels are ordered by genetic risk
scores, categorized into high- (red dots) and low- (blue dots) risk based on the median. The lower
panels represent overall survival time in months, with patient survival status denoted by black
(deceased) and grey (alive) dots. In the Female Reproductive group, 79% of patients with the CESC
tumor type were classified as high-risk. Risk scores were evenly distributed across tumor types in the
Upper GI, Lower GI, and Lung groups. (A) Liver group, (B) Upper GI group, (C) Lower GI group,
(D) Female Reproductive group, (E) Genitourinary group, (F) Lung group.

3.3. Survival Analysis and Internal Validation

Overall survival rates between high- and low-risk classes were compared using the
Kaplan–Meier method and the log-rank test (Figure 2). To assess the risk score performance
of each tumor, samples were divided into high- and low-risk classes based on the median
risk score within each group, and survival was compared using the Kaplan–Meier method
and the log-rank test. The Female Reproductive, Lung, Upper GI, and Lower GI groups
were internally validated (Figure 3). The log-rank test p-values comparing the survival
rates of the high- and low-risk classes are listed in Table 4. Except for CHOL and KICH, the
remaining cancer types showed significantly different results. (p-value < 0.05)
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Figure 2. Comparison of Kaplan–Meier survival curves between high- and low-risk classes. (A) OS
in Liver group, (B) OS in Upper GI group, (C) OS in Lower GI group, (D) OS in Female Reproductive
group, (E) OS in Genitourinary group, (F) OS in Lung group; OS, overall survival; GI, Gastrointestinal.

3.4. External Validation Result of Internally Validated Groups

Risk scores were calculated using the group-specific genetic risk score gene coefficients
calculated from TCGA samples (Table 5).

Significant differences in overall survival curves between the high- and low-risk classes
were seen in the Lung group datasets GSE11969 (matching TCGA type: LUAD and LUSC)
and GSE31210 (matching TCGA type: LUAD), and the Female Reproductive group datasets
GSE119041 (matching TCGA type: UCEC) and GSE52903 (matching TCGA type: CESC)



Medicines 2024, 11, 2 8 of 16

(Figure 4). Accordingly, the Female Reproductive and Lung groups were internally and
externally validated.
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Figure 3. Comparison of Kaplan–Meier survival curves between high- and low-risk classes based on the
median risk score. The Female Reproductive, Lung, Upper Gastrointestinal, and Lower Gastrointestinal
groups were internally validated. (A) OS in ESCA, (B) OS in STAD, (C) OS in COAD, (D) OS in READ,
(E) OS in UCEC, (F) OS in CESC, (G) OS in LUAD, (H) OS in LUSC; OS, overall survival.
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Table 5. Datasets Used For External Validation and Log-Rank Test Results.

Group Matched TCGA Type GEO Accession Number

Upper Gastrointestinal
ESCA GSE72873

STAD GSE15459 *

Lower Gastrointestinal COAD
READ

GSE41258, GSE17538, GSE72970,
GSE17537, GSE17536

Female Reproductive
UCEC GSE119041 *

CESC GSE52903 *

Urinary
BLCA GSE31684, GSE13507, GSE19423

KIRC GSE29609

Lung
LUAD/SC GSE11969 *, GSE37745

LUAD GSE31210 *, GSE30219,
GSE50081, GSE29014

* p-value < 0.05; ESCA, esophageal carcinoma esophageal carcinoma; STAD, stomach adenocarcinoma; CODA,
colon adenocarcinoma; READ, rectum adenocarcinoma; UCEC, uterine corpus endometrial carcinoma; CESC,
cervical squamous cell carcinoma and endocervical adenocarcinoma; BLCA, bladder urothelial carcinoma; KIRC,
kidney renal clear cell carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma.
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(D) OS in GSE31210; OS, overall survival.
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3.5. Functional Enrichment Analysis

Functional enrichment analysis was performed to identify differences in the pathways
between the high- and low-risk classes for the internally and externally validated groups.

GSEA shows that 1,638 DEGs between high- and low-risk classes in the Female
Reproductive group were enriched in terms related to cilia (‘cilium movement’ and ‘cilium
organization’) and terms related to skin (‘skin development’ and ‘epidermis development’)
(Figure 5, Table S2).
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In the Lung group, 505 DEGs were enriched in terms related to cytokines (‘cytokine’,
‘cytokine receptor interaction’, ‘response to cytokine’, and ‘cytokine mediated signaling
pathway’) and defense (‘regulation of defense response’ and ‘defense response’) (Figure 5,
Table S3).

3.6. Gene Ontology Analysis

The gene ontology (GO) analysis was performed to identify the functions of positive
risk coefficient genes.

GO analysis shows that 11 positive risk coefficient genes (BDKRB1, CDKN2A, FN1,
ITGA5, PFKM, SLC45A3, TFRC, VEGFA, WNT3, YWHAB, YWHAG) in the Female Re-
productive group were enriched in terms related to axon regulation, such as POSITIVE
REGULATION OF AXONOGENESIS, AXON EXTENSION, and POSITIVE AXON REGU-
LATION OF AXON EXTENSION (Figure 6).
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Two positive risk coefficient genes (ITGB1, LDHA) in the lung group were related
to amino acid transport. Terms such as ACIDIC AMINO ACID TRANSPORT, AMINE
TRANSPORT, AMINO ACID IMPORT, etc., were enriched.

4. Discussion

Hypoxia induces metabolic and molecular changes in the majority of malignant tumors.
The association between the genomic characteristics of hypoxia and aggressive tumor cell
phenotypes is well-established [13]. In this study, our principal aim was to investigate the
potential role of hypoxia-related genes in cancers that share anatomically close locations.
The study revealed that prognoses of the Female Reproductive and Lung groups differed
significantly between the low-risk and high-risk group, affected by hypoxia-related genes.
Internal validation exhibited suboptimal results within the Liver and Urinary groups, while
external validation encountered challenges in the Upper GI and Lower GI groups. The
findings implied that the function of hypoxia-related genes in the progression of these
cancers might exhibit variability, despite the shared anatomical origins.

CESC and UCEC are representative gynecological cancers. Although these two cancer
types have different clinical features, origins, and prognoses, studies have demonstrated
that gynecologic cancers share abnormally expressed genes [14]. Two hub genes (PAMR1
and SLC24A3) are potential shared biomarkers for both CESC and UCEC [15]. The expres-
sion of PAMR1 and SLC24A3 in cancer tissue is downregulated significantly compared to
normal tissue. PAMR1 influences epithelial-to-mesenchymal transition by inhibiting the
proliferation, migration, and invasion of cancer cells [16]. SLC24A3 (also known as NCKX3)
is involved in the transport of calcium across the cell. Its expression is abundant within the
human endometrium at the mRNA and protein levels, especially during menstruation, and
it has a role in the reproductive cycle [17]. Another study found that MAL overexpression
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may predict poor prognosis in CESC and UCES [18]. One study reported that MAL expres-
sion increased in chemo-resistant cancers, and is associated with short overall survival [19].
Expression of ACTA1, MYH7, and MYBPC1 may be a potential promotor of gynecological
cancer initiation or progression [20]. These genes are regulators of actin and myosin and,
as such, changes in actin bundling proteins caused by gene alterations could be correlated
with cancer initiation or progression.

In agreement with published studies, the current study identified overlapping molecu-
lar findings in gynecological cancer, focusing on the hypoxia gene. We identified 11 positive
risk coefficient genes and 7 negative risk coefficient genes. Among them, CDKN2A (also
known as P16 gene), FN1, and ITGA5 were identified as tumor markers which predict poor
prognosis. CDKN2A encodes tumor suppressor protein or tumor immunity [21]. CDKN2A
methylation has been reported in association with poor prognosis in ovarian cancer [22].
The FN1 gene is a glycoprotein involved in cell proliferation and migration. The expres-
sion of FN1 is a very poor prognosis marker for various cancer types, including gastric
and thyroid cancers [16,23]. Other studies report that expression of ITGA5 is increased in
breast and ovarian cancers compared to normal tissue [24,25]. ITGA5 is a member of the
integrin alpha chain family and combines with ITGB1 to form integrin α5β1, which has
been demonstrated to engage in tumor cell adherence. Progression of gynecological cancer
may be promoted by microenvironmental changes in tumor immunity, adherence, and
migration caused by alteration of hypoxia-related genes.

We also found that upregulation of certain genes was associated with better prognosis.
In the current study, IL2RB and LEF1 were associated with good prognosis in the Female
Reproductive group. In contrast to the current findings, high expression of IL2RB and
LEF1 has been correlated with poor prognosis. IL2RB, as a T-cell-mediated immune system
regulating gene, was reported to increase cytotoxic lymphocytes, T-cells, and natural killer
cells, leading to immune invasion and tumorigenesis [26]. LEF1 is essential for T- and B-cell
differentiation and its transcription factors are required for self-renewal of leukemic stem
cells [27]. Thus, LEF1 is consistently associated with T-cell tumors in the literature.

The GSEA data illustrated that the cilia and epidermis have a vital function in gy-
necological tumorigenesis. The human endometrium comprises abundant motile cilia,
and ciliary defects may play a role in the early stages of tumor development. When the
motile cilia decrease, oxidative stress in epithelial cells is exacerbated, which can lead
to precursor cancer [14]. The exocervix and vagina are lined with squamous epithelium
that form the surface of the skin and hollow organs. If these cells repeatedly suffer from
external insult (e.g., repeated infection by human papillomaviruses), cell cycle regulatory
tumor suppressor proteins—such as p53 and pRB—are inactivated, allowing epidermal
cells in squamous cell carcinoma to abnormally proliferate and dedifferentiate [28]. In
gynecological cancers, the functional pathways of epithelial cells are the most important
mechanism of cancer progression.

GO analysis showed that axon control is one of the influential factors in the micro-
environment of female reproductive cancer. Recently, a study denoted the connection
between neuro activity and cancer cell growth [29]. The release of neurotransmitters
stimulates the cancer cell and its stromal cell. The process is also facilitated by the growth
factor of cancer cells, leading to perineural invasion. Other research also suggested that
neural activity such as axonogenesis is also observed in gastric and colon cancer [30,31].
Our findings exhibit a congruent trend with the prior studies, suggesting that neural activity
could significantly influence tumor infiltration.

Lung adenocarcinoma and lung squamous cell carcinoma are major cancers which
have been investigated during many studies. Although they originate from different cells
and have different molecular profiles, some studies have demonstrated common gene
pathways. Six genes (PGK1, ENO2, GPI, PEKP, ALDOA, and ANGPTL4) were reported as
hypoxia-related genes in lung cancer [32]. These genes function as regulators of oxygen-
dependent molecular pathways, leading to increased anaerobic glycolysis. TTF1, KRT7,
SOX2, P63, and KRT5 are biomarkers for poor prognosis of lung adenocarcinoma and
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lung squamous cell carcinoma [33]. Among these genes, TTF1 was demonstrated to
contribute to the maintenance of the function of terminal respiratory unit cells, and is used
in immunohistochemistry differential diagnosis of lung cancer [34]. SOX2, as a stem cell
transcription factor, regulates human somatic cells to pluripotent stem cells. One study
revealed that overexpression of SOX2 amplifies the 3q gene, which is the most common
genomic mutation in lung cancer [35].

In this study, ITGB1 and LDHA were poor prognosis markers and GLS2 was an indolent
marker. ITGB1 has been reported to regulate cancer migration, invasion, and metastasis.
Previous studies have shown that knockdown of ITGB1 reduces breast cancer and colorectal
cancer [36,37]. LDHA is an enzyme gene involved in creating an acidic microenvironment
by effecting the pyruvate cycle. When LDHA is overexpressed, epithelial-to-mesenchymal
transition is overactivated, which is associated with poor prognosis [38]. The prior research
has established that LDHA plays a pivotal role in augmenting glycolytic processes and
cellular proliferation, both in in vitro and in vivo [39]. This study illustrated that heightened
LDHA expression resulted in amplified glucose uptake and lactate production within cancer
cells. In contrast, GLS-2 has recently been identified as a key gene in the suppression of
cancer metastasis via its regulation of glutamine metabolism [40]. It binds to Rac1-GDP by
inhibiting Rac1 activity, which eventually activates the p53 tumor suppression gene. The
function of the tumor suppressor GLS2 has also undergone previous in vitro studies [41].
Elevating GLS2 expression within cancer cells has demonstrated an antiproliferative effect,
resulting in cell cycle arrest at the G2/M phase. The modification of proteins and other anti-
oncogenes through alteration of hypoxia-related genes may determine cancer prognosis.

Functional enrichment analysis indicated that the molecular mechanisms related to
cytokine and defense were enriched in lung cancer. Despite controversy that immune
proteins alone are not related to cancer risk, cytokine expression in lung cancer has been de-
scribed in the recent research [42]. Tumor cells yield immunosuppressive cytokines, which
are able to avoid attacks by the host’s immune system. The impaired anticancer defense
system can also cause the immune system to avoid cancer cells [43]. These mechanisms of
immunogenicity in lung cancer may potentially have a crucial function in the regulation of
cancer progression.

GO analysis revealed that changes to amino acid profiles accelerate tumor growth in
lung cancer. It is known that particular amino acids facilitate the proliferation of cancer cells
and their potential role in the regulation of their microenvironment. Among them, trypto-
phan is a crucial amino acid for immune proliferation through the regulation of T-cells [44].
The change in levels of tryptophan can induce immune escape, leading to promotion of
cancer cells. In addition, asparagine, aspartate, and glutamine are known as intracellular
and extracellular amino acids which serve to assist in cell integration [45]. When the amino
acids are depleted, it cause impairment of protein synthesis and finally lead to unusual
apoptosis. All these metabolism shifts can induce a change in the microenvironment,
allowing lung cancer to grow well.

The strength of the current study was the analysis of hub genes according to the
location of cancer, based on massive data mining. However, there are some limitations.
First, as a retrospective study, there is inevitable selection bias. Therefore, we performed
external validation with larger sample sizes to overcome the bias. Second, the study did not
encompass clinical factors such as sex, age, and stage, which presented a limitation in terms
of comprehensiveness. However, it is practically challenging to procure a development
set and validation set that encompass the entirety of the clinical factors. The study was
deliberately designed to exclusively investigate hypoxia-related genes. Third, as our
study focused on the analysis of genes within group categories, it is possible that the
sensitivity and precision for individual cancers may be diminished in comparison to other
biomarkers. Nonetheless, the significance of our approach lies in its capacity to offer a
comprehensive strategy for predicting survival outcomes across a spectrum of diverse
cancer types. Therefore, further prospective clinical trials and experimental studies are
needed to further validate our findings.
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5. Conclusions

Our study identified common hypoxia-related genes in female reproductive cancers
as well as lung cancers, and detected functional mechanisms to further elucidate the
developmental process of cancer. This bioinformatics analysis expands our knowledge
of cancer, and may lead to the development of better personalized treatment strategies.
Extensive research related to the hypoxia genes is required to predict cancer prognosis
through risk stratification.
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