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Abstract: As an alternative to animal use, computer simulations are useful for predicting phar-
macokinetics and cardiovascular activities. For this purpose, we constructed a statistical model to
simulate the effects of local anesthetic agents. To train the model, animal experiments were performed
on 6-week-old male Hartley guinea pigs. Firstly, the guinea pigs’ backs were shaved, then local
anesthetic agents were subcutaneously injected, with subsequent stimulation of the anesthetized
site with a needle six times at regular intervals. The number of reactions (score value) was counted.
In this statistical model, the probability of reacting to needle stimulation was calculated using the
elapsed time, type of local anesthetic agent, and presence or absence of adrenaline. Score values were
assumed to follow a binomial distribution at the calculated probability. Parameters were estimated
using the Bayesian hierarchical model and Hamiltonian Monte Carlo method. The predicted curves
using the estimated parameters fitted well the observed animal values. When score values were
predicted using randomly generated parameters, the median of duration was similar between animal
experiments and simulations (Procaine: 55 min vs. 50 min, Lidocaine: both 60 min, and Mepivacaine:
both 85 min). This approach effectively modeled the effects of local anesthetic agents. It is possible to
create the simulator using the parameter values estimated in this study.

Keywords: local anesthetic agent; statistical model; Bayesian hierarchical model; computer simulation;
alternatives to animal experiments

1. Introduction

As animal welfare becomes increasingly important, reducing the number of experimen-
tal animals is desirable. In identifying alternatives to animal experiments, the 3Rs are an
effective strategy. They are replacement (directly replace or avoid the use of animals), reduc-
tion (obtain comparable information levels from fewer animals), and refinement (minimize
or eliminate animals’ pain and distress, improving their welfare) [1]. As an alternative to an-
imal experiments, computer simulations are used in areas including pharmacokinetics [2,3],
organ bath systems, and cardiovascular systems (Strathclyde Pharmacology Simulations
package: OBSim, RatCVS and Virtual Cat) [4]. Free downloadable computer software pack-
ages for teaching pharmacology are summarized in a recent review [5]. In simulators for
pharmacokinetics, drug blood concentration is calculated by solving ordinary differential
equations that follow the compartment model numerically.

Animal experiments are a long-used educational tool to evaluate the effect of local
anesthetic agents in the practice of pharmacology. One of the animal experiments is to
inject multiple local anesthetic agents into the back of guinea pigs and examine the number
of times they respond to needle stimulation. Animal experiments using guinea pigs
have the advantage that the effects of multiple drugs can be investigated simultaneously.
We have used this method to investigate the effects of several local anesthetic agents
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[procaine (Pro), lidocaine (Lid), mepivacaine (Mep), bupivacaine (Bup), and lidocaine
with adrenaline (Lid + Adr)] in terms of their strength and duration in the practice of
pharmacology. Generally, local anesthetic agent duration is determined by peripheral
vasodilation and lipid solubility [6,7]. As many local anesthetic agents dilate peripheral
blood vessels, these drugs migrate into blood vessels and disappear from the administration
site. Therefore, the duration of action of the drug is shortened. Moreover, as drugs with
high lipid solubility can easily pass through cell membranes, these drugs have tendencies
toward long duration. Pro and Lid both induce peripheral vasodilation, while Mep induces
less vasodilation [6]. In contrast, Bup induces vasoconstriction [6,7]. In addition, the lipid
solubility of Bup is high. These characteristics rationalize the short durations of Pro and Lid,
the relatively long duration of Mep, and the very long duration of Bup. Vasoconstrictors
such as adrenaline or felypressin are very often added to local anesthetics. The purpose of
adding vasoconstrictors is to prolong the duration of action of local anesthetic agents. By
constricting the blood vessels, the local anesthetic slows its entry into the blood vessels,
thus remaining in the tissues and prolonging its duration of action. The purpose of the
practical training is to confirm the above contents through animal experiments.

From an animal welfare viewpoint, it is desirable to replace animal experiments for
local anesthetic agents with computer simulations. There are many commercially available
simulators for technical training of local anesthesia. However, to our knowledge, there is
no simulator aimed at pharmacological effects such as intensity or drug effect duration.
We believe that creating a simulator for these purposes will greatly contribute to reducing
the number of experimental animals. Therefore, in this study, we developed a computer
simulation model for training on local anesthetic agents. To achieve this, we constructed
new statistical models and estimated drug parameters.

For modeling and estimation of parameters, we used the Bayes hierarchical model
and the Hamiltonian Monte Carlo (HMC) method. Research using Bayesian hierarchical
models often analyzes the influence of factors by creating statistical models. For example,
Bayesian hierarchical models are used in many areas such as clinical trials [8–11], animal
experiments [12–14], and genetics [15,16]. Regarding the creation of statistical models for
simulators, there are models for reproducing the movement of the myocardium [14,17].
However, there are no models for local anesthetic agents.

When score values were predicted using the estimated parameters by computer
simulation, these values were similar to those from animal experiments. Therefore, the
statistical model in this study provides a novel theoretical background to create a simulator
for local anesthetic agents used in the practice of pharmacology. It therefore becomes
possible to create the simulator using parameter values estimated in this study.

2. Materials and Methods
2.1. Animals and Drugs

Six-week-old male Hartley guinea pigs were purchased from Japan SLC (Shizuoka,
Japan). The guinea pigs were housed up to 3 per cage (350 × 420 × 200 mm). All guinea
pigs were housed in a specific-pathogen-free facility at Matsumoto Dental University at
24 ± 2 °C and 50–60% humidity with a 12 h light/dark cycle, and had free access to
sterilized water and a normal diet (Labo G Standard, SLC). Following 1 week adaptation,
guinea pigs were used for the experiments. All guinea pigs were euthanized using 1%
pentobarbital sodium for intraperitoneal anesthesia. According to the guidelines of the
Animal Management Committee of Matsumoto Dental University, all procedures for animal
care were approved and carried out.

The 1% Procaine hydrochloride (Pro) was purchased from Fuso Pharmaceutical indus-
tries (Osaka, Japan). The 1% Lidocaine hydrochloride (Lid) and 1% Lidocaine hydrochlo-
ride with 1/100,000 adrenaline (Lid + Adr) were purchased from AstraZeneca (Osaka,
Japan). The 1% Mepivacaine hydrochloride (Mep) was purchased from Mylan Seiyaku
(Tokyo, Japan). The 1% Bupivacaine hydrochloride (Bup) was purchased from Aspen Japan
(Tokyo, Japan).
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2.2. Data in Animal Experiments

Fourteen to sixteen guinea pigs per year were used in the practice. Saline (as a control)
and 5 drugs were injected to each guinea pig. All results from 2019, 2021, and 2022 were
used. The 2020 results were not used as results of Pro testing yielded unacceptably high
variability. The total number of animals was 51.

The method of training is performed as follows: (1) shave the hair on the back of
the guinea pig; (2) inject 0.1 mL of saline and 5 drugs intradermally (Figure 1A); (3) each
injection site papule is enclosed in a circle marked by a magic marker; (4) stimulate 6 times
at each papule with needle (Figure 1B), with the number of the skin contractions counted,
defining this number as the score (minimum is 0, and maximum is 6), and scores are then
recorded in the example Table (Figure 1C); (5) stimulate at 5 min interval up to 120 min.
When a score of 6 is obtained three times in a row, finish the stimulation and define that
time as the duration.

Figure 1. Raw data from animal experiments in the practice of pharmacology. (A) Schema of injection
site of local anesthetic agents. (B) Photography of stimulation by needle. (C) Table used in practice.
(D) Score values in the animal experiments. First eight data out of 51 are shown (All data are shown
in Figure S1).

This experiment was approved by the Animal Management Committee of Matsumoto
Dental University (No. 356 in 2019, No. 396 in 2021, and No. 413 in 2022).
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2.3. Statistical Model by Bayesian Hierarchical Model

In this study, we tried to fit cumulative normal distribution curves to the raw data as
the probability of responding to a stimulus (i.e., probit model). And we assumed that score
values were determined by a binomial distribution in their probabilities (Figure 2A). As
the center and slope of the curve are different among drugs, we estimated the parameters
[mean (µ0) and SD (σ0)] for each drug. Also, we estimated the parameter values indicating
the effect of adrenaline (adr). As the main purpose is to perform computer simulations, it is
necessary to determine the distribution of these parameters in order to set the parameter
values with random numbers in the simulation. Therefore, we estimated the SD of these
parameters (sµ0 and sσ0 ).

Figure 2. Statistical model in this study. (A) Schema of modeling process. Fit probability curve
(cumulative normal distribution curve) to score values, which follow binomial distribution. The
distribution of Hyperparameter (mean and SD of each drug) and parameters in each individual were
estimated by Bayesian hierarchical model and Hamiltonian Monte Carlo method. (B) Calculation of
reaction probability to needle stimulation. Upper probability of normal distribution in each drug
is used (violet region). (C) The fixed effect model and random effect model used in this study. In
the fixed model, the distribution of each drug is assumed to be a normal distribution (mean: µ0[i],
SD: σ0[i])). In the random effect model, µ[i, j] is randomly sampled from normal distribution, and
log σ[i, j] from lognormal distribution. (D,E) The effects of parameters on probability curve: change
in µ and σ (D), and adr (E).

We assumed two statistical models with or without offset value (d), which means
individual difference. The assumptions used are described below (Figure 2B,C). Drug
parameters were estimated using a Bayesian hierarchical model and the Hamiltonian
Monte Carlo method [18].
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(1) Drug concentration in local tissues decreased exponentially. This concentration was
determined by elapsed time (t) and the presence or absence of adrenaline (adr × Vadr)
(Equation (1)). As adrenaline constricts blood vessels, the local anesthetics agent
does not enter blood vessels and stays in local tissues. When adrenaline was present,
therefore, the rate of decrease in local concentration became smaller (the slope was de-
creased). As this is a mathematically indefinite problem, the values of two parameters
were fixed. Initial log concentration and slope were set to 100 and −1, respectively.

(2) The probability of reacting to needle stimulation was determined by drug concentra-
tion and type of local anesthetic agent (normal distribution defined by µ[i, j] and σ[i, j])
(Equation (2)). The upper probability of normal distribution was calculated (violet
area in Figure 2B). The number of reactions to stimulation (score value, Score[i, j])
followed a binomial distribution at this probability (Equation (3)).

(3) The parameters (µ[i, j] and σ[i, j]) for distributions of each drug and individual fol-
lowed normal and lognormal distributions, respectively (Figure 2C). In Model 1, µ[i, j]
followed a normal distribution in which mean and SD are µ0 and sµ0 , respectively
(Equation (4)). In Model 2, as the overall local anesthetic agent effect varied among
individuals, the parameter d[j] as the offset value was added to the mean of the
distribution (used Equation (5) instead of Equation (4)). As σ[i, j] must be positive,
σ[i, j] was assumed to follow a lognormal distribution, in which mean and SD are
log σ0[i] and log sσ0 [i], respectively (Equation (6)), in both models.

(4) Lastly, the following distributions were assumed for the prior distribution of pa-
rameters. µ0[i] followed the Cauchy distribution (Equation (7)). sµ0 [i] followed the
half-Cauchy distribution (Equation (8)). log σ0[i] and d[j] followed a normal distri-
bution (Equations (9) and (10)). log sσ0 [i] and adr followed uniform distributions
(Equations (11) and (12)).

Assumed statistical model:

Concentration = 100 − (1 − adr × Vadr)t (1)

p[i, j] = 1 − Φ
(

Concentration[t]− µ[i, j]
σ[i, j]

)
(2)

Score[i, j] ∼ Bi(p[i, j], 6) (3)

µ[i, j] ∼ Normal
(
µ0[i], sµ0[i]

)
(in Model 1 only) (4)

µ[i, j] ∼ Normal
(
µ0[i] + d[j], sµ0[i]

)
(in Model 2 only) (5)

σ[i, j] ∼ LogNormal(log σ0[i], log sσ0 [i]) (6)

Prior distributions of parameters:

µ0[i] ∼ Cauchy(50, 20) (7)

sµ0 [i] ∼ HalfCauchy(0, 1) (8)

d[j] ∼ Normal(0, 20) (in Model 2 only) (9)

log σ0[i] ∼ Normal(2.5, 1) (10)

adr ∼ Uniform(0, 1) (11)

log sσ0 [i] ∼ Uniform(> 0) (12)

(13)

where

i = 1, 2, 3, 4 (Number of drugs)
j = 1, 2, . . . , 51 (Number of individuals)
Vadr is the dummy variable (0 when adrenaline is absent, 1 when adrenaline
is present).
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t is time after administration (minute).
Φ is the cumulative distribution function for the normal distribution.
Bi is the probability mass function for the binomial distribution.

In the fixed effect model, two parameters (µ0[i] and σ0[i]) were assumed as drug-
intrinsic values: µ0[i] and σ0[i] are the mean and SD in a normal distribution, respectively.
For the random effect model, µ[i, j], σ[i, j], log sµ0 [i], and log sσ0 [i] are assumed to reflect
differences among individuals: µ[i, j] and σ[i, j] are the mean and SD of distribution in each
drug and individual.

2.4. Estimation of Parameters by the Hamiltonian Monte Carlo Method

The Hamiltonian Monte Carlo (HMC) method was performed in Stan [19] to obtain the
posterior distributions for the parameters of interest. Parameter estimation was performed
using R [20] and the rstan package [21]. In this study, the parameter values were estimated
given the following: a chain number of 4, iteration number (including burn-in) of 10,000
for each chain, burn-in set to 2000, and a saving sample period of 10. Fitted models were
compared by the leave-one-out cross-validation information criterion (loo-ic) [22] and
widely applicable information criterion (WAIC) [23] methods using the loo package [24]
for R.

2.5. Computer Simulation

Simulations were performed as follows. Parameters (d[j], µ[i, j], and σ[i, j]) were
generated by a random number generator following a normal or lognormal distribution,
respectively. Probability was calculated by elapsed time and parameter values. Then, score
values were determined by a random number generator following a binomial distribution
for this probability. This operation was repeated 100 times.

2.6. Comparison of Local Anesthetic Agent Duration between Raw and Simulation Data

To compare the median of duration times for local anesthetic agents between raw
and simulated data, survival analysis using the survival package [25] for R was used. In
the case that local anesthetic agent effect did not subside within the measurement time
(maximum 100 min for raw data and 120 min for simulations), the data were dealt with as
censored data.

2.7. Programing Codes Used in This Study

The codes (R and Stan) used in this study are included in the supplemental_data
folder of the Supplemental Data.

3. Result
3.1. Raw Data Using Animals

Raw data from 8 out of 51 animals are shown in Figure 1D (All data are shown in
Figure S1). As time passed, the score values increased for many individuals. The local
anesthetic agent effect subsided in the order of Pro, Lid, Mep, Bup, and Lid + Adr. The
combined Lid + Adr effect duration was substantially longer than that of Lid alone, with
the effect of Lid + Adr, for almost all individuals, active until the end of measurement. For
several drugs and individuals, scores fluctuated up and down, while in several individuals
the measured effect remained low. No adverse event was observed in this study.

3.2. Effect of Parameters on Probability Curve in This Model

First, the effect of two parameters (µ and σ) on the probability curve shape was
examined. When the value of µ is large, the probability curve was shifted to the left
(Figure 2D). This indicates a short period of effect for the local anesthetic agent. Moreover,
in this model, the time for a probability of 0.5 was calculated as 100 − µ.

For small values of σ, the resulting slope of the curve was large. This indicates a rapid
and complete dissipation of the local anesthetic agent effect after it begins to diminish.
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In contrast, a large value of σ results in a small slope for the curve, indicating a gradual
dissipation of the local anesthetic agent effect.

Next, the effect of adrenaline (adr) was examined. With large values of adr, the curve
was shifted to the right, and the slope of curve becomes large (Figure 2E).

3.3. Estimation of Parameters

Mean values of posterior distribution of parameters estimated by the HMC method
are listed in Tables 1–3. Parameters for all individuals are listed in the Supplemental Data.
We confirmed parameter convergence by trace plot (Figure S2). Moreover, the R̂ was less
than 1.01, and the effective sample size was at least 1000 for both models.

As listed in Table 1, the estimated parameter values involved in the fixed effect model
(µ0, σ0, and adr) were similar between both Model 1 and Model 2. Moreover, the value
of Pro was largest in µ0, and decreased in order of Lid, Mep, and Bup for both Model 1
and Model 2. This order of µ0 is opposite to that for the clinically observed local anesthetic
agent duration.

Table 1. Mean of parameters estimated from posterior distribution (fixed effect model: µ0[i] and σ0[i];
random effect model: sµ0 [i] and log sσ0 [i]).

Model 1 Model 2

i Drug µ0 (sµ0) σ0 [log σ0, log sσ0 ] µ0 (sµ0) σ0 [log σ0, log sσ0 ]

1 Procaine 67.5 (19.5) 9.0 [2.19, 0.79] 67.0 (15.7) 9.0 [2.20, 0.78]
2 Lidocaine 61.0 (14.8) 11.3 [2.43, 0.52] 60.9 (5.1) 11.3 [2.42, 0.51]
3 Mepivacaine 50.5 (14.5) 11.1 [2.41, 0.65] 50.0 (12.0) 11.1 [2.41, 0.65]
4 Bupivacaine 29.3 (26.0) 12.1 [2.50, 0.83] 29.1 (20.3) 12.2 [2.50, 0.83]

Adrenaline 0.663 0.665
offset value (d) 0.35 (13.0)

As listed in Tables 2 and 3, the estimated values of µ[i, j] and σ[i, j], fitted to each drug
and individual and involved in the random effect model, were similar for both models.
Similarly, the values of log sσ0 were almost identical for both models (Table 1). In contrast,
the values of sµ0 for Model 2 were smaller than those for Model 1.

Next, to compare two models, loo-ic and WAIC were calculated. The value of loo-ic
is small for Model 1, whereas that of WAIC is small for Model 2 (Table 4). However,
differences between Model 1 and Model 2 were very small (−0.5 in loo-ic and 0.7 in WAIC).

Table 2. Mean of estimated parameters for each animal in Model 1. First ten data out of 51 are shown
as µ[i, j](σ[i, j]).

Animal (j) Procaine Lidocaine Mepivacaine Bupivacaine

1 80.9 (10.5) 63.6 (9.2) 52.0 (13.9) 43.3 (8.0)
2 57.7 (6.7) 68.1 (7.3) 51.5 (18.3) 46.1 (7.2)
3 −5.4 (41.7) 11.3 (31.8) 39.8 (32.8) 10.4 (30.4)
4 62.4 (9.8) 66.1 (6.3) 34.8 (15.8) −9.5 (32.7)
5 55.1 (3.3) 71.8 (5.4) 39.9 (5.9) 15.1 (3.5)
6 92.6 (2.5) 80.4 (12.2) 78.8 (8.4) 1.9 (50.8)
7 43.1 (13.8) 32.1 (29.8) 60.7 (18.3) −13.6 (21.9)
8 71.1 (26.9) 59.6 (18.4) 54.8 (19.2) 5.1 (35.9)
9 103.9 (28.5) 31.1 (14.9) 11.1 (6.4) −20.2 (8.1)

10 50.0 (13.0) 59.0 (10.7) 47.4 (10.8) 25.5 (14.0)
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Table 3. Mean of estimated parameters for each animal in Model 2. First ten data out of 51 are shown
as µ[i, j](σ[i, j]).

Animal (j) Procaine Lidocaine Mepivacaine Bupivacaine

1 80.8 (10.4) 63.9 (9.2) 52.2 (13.9) 43.2 (8.1)
2 57.8 (6.8) 68.1 (7.4) 51.8 (18.2) 46.0 (7.2)
3 −11.9 (44.9) 10.3 (32.2) 31.5 (37.8) 4.2 (34.3)
4 62.4 (9.7) 65.8 (6.3) 35.1 (15.8) −6.4 (31.1)
5 55.1 (3.3) 71.8 (5.4) 40.1 (5.8) 15.2 (3.5)
6 92.6 (2.5) 80.6 (12.0) 79.0 (8.4) 8.8 (45.7)
7 42.6 (13.9) 33.6 (29.1) 59.0 (18.6) −15.2 (23.3)
8 71.0 (26.8) 59.7 (18.4) 54.6 (19.4) 7.2 (34.7)
9 97.0 (24.0) 30.9 (14.9) 10.5 (6.4) −22.2 (8.6)

10 50.2 (13.0) 58.8 (10.9) 47.2 (10.9) 25.6 (13.9)

Table 4. Leave-one-out cross validation information criterion (loo-ic) and widely applicable informa-
tion criterion (WAIC) for Model 1 and Model 2.

Model
loo-ic WAIC

Estimate SE Estimate SE

Model 1 7113.7 181.1 7038.7 178.6
Model 2 7114.2 182.1 7037.4 178.9

3.4. Probability Curve Fitting to Raw Data by Estimated Parameters

The probability curve calculated by the parameters estimated in Model 2 are shown in
Figure 3 (All data are shown in Figure S3). The red solid lines are curves calculated from
the parameters of each drug (fixed effect model). The blue dashed lines are curves fitted to
each drug and individual (random effect model). The random effect model fit the raw data
well. However, poor fitting was observed when the raw data score value underwent large
up-and-down fluctuations.

Figure 3. Fitted probability curves by parameters estimated in Model 2. Red solid line: probability
curve by the fixed effect model; blue dashed line: probability curve by the random effect model. First
eight data are shown (All data are shown in Figure S3).
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3.5. Computer Simulation Using Estimated Parameters

Based on the estimated parameters (except d) in Table 1, score values were determined
for 100 individuals by computer simulation. Simulation parameters used are listed in
parameter 1 of Table 5. For the simulation using parameter 1, the SD of the offset values, d,
was set to a smaller value than estimated, to reduce differences among individuals.

Table 5. Parameters used in the computer simulations.

Parameter 1 Parameter 2

Drug µ0 (sµ0) σ0 [log σ0, log sσ0 ] µ0 (sµ0) σ0 [log σ0, log sσ0 ]

Procaine 67.0 (15.7) 9.0 [2.20, 0.78] 75.0 (8.0) 9.0 [2.20, 0.40]
Lidocaine 60.9 (5.1) 11.2 [2.42, 0.51] 67.0 (5.0) 11.0 [2.40, 0.40]

Mepivacaine 50.0 (12.0) 11.1 [2.41, 0.65] 43.0 (6.0) 11.0 [2.40, 0.40]
Bupivacaine 29.1 (20.3) 12.2 [2.50, 0.83] 30.0 (10.0) 12.2 [2.50, 0.50]
Adrenaline 0.665 0.700

offset value (d) 0 (4.0) 0 (4.0)

Some simulation results are shown in Figure 4 (all data are shown in Figure S4). Over
time, the increase in score values with up-and-down fluctuations was observed for all
drugs and individuals. These results reflected the raw data. However, these fluctuations
tended to continue when the slope of the curve was small, particularly in Lid + Adr.

Figure 4. Results of simulation using estimated parameters (Parameter 1 in Table 5). First eight data
out of 100 are shown (All data are shown in Figure S4).

3.6. Comparison of Local Anesthetic Agent Duration between Raw and Simulated Data

Next, the median of local anesthetic agent duration from the raw data and that
simulated using parameter 1 were compared by survival analysis (Figure 5 and Table 6).
Kaplan–Meier curves of the simulation data using parameter 1 (orange line) resembled
that of the raw data (green line) except for Lid. Although the Kaplan–Meier curve for
the Lid raw data initially decreased, this tapered off at a later stage. This curve from
parameter 1 decreased in an inverted S shape. In contrast, though the effect of Lid + Adr
disappeared in several individuals, for all individuals, using parameter 1, the effect was
sustained. The median values for Pro and Lid using parameter 1 were large compared to
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those observed for the raw data. Moreover, the 95% confidence intervals (CI) in parameter 1
were narrow compared to those for the raw data. In this study, as the median value for Bup
was uncalculatable for the raw data, a comparison of Bup duration between two conditions
was not made. However, the Kaplan–Meier curves did show similarities.

Lastly, to approximate the raw data median values by simulation, several parameters
were adjusted through trial and error (parameter 2 in Table 5). To change local anesthetic
agent duration time, values of µ0 were adjusted. To decrease the spread in duration
among individuals, the values of sµ0 and log sσ0 , involved in the random effect model, were
reduced compared to parameter 1 except for µ0 of Lid. The simulation results are shown in
Figure S5. The Kaplan–Meier curves of simulation using parameter 2 (violet line) indicate
a small spread in duration among individuals compared to the raw data and simulated
data using parameter 1 (Figure 5). Median values of duration were almost identical to the
raw data, and the 95% CI for parameter 2 were also narrow compared to those in the raw
data (Table 6).

Figure 5. Kaplan–Meier curve of duration time in raw data and simulated data (parameters are listed
in Table 5).

Table 6. Median of duration of local anesthesia under each condition.

Drug Condition n Events Median [95% CI]

Pro Raw Data 51 48 55 [50, 65]
Parameter 1 100 98 60 [55, 65]
Parameter 2 100 100 50 [50, 55]

Lid Raw Data 51 47 60 [55, 70]
Parameter 1 100 100 70 [65, 70]
Parameter 2 100 100 60 [60, 65]

Mep Raw Data 51 45 85 [75, 90]
Parameter 1 100 98 80 [75, 85]
Parameter 2 100 99 85 [85, 90]

Bup Raw Data 51 25 – [90, –]
Parameter 1 100 66 115 [100, 120]
Parameter 2 100 86 105 [100, 110]

Lid+Adr Raw Data 51 8 – [–, –]
Parameter 1 100 0 – [–, –]
Parameter 2 100 4 – [–, –]
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4. Discussion

In this study, a model was proposed with parameters estimated using the Bayesian
hierarchical model and Hamiltonian Monte Monte method. Probability curves fitting each
drug and individual data were obtained using these parameters. Moreover, when score
values were predicted based on the estimated parameters with slight adjustments, these
score values reflected data obtained by animal experiments.

4.1. Comparison with Other Studies Using Bayesian Hierarchical Models

As described in the Introduction, Bayesian hierarchical models are used in various
areas. There are also expriments that perform modeling using the binomial distribution.
Binomial distribution is generally used when the objective variable is binary data, similar
to logistic regression analysis. Moreover, the binomial distribution is also used when the
objective variable is count data. Examples of the latter include reports on its application to
the analysis of the number of bacterial infections [26] and population growth curves [27].
These papers predict the probabilities or proportions, not actual numbers. On the other
hand, there is a report to predict the spatial and temporal spread of infectious diseases in
terms of the number of people, but results of point estimation and interval estimation were
presented [28]. The statistical model in this study also uses the binomial distribution to
estimate parameter values and predict probabilities. However, this study differs from other
reports in that it calculates scores for each individual and uses random numbers.

4.2. About the Relation between Local Anesthetic Agents and Parameters

As described in the Introduction, the duration of local anesthetic agent is determined
by peripheral vasodilation and lipid solubility [6,7]. Pro and Lid both induce peripheral
vasodilation, Mep induces less vasodilation [6], and Bup induces vasoconstriction [6,7].
In addition, the lipid solubility of Bup is high. These characteristics rationalize the short
durations of Pro and Lid, the relatively longer duration of Mep, and the very long duration
of Bup. In these animal experiments, the local anesthetic agent duration order was as
expected (Table 6). Also, µ0 values of local anesthetic drugs are also estimated in the correct
order (Table 1). These results suggest that this model correctly estimates local anesthetic
agent duration.

4.3. About the Models in This Study
4.3.1. About Estimated Parameters

The estimated values of µ0 and σ0 (in Table 1) and µ and σ (in Tables 2 and 3) are
similar for both Model 1 and 2. This suggests a similar degree of parameter estimation in
both models. Models for which the estimates of loo-ic and WAIC are small are thought to be
well fitting. In this study, both the estimates of loo-ic and WAIC were very close (Table 4),
with small and negligible differences, suggesting that both models have the potential to
better fit the raw data to the same degree.

Next, considering the difference of sµ0 between both models. The sµ0 values were
small compared to those in Model 1 (Table 1). For Model 1, the individual difference is
ignored. In contrast, for Model 2, individual difference is incorporated as the offset value
d (Equation (5)). As the dispersion of µ in Model 1 is divided between d and µ in Model
2, the dispersion of µ in Model 2 becomes smaller. As a result, the sµ0 values in Model 2
are considered small compared to those of Model 1. These results imply that Model 2 is
preferable, despite both models fitting to the same degree.

The small sµ0 value has some advantage when the score values are obtained in the
computer simulation. As µ0 values of Pro and Lid are relatively close, it is possible that
µ values of Pro and Lid randomly generated in the computer simulation are distinct to
the proper order of µ0. As a result, the duration of Pro and Lid will sometimes reverse.
When the sµ0 values are small, the probability that the µ values and resulting duration
among local anesthetic agents reverse (in particular between Pro and Lid) is small. In the
computer simulation experiments, the probabilities that the µ values of Pro and Lid reverse
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were approximately 40% in Model 1 and 36% in Model 2. Moreover, after parameters
were adjusted (parameter 2 in Table 5), this probability is decreased to 20%. Thus, further
parameter adjustments are possible.

4.3.2. About Overfitting in This Model

Statistical models are typically created to predict results obtained in new individuals
or conditions. To evaluate statistical models, external validity is essential. For this purpose,
all data are usually analyzed by dividing them into model creation and model verification.
In contrast, because all data were used for model creation, our model cannot be verified for
the external validity and may overfit data from animal experiments. However, the primary
purpose of this study is to obtain the results close to animal experiments and with less
variation in a simulator. Considering this purpose, we think that this overfitting may be
less problematic.

4.4. About Usefulness of This Model

For the animal experiment raw data, the dispersion in score values was large due to
technical errors such as failure of injection and inconsistent stimulus intensity, resulting in
large variations in estimated parameters (sµ0) (Table 1). In contrast, by setting sµ0 values
small in the computer simulation (parameter 2 in Table 6), the dispersion of score values
was small, and 95% CI was narrow. Moreover, these technical errors were avoided in the
computer simulation. These results suggest that this model is effective at local anesthetic
agent effect simulation, to the point that unexpected results are unlikely to be obtained.

For the computer simulation of this model, it facilitates learning about (1) duration
comparisons among several local anesthetic agents, and (2) the interaction with adrenaline
as a vasoconstrictor in terms of duration as well as in the method using animals. Therefore,
this model presents an alternative to animal use in the practice of local anesthetic agents.
We consider that the replacement of animals is possible, and is an essential objective in
conducting humane science.

4.5. Limitation of This Model

There are several limitations in this model, as follows.

4.5.1. Non-Randomized Experimental Design

In this study, randomization was not considered. The reason is that the purpose of
the practice is to confirm and understand the known effects of local anesthetic agents.
Indeed, randomization is necessary in quantitative experiments. However, this practice is a
qualitative experiment that compares the action duration of several local anesthetic agents,
and the expected results are actually obtained in this simulation.

4.5.2. Remarkable Up-and-down Fluctuations of Effects

The up-and-down fluctuations of effects in simulation disadvantage this model.
In animal experiments, different responses occur depending on several factors such as
(1) differences in drug concentration within the area where local anesthetics are admin-
istered (high concentration in the center, and low concentration in the periphery), and
(2) variations in the strength of stimulation. In order to reflect this variation in responses in
the simulation, our statistical model calculated the probability of responding to a stimulus
and used random numbers that follow a binomial distribution based on that probability. As
random numbers are not affected by the previous value, the obtained score values fluctuate
up and down. In fact, the up-and-down score value fluctuations were observed in all drugs
and individuals (Figure 4). In particular, the up-and-down fluctuations were clear for large
σ values (including the effect of adrenaline). However, when the probability of response
is close to 0 or 1, up-and-down fluctuations are unlikely to occur. Therefore, we consider
that this up-and-down fluctuation is less problematic when examining the duration of local
anesthetics agents in simulations.
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It is possible to reduce the up-and-down fluctuation range by increasing the number of
stimulations. The value of the SD for binomial distributions is determined by the number
of trials and probability. As the number of reaction-inducing stimulations (n = 6) in this
study is small, the value of SD is large, and therefore the stochastic variation is unavoidable.
Larger numbers of stimulations will decrease the value of SD and therefore diminish the
up-and-down fluctuations in the simulation. However, in the case of many stimulations, the
conditions for the subsiding local anesthetic agent will change. Thus, further examination
is required for simulation.

4.5.3. Insufficient Response to Simulation Immediately after Administration

Moreover, this model assumes an exponential decrease in local anesthetic agent con-
centration (i.e., the logarithm concentration decreases linearly). Therefore, the course from
administration to the onset of action was not considered, assuming an immediate local
anesthetic agent effect after administration. However, this is considered less problematic as
the primary purpose of this experiment (as well as the animal experiments) is to compare
duration among drugs.

4.5.4. Difficulty Dealing with NEW Conditions

For the same reason that extrapolation in regression analysis is inappropriate, this
model is disadvantaged for new drugs. As parameter values were estimated using the
results in practice, this model simulates only known drugs with concentration data. In
the case of new drugs, or new concentrations or doses, it is unable to simulate these
situations. In these cases, animal experiments are necessary to estimate parameters for the
said new conditions.

5. Conclusions

In this study, we assumed a statistical model and estimated the parameters of each
local anesthetic agent. Score values predicted using new parameters randomly generated
from the estimated parameter reflected that of the raw data obtained from animals. Benefits
of this model include no animal usage, no technical failure, and small dispersions in score
values. The statistical model in this study provides a novel theoretical background to create
a simulator for local anesthetic agents. It therefore becomes possible to create the simulator
using parameter values estimated in this study.
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S5: Results of simulation using estimated parameters (Parameter 2 in Table 5); supplementary data:
raw data and programs.
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