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Abstract: Urban areas’ pollution, which is owing to rapid urbanization and industrialization, is one
of the most critical issues in densely populated cities such as Cairo. The concentrations and the spatial
distribution of fourteen potentially toxic elements (PTEs) in household dust were investigated in
Cairo City, Egypt. PTE exposure and human health risk were assessed using the USEPA’s exposure
model and guidelines. The levels of As, Cd, Cr, Cu, Hg, Mo, Ni, Pb, and Zn surpassed the back-
ground values. Contamination factor index revealed that contamination levels are in the sequence
Cd > Hg > Zn > Pb > Cu > As > Mo > Ni > Cr > Co > V > Mn > Fe > Al. The degree of contamination
ranges from considerably to very high pollution. Elevated PTE concentrations in Cairo’s household
dust may be due to heavy traffic emissions and industrial activities. The calculated noncarcinogenic
risk for adults falls within the safe limit, while those for children exceed that limit in some sites. Cairo
residents are at cancer risk owing to prolonged exposure to the indoor dust in their homes. A quick
and targeted plan must be implemented to mitigate these risks.

Keywords: potentially toxic elements; indoor dust; pollution; exposure; risk assessment; urban; Cairo

1. Introduction

Over the past few decades, a tremendous amount of hazardous waste materials has
been released into various environmental media at increasing levels because of the rapid
urbanization and globalization of economic and industrial activity [1–5]. Because the air in
common is the primary carrier of fine particles, air pollution has produced a significant
environmental impact (e.g., climate change and human health). The concentration of
suspended particles in the air, which transports contaminants, especially potentially toxic
elements (PTEs), has progressively increased, endangering humans. Because of their
genotoxicity, carcinogenicity, chemical persistence, and non-degradability, PTEs attached to
suspended particles would enrich in surface environments and have an acute or chronic
impact on the health of vulnerable residents once they get into the human body [6–10].
PTEs can go through a human body via respiratory inhalation, ingestion of contaminated
media, and dermal contact and accumulate over time [1,6,11,12].

Because indoor air can be significantly more polluted than outdoor air, it has captures
remarkable attention from researchers. Imperfect air exchange and specific indoor emission
sources combined with outdoor sources seems to be the leading causes of indoor air being
a complex and contaminated environment [1,12]. People in megacities typically spend
80–90% of their own time indoors, in private homes, schools, and offices, potentially increas-
ing their exposure to toxic substances being emitted from construction materials, household
equipment, and electronic products, in conjunction with anthropogenic sources [13]. In
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this regard, the indoor ambiance and potential health risks inextricably associated with
toxic substances’ exposure in the indoor environment must be considered. Many scientific
studies over the last decades have sufficiently demonstrated that prolonged exposure to
contaminated indoor environments has undeniable fingerprints on serious health problems
that result from direct and indirect exposure [6,7,12,13]. This direct impact on public health
is extremely significant for children, who are more vulnerable to contaminant exposure due
to increased hand-to-mouth interactions [1,4,14]. Furthermore, considerable advancements
in analytical techniques used to investigate various biological samples will progressively
improve exposure estimates for both healthy and at-risk populations [15,16].

There are numerous sources of indoor contaminants, the most significant of which is
settled and suspended dust. Most of these hazardous and toxic pollutants are adsorbed
to suspended particulates in indoor air and later deposited as house dust. Because of this
process, the concentrations of contaminants in indoor dust are higher than their natural
crustal concentrations [6,12]. Indoor dust is a motley mixture of inorganic and organic
materials that can adsorb and concentrate PTEs [17,18]. This admixture would settle on the
surfaces of residential objects (e.g., floors, carpets, furniture, and others) [19,20]. The main
pathway for PTEs from outdoor sources into homes is the entry of contaminated suspended
particles into outdoor air [20,21]. Many transporting methods bring street dust and soil
materials indoors as a consequence of residents’ activities (e.g., attached to shoes, clothes,
bags, their pets, etc.) [7,12,22–24]. Moreover, considered external contaminated sources
of indoor and household dust are suspended grains generated by industrial activities,
road dust, traffic emissions, park soil, and other particles that are produced by outdoor
activities [6,12]. Indoor dust PTE contamination has received a lot of attention owing to
its significant effects on both residents’ health and the environment [7,13,25]. One of the
serious issues with indoor dust is that it is not exposed to the same processes that reduce its
PTE concentrations as those that affect outdoor dust (e.g., diluting, leaching, or weathering).
Consequently, indoor dust could be used as a long-term indicator of indoor environmental
status [19].

Egypt has experienced severe soil, water, and air pollution in recent decades as
deleterious consequences of rapid economic growth, urbanization, and increased energy
demands [26–29]. Different studies were conducted to assess Egypt’s air pollution. The vast
majority of these studies have concentrated on the gaseous (CO, CO2, SO2, H2 S, and NO2)
and particulate matter [30–35]. Studies on indoor dust in Egypt have typically focused on
major ions (SO4, NO3, Cl, NH4, Ca, Mg, Na, and K) [36], organic pollutants [37–40], and
microorganisms [41–43]. There are limited studies on PTE contamination in indoor dust
and their health risk assessments [23,24,44,45]. Moreover, no comprehensive geochemical
study of Cairo City’s indoor dust and the potential health risks for PTE exposure have been
conducted. A notable lack of such necessary data might hinder the proper development
of short and long-term policy initiatives towards reducing air pollution. More extensive
research must be directed to thoroughly comprehend the detrimental health impacts of
PTE air pollution. Findings and the conclusion of these surveys will be properly utilized
to support the national policies and will contribute to the public health improvements.
Therefore, the current study’s specific objectives are to (1) detect the PTE levels in household
dust and identify their spatial distribution in Cairo City; (2) assess the contamination levels
using environmental indices; (3) identify the possible sources of PTEs in household dust
using multivariate statistical analysis; and (4) assess the potential health risk for children
and adults’ exposure to PTEs.

2. Materials and Methods
2.1. The Study Area

Cairo (Al-Qhirah) is located in northern Egypt on the River Nile’s right bank. It is
Egypt’s administrative center and the most sizable city in both Africa and the Middle East,
and one of the world’s most densely populated cities (9.9 million inhabitants). Many issues
plague the city, including traffic congestion, air, soil, and water pollution, and ineffective
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waste management [46]. Cairo is administratively divided into five chief regions (New
Cairo, Eastern, Northern, Western, and Southern) (Figure 1; Table S1).
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Cairo City has a typical Mediterranean climate, with different temperatures through
seasons: winter 14 ◦C, spring 21 ◦C, summer 36 ◦C, and fall 23 ◦C. Most of the year,
wind speeds range from 3 to 8 m/s. The north and northeast were dominant wind
directions [47,48]. It is surrounded by agricultural and industrial activities. It contains the
main industrial zones that exist in the Northern and Southern regions which host cement
manufacturing plants, steel, oil and gas, quarrying, rubber, petrochemicals, metallurgical,
textile, and plastic products [26,48].
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2.2. Sampling and Samples Preparation

A total of 38 composite household settled dust samples were collected from different
regions and districts in Cairo City in 2021 (Figure 1). The sample size was selected based
on the major districts in Cairo City, in conjunction with budgetary constraints. To ensure
a collection of representative samples at least 10 subsamples were collected from each
main district representing a total of 473 private houses (1 sample per house) (Table S1 in
Supplementary Materials). The undisturbed surfaces, such as cupboards, fans, bookshelves,
and refrigerators, were slowly brushed using precleaned polyethylene brushes and plastic
dustpans to collect dust samples, which were then carefully blended and placed into
transparent, zip-locked, and labeled plastic bags. The collected dust subsamples were
carefully mixed and homogenized into 38 composite samples. The samples were then dried
at 50 ◦C for 24 h in an oven followed by sieve analysis using a standard stainless-steel sieve
(63 microns).

2.3. Chemical Analyses

The chemical analyses were performed using the ICP-ES/MS (AQ200) technique in
ACME Lab, Vancouver, Canada (ISO 17025 and ISO/IEC 17025). An exact amount of 0.5 g
of each household dust sample was leached in modified aqua regia (1: 1: 1 HNO3: HCl:
H2O) [49]. Detection limits of Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, V, and Zn
were 0.01%, 0.5 ppm, 0.1 ppm, 0.1 ppm, 1 ppm, 0.1 ppm, 0.01%, 0.01 ppm, 1 ppm, 0.1 ppm,
0.1 ppm, 0.1 ppm, 1 ppm, and 1 ppm, respectively.

2.4. Contamination Levels
2.4.1. Contamination Factor (Cf)

Anthropogenic activities’ contribution to PTE contamination has been evaluated using
the contamination factor (Cf). Cf is calculated by the Equation (1) [50].

Ci
f =

Ci
s

Ci
b

(1)

where Ci
s is the PTE concentration in analyzed samples, and Ci

b is the background value
of the investigated PTE. In this investigation the Upper Continental Crust (UCC) element
concentrations [51] were considered as the background values. The Cf values are typi-
cally categorized in four distinct classes; class 1 (Cf < 1.0 = low contamination); class 2
(1.0 ≤ Cf < 3.0 = moderate contamination); class 3 (3.0 ≤ Cf ≤ 6.0 = considerable contami-
nation); and class 4 (Cf > 6.0 = very high contamination) [50].

2.4.2. Contamination Degree (Cdeg)

To detect multielement contamination, Cdeg was used. It was calculated for each
sampling site using Equation (2) [50].

Cdeg = ∑n
i = 1 C f (2)

where Cf is contamination factor, and n is the number of the examined PTEs. The Cdeg values
are typically categorized in four distinct classes; class 1 (Cdeg < 6.0 = low contamination);
class 2 (6.0 ≤ Cdeg < 12.0 = moderate contamination); class 3 (12.0 ≤ Cdeg ≤ 24.0 = consider-
able contamination); and class 4 (Cdeg > 24.0 = very high contamination) [50].

2.5. Health Risk Assessment

PTEs measured in household dust in this investigation are typically known to possess
noncarcinogenic effects on human health [52–54]. As, Cd, Cr, Ni, and Pb are believed
to possess both noncarcinogenic and carcinogenic effects [52–54]. In the current study,
health risks for children and adults in Cairo City were assessed using the noncarcinogenic
Hazard Quotient (HQ) of a single element and Hazard Index (HI) of multiple elements via
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ingestion, inhalation, and dermal routes of exposure. Furthermore, the Cancer Risk (CR)
was calculated using the concentrations of As, Cd, Cr, Ni, and Pb in the collected household
dust samples. HQ, HI, and CR were calculated using the calculation model of exposure
adopted by USEPA [52–55].

The average daily intakes (ADI) of PTEs in the household dust via nondietary inad-
vertent ingestion (noncarcinogenic) (ADIing), dust inhalation (noncarcinogenic) (ADIinh),
and dermal contact (noncarcinogenic) (ADIder) routes are calculated using Equations (3)–(5)
as follows:

ADIing =
Cs × IngR × EF × ED × CF

BW × AT
(3)

ADIinh =
Cs × InhR × EF × ED

PEF × BW × AT
(4)

ADIder =
Cs × SA × SL × ABS × EF × ED × CF

BW × AT
(5)

The noncarcinogenic risk HQ and HI of PTEs in the household dust is calculated using
Equations (6)–(9) as follows:

HQing =
ADIing

R f Ding
(6)

HQinh =
ADIinh
R f Dinh

(7)

HQder =
ADIder
R f Dder

(8)

HI = ∑ HQing + ∑ HQinh + ∑ HQder (9)

The lifetime average daily dose (carcinogenic) (LADD) and the carcinogenic risk
(CR) of As, Cd, Cr, Ni, and Pb in household dust is calculated using Equations (10)–(13)
as follows:

LADDing =

(
Cs × EF × CF

AT

)
×

((
IngR × ED

BW

)
Child

+

(
IngR × ED

BW

)
Adult

)
(10)

LADDinh =

(
Cs × EF

AT × PET

)
×

((
InhR × ED

BW

)
Child

+

(
InhR × ED

BW

)
Adult

)
(11)

LADDder =

(
Cs × SL × ABS × EF × CF

AT

)
×

((
SA × ED

BW

)
Child

+

(
SA × ED

BW

)
Adult

)
(12)

R =
(
∑ LADDing × SLFing

)
+

(
∑ LADDinh × SLFinh

)
+

(
∑ LADDder × SLFder

)
(13)

where all the abbreviations, definitions, and reference values are given and explained in
Table 1. If HI is less than one, there is no risk of noncarcinogenic effect; if HI is greater than
one, there is a risk of noncarcinogenic effect. A value of CR less than 1 × 10−6 is regarded
as modest, a value of CR between 1 × 10−4 and 1 × 10−6 is regarded within the permissible
level, and a value of CR greater than 1 × 10−4 is likely to be harmful to humans [52–55].
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Table 1. Definitions and reference values of human health risk model.

Term Definition Value Refs.

Cs PTE concentration Site specific

[52–57]

IngR Dust ingestion rate (mg day−1) 200 (Children); 100 (Adults)
InhR Dust inhalation rate (m3 day−1) 7.6 (Children); 20 (Adults)
PEF Particle emission factor (m3 kg−1) 1.36 × 109

SA Exposed skin area (cm2) 2699 (Children); 3950 (Adults)
SL Skin adherence factor (mg cm2 day−1) 0.2 (Children); 0.07 (Adults)

ABS Dermal absorption factor (year) 0.001 except for As (0.03)
ED Exposure duration (year) 6 (Children); 24 (Adults)
EF Exposure frequency (day year−1) 350
BW Average body weight (kg) 18.6 (Children); 70 (Adults)
AT Average life span for heavy metals (day) noncarcinogens = ED×365; carcinogens = 70 × 365
CF Transformation factor 1 × 10−6

RfDing Ingestion reference dose (mg kg day−1)

Al (1.00), As (3.00 × 10−4, Cd (1.00 × 10−3), Co
(2.00 × 10−2), Cr (3.00 × 10−3), Cu (4.00 × 10−2), Hg
(3.00 × 10−4), Mn (4.60 × 10−2), Mo (5.00 × 10−3), Ni

(2.00 × 10−2), Pb (3.50 × 10−3), V (7.00 × 10−3), Zn
(3.00 × 10−1)

[57–59]

RfDinh Inhalation reference dose (mg m3 −1)

Al (1.43 × 10−3), As (3.00 × 10−4), Cd (1.00 × 10−3), Co
(5.71 × 10−6), Cr (2.86 × 10−5), Cu (4.02 × 10−2), Hg
(8.75 × 10−5), Mn (1.43 × 10−5), Ni (2.06 × 10−2), Pb

(3.25 × 10−3), V (7.00 × 10−3), Zn (3.00 × 10−1)

[53–57,59,60]

RfDder Dermal reference dose (mg kg day−1)

Al (1.00 × 10−1), As (1.23 × 10−4), Cd (1.00 × 10−5), Co
(1.60 2), Cr (6.00 × 10−5), Cu (1.20 × 10−2), Hg

(2.10 × 10−5), Mn (1.84 × 10−3), Mo (1.90 × 10−3), Ni
(5.40 × 10−3), Pb (5.25 × 10−4), V (7.00 × 10−5), Zn

(6.00 × 10−2)

[53–57,59,60]

SLFing Ingestion cancer slope factor (mg kg day−1) As (1.5), Cd (0.38), Cr (0.5), Ni (1.7), Pb (0.0085) [4,11,58]
SLFinh Inhalation cancer slope factor (mg m3 −1) As (15.1), Cd (6.3), Cr (0.42), Ni (0.84), Pb (0.042) [4,57,60]

SLFder
Dermal contact cancer slope factor

(mg kg day−1) As (3.66), Cr (2) [4,12]

2.6. Data Treatment

Arc GIS (version 10.8.1; 2020) with a raster interpolation technique (Spline-Tension) was
used to display the measured PTEs’ location and spatial distribution maps in Cairo City.
OriginLab (version OriginPro 2021) was used to present descriptive statistics, boxplot figures,
and multivariate statistical analyses. Excel (version Microsoft Office 365 16.0.15028.20160) was
used to calculate contamination levels and health risk assessment.

3. Results and Discussion
3.1. PTE Distribution

This is the first investigation to present a multielement profile of Cairo City household
dust. Depending on the study’s aims and to guarantee representative sampling, 38 major
districts in Cairo City are represented with at least 10 subsamples from each. Table 2 sum-
marizes the descriptive statistical parameters (minimum, maximum, mean, and standard
deviation) of the dry weight PTE concentrations in the analyzed indoor household dust
samples. Generally, the mean concentrations of these PTEs were ranked in the declin-
ing sequence Fe (20,818 ppm) > Al (9092 ppm) > Mn (425 ppm) > Zn (419 ppm) > Cu
(116.6 ppm) > Pb (99.3 ppm) > Cr (48.6 ppm) > V (45.7 ppm) > Ni (30.1 ppm) > Co
(9.0 ppm) > As (4.0 ppm) > Mo (2.5 ppm) > Cd (1.0 ppm) > Hg (0.30 ppm).

Because there are no PTE guidelines for indoor dusts, our results were compared with
the UCC element concentrations [51]. The mean concentrations of As, Cd, Cr, Cu, Hg,
Mo, Ni, Pb, and Zn were higher than those of UCC [51], indicating that their sources were
affected by anthropogenic activities. CV % indicates the relative variability of element levels
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in environmental samples. CV of 20% indicates low variability, CV of 20:50% indicates
moderate variability, and CV of 50:100% indicates high variability [61,62]. The CV(%)
values of the measured PTEs ranged from 23.9% to 148.1% (Table 2). An interesting point
in Table 2 is that Hg exhibited the highest CV value (148.1%), indicating extremely high
variability through sampling locations. Cd, Cu, and Pb exhibited relatively higher CV
values (51.7, 50.3 and 52.2%, respectively) indicating possible pollution. On the other hand,
Al, As, Co, Cr, Fe, Mn, Mo, Ni, V, and Zn showed moderate variability.

Table 2. Descriptive statistics of PTEs (ppm) in household dust in Cairo City.

Region Al As Cd Co Cr Cu Fe Hg Mn Mo Ni Pb V Zn

New Cairo
(n = 8)

Min. 6300 2.2 0.3 4.6 28.0 34.4 12,700 0.03 262 1.1 14.7 41.8 28.0 171
Max. 8200 4.6 0.9 7.4 39.0 96.8 19,400 1.85 347 2.5 21.6 64.1 54.0 266
Mean 7250 3.2 0.5 6.1 33.4 60.9 16,200 0.37 313 1.6 17.7 53.0 37.4 223
St.D. 644 0.8 0.2 1.2 4.17 21.4 2389 0.63 34 0.5 2.5 7.9 9.5 40

Eastern
(n = 8)

Min. 5400 2.9 0.6 6.1 40.0 54.5 16,200 0.15 326 1.2 20.6 56.6 38.0 234
Max. 15,700 6.2 2.8 12.0 81.0 249.5 24,200 0.92 507 4.0 58.9 267.8 66.0 1084
Mean 8413 3.9 1.4 8.5 60.1 155.7 20,175 0.41 402 2.7 34.2 127.1 44.8 486
St.D. 3110 1.1 0.8 2.1 14.3 75.1 2796 0.31 64 1.1 12.7 62.6 9.0 279

Northern
(n = 6)

Min. 7000 2.8 0.9 6.7 41.0 77.3 18,600 0.04 332 1.6 21.3 63.8 42.0 244
Max. 7900 3.5 1.4 9.8 81.0 188.5 24,700 0.78 468 5.7 44.6 219.2 47.0 509
Mean 7583 3.2 1.2 7.9 60.5 146.4 21,317 0.27 400 3.7 34.5 147.6 44.2 383
St.D. 354 0.4 0.2 1.0 13.5 37.4 2187 0.27 46 1.4 8.1 54.0 1.7 93

Western
(n = 6)

Min. 8100 3.1 0.7 7.2 37.0 86.9 15,100 0.08 319 1.4 24.6 97.3 38.0 485
Max. 16,700 5.8 2.0 11.3 81.0 212.3 23,100 1.94 541 3.2 44.6 193.9 61.0 833
Mean 11,683 4.2 1.2 9.2 55.2 149.4 20,233 0.45 418 2.4 35.9 121.9 49.3 605
St.D. 3653 1.0 0.4 1.7 16.8 53.7 3020 0.73 79 0.7 6.7 36.3 9.8 161

Southern
(n = 10)

Min. 5800 2.8 0.7 4.3 29.0 56.4 14,000 0.05 277 1.3 23.8 50.9 24.0 300
Max. 17,700 7.4 1.1 19.8 61.0 164.3 35,200 0.14 866 3.0 34.7 94.9 67.0 515
Mean 10,460 5.2 0.9 12.2 40.3 92.3 25,080 0.08 554 2.5 30.4 71.6 52.0 430
St.D. 3434 1.5 0.2 4.8 9.5 30.4 6594 0.03 176 0.6 3.79 14.1 14.6 75

All
Samples
(n = 38)

Min. 5400 2.2 0.3 4.3 28.0 34.4 12,700 0.03 262 1.1 14.7 41.8 24.0 171
Max. 17,700 7.4 2.8 19.8 81.0 249.5 35,200 1.94 866 5.7 58.9 267.8 67.0 1084
Mean 9092 4.0 1.0 9.0 48.6 116.6 20,818 0.30 425 2.5 30.1 99.3 45.7 419
St.D. 3065 1.3 0.5 3.4 15.9 58.6 4972 0.44 131 1.1 9.8 51.7 11.2 190

CV (%) 33.7 32.3 51.7 38.3 32.8 50.3 23.9 148.1 31 41.6 32.5 52.1 24.6 45.4

UCC [51] 80,400 1.5 0.09 10 35 25 35,000 0.05 600 1.5 20 20 60 71

Figure 2 depicts the results of plotting PTE concentrations on spatial distribution maps.
Elevated levels (hot spots) of Cd, Cr, Cu, Mo, Ni, Pb, and Zn concentrations were found
mostly around eastern, northern, and western regions, which are characterized by higher
traffic density, population density, and older buildings. On the other hand, high levels (hot
spots) of As, Co, Fe, Mn, and V were mostly concentrated in the southern region, which is
characterized by intense industrial activity. A high concentration of Hg was distributed in
new Cairo and the northern region.
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To put the levels of PTEs in Cairo’s indoor dust into perspective, they were compared
with the levels of the same elements in indoor dust worldwide (Table 3). Table 3 shows that
the mean PTE concentrations in our indoor dust samples were both higher and lower than
those worldwide. For instance, Al mean concentration was greater than those reported in
Slovenia (Maribor) [63], Greece (Athens) [64], and USA (Texas) [7]. As was higher than those
reported in Nigeria (Lagos) [22], Nepal [65], and USA (Texas) [7]. Cd was higher than those
reported in Alexandria and Kafr El-Sheikh [45], Saudi Arabia (Riyadh) [1], Qatar (Doha) [66],
Nigeria (Lagos) [22], Turkey (Istanbul) [67], Iran (Ahvaz) [60], and Greece (Athens) [64].
Cu was higher than those reported in Kafr El-Sheikh [45], Saudi Arabia (Riyadh) [1], Iraq
(Al-Fallujah) [68], Nigeria (Lagos) [22], Iran (Ahvaz) [60], and USA (Texas) [7]. Fe was lower
than Qatar (Doha) [66], Nigeria (Lagos) [22], and Canada (Alberta) [69]. Mn was far lower
than China (Huize) [12] and Nepal [65]. Ni was higher than those reported in Alexandria
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and Kafr El-Sheikh [45], Saudi Arabia (Riyadh) [1], Nigeria (Lagos) [22], Iran (Ahvaz) [60],
Greece (Athens) [64], USA (Texas) [7], and Australia (Sydney) [70]. Pb was lower than
Egypt (Alexandria) [45], Saudi Arabia (Jeddah) [14], Kuwait [71], Portugal (Estarreja) [25],
China (Huize) [12], Nepal [65], Canada (Alberta) [69], and Australia (Sydney) [70]. Zn
was higher than those reported in Egypt (Kafr El-Sheikh) [45], Saudi Arabia (Jeddah and
Riyadh) [1,14], Iraq (Al-Fallujah) [68], Nigeria (Lagos) [22], Greece (Athens) [64], and USA
(Texas) [7].

Table 3. Comparison between PTE concentrations in the household dust in Cairo City with those for
indoor dust in other cities worldwide.

Location n Al As Cd Co Cr Cu Fe Hg Mn Mo Ni Pb V Zn Ref.

Egypt (Cairo) n = 38 9092 4.0 1.0 9.0 48.6 116.6 20,818 0.3 425 2.5 30.1 99.3 45.7 419 This
study

Egypt
(Alexandria) n = 5 NA NA 0.8 3.2 29.2 141.0 NA NA 237 NA 25.1 260.0 NA 771 [45]

Egypt
(Kafr El-Sheikh) n = 4 NA NA 0.3 8.6 33.4 46.1 NA NA 438 NA 23.2 24.8 NA 257 [45]

Saudi Arabia
(Jeddah) n = 10 NA 8.0 2.1 87.9 40.2 NA 8752 NA 392 NA 35.7 121.2 NA 343 [14]

Saudi Arabia
(Riyadh) n = 18 NA NA 0.1 3.5 NA 59.2 6520 NA 434 NA 15.2 5.0 NA 94 [1]

Kuwait n = 50 12,697 13.0 NA 12.5 90.0 209.0 14,453 NA 441 NA 56.0 158.0 NA 784 [71]
Qatar (Doha) n = 12 19,812 7.2 0.7 12.3 91.8 192.9 20,504 NA 370 15.1 68.7 65.3 52.1 824 [66]

Iraq (Al-Fallujah) n = 50 NA NA 14.8 NA 289.5 65.0 NA NA NA NA 105.7 75.6 NA 293 [68]
Nigeria (Lagos) n = 40 32,000 3.3 0.5 NA 130.0 28.1 24,500 NA 368 NA 20.9 47.4 52.4 208 [22]

Turkey (Istanbul) n = 31 NA NA 0.8 5.0 55.0 156.0 NA NA 136 NA 236.0 28.0 NA 832 [67]
Iran (Ahvaz) n = 108 NA NA 0.5 8.5 18.0 106.0 NA NA 100 NA 12.0 74.0 NA 554 [60]

Japan n = 100 15,700 NA 1.0 4.7 67.8 304.0 10,000 NA 226 2.1 59.6 57.9 24.7 920 [72]
Slovenia (Maribor) * n = 27 7400 4.1 1.1 6.2 65.0 140.0 12,700 0.3 306 2.9 38.0 69.0 17.0 716 [63]
Portugal (Estarreja) n = 19 10,500 11.1 1.0 5.5 70.6 261.0 11,900 0.4 178 3.2 67.0 174.0 15.0 1349 [25]

Greece (Athens) n = 20 4217 4.0 0.5 NA 65.2 339.0 4913 0.4 128 NA 29.9 46.1 9.0 401 [64]
China (Huize) n = 50 NA 88.5 25.2 NA 124.0 174.0 NA 1.9 1010 NA NA 926.8 NA 3029 [12]

Nepal * n = 24 NA 3.0 1.8 28.1 231.0 275.0 838 NA 1650 NA 122.0 233.0 NA 1260 [65]
USA (Texas) n = 31 3738 3.6 1.9 NA 23.0 53.0 2939 NA 48 NA 12.0 38.0 NA 368 [7]

Canada (Windsor) n = 60 11,453 8.1 3.0 NA 65.8 139.0 10,826 NA 171 2.7 50.5 65.0 14.9 677 [20]
Canada (Alberta) n = 125 16,000 13.0 11.0 5.4 92.0 1900.0 26,000 NA 250 8.5 60.0 4500.0 15.0 14,000 [69]

Australia (Sydney) n = 82 NA NA 4.4 NA 83.6 147.0 5850 NA 76 NA 27.2 389.0 NA 657 [70]

n = Number of Samples; NA = Not Available; * Median.

3.2. Contamination Levels

The UCC element concentrations were used as the background values, and the Cf and
integrative Cdeg indices were applied to objectively analyze the contamination levels in the
five administrative regions in Cairo City. The calculated Cf values are presented in Table S2
and Figure 3. Altogether, the five regions were polluted to varying degrees by the measured
PTEs. The lowest degrees of pollution were recorded for Al, Co, Fe, Mn, and V, while the
highest degrees were recorded for Cd, Cu, Hg, Pb, and Zn, reaching considerably to very
high pollution. Hg shows a wide range of Cf values from low to very high pollution.

The calculated Cf-based Cdeg values in the investigated five regions (Figure 4) indicate
that New Cairo recorded the slightest degree of contamination, ranging from considerably
to very high pollution. On the other hand, eastern, northern, western, and southern regions’
household dust were very highly polluted.

3.3. Correlations between PTEs

The multivariate statistical analysis including Pearson’s Correlation Coefficient matrix
(PCC), Hierarchical Cluster Analysis (HCA) in Q mode, and Principal Component Analysis
(PCA) were utilized to reveal and emphasize the correlation intensity and linkage between
the analyzed PTEs.
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Correlations values 0.00–0.19, 0.20–0.39, 0.40–0.59, 0.60–0.79, and 0.80–1.00 can be
considered as very weak, weak, moderate, strong, and very strong correlations, respec-
tively [73]. As shown in Table 4, very strong positive correlations were observed between
Al–V (Pearson’s R = 0.81), As–Co (R = 0.91), As–Fe (R = 0.84), As–Mn (R = 0.86), As–V
(R = 0.90), Co–Fe (R = 0.95), Co–Mn (R = 0.97), Co–V (R = 0.87), Cr–Cu (R = 0.88), Cu–Ni
(R = 0.81), Fe–Mn (R = 0.97), Fe–V (R = 0.83), Mn–V (R = 0.81), and Ni–Zn (R = 0.87).
Strong positive correlations were observed between Al–As (R = 0.78), Al–Co (R = 0.67),
Al–Zn (R = 0.63), Cd–Cu (R = 0.69), Cd–Ni (R = 0.62), Cd–Pb (R = 0.65), Cd–Zn (R = 0.61),
Cr–Mo (R = 0.79), Cr–Ni (R = 0.67), Cr–Pb (R = 0.64), Cu–Mo (R = 0.66), Cu–Pb (R = 0.79),
Cu–Zn (R = 0.68), Mo–Ni (R = 0.67), Ni–Pb (R = 0.79), and Pb–Zn (R = 0.67). The most
significant finding that can be deduced from these positive linear relations is the role played
by Al, Fe, and Mn as scavenging elements in the distribution of PTEs, especially As, Co,
V, and Zn [48,74]. The strong to very strong positive correlation between the measured
PTEs indicates their close distribution and association and may suggest a shared source.
It appears to imply that household dust with more elevated levels of one toxic element
additionally contain higher levels of other PTEs.

HCA (Figure 5) reduced data into two main clusters. Cluster (1) includes: (a) Al, As,
and V and (b) Co, Mn, and Fe. Cluster (2) was subdivided into (c) Cd, Ni, Zn, and Pb;
(d) Cr, Cu, and Mo; and (E) Hg. Figure 6 presents the PCA component. Three components,
PC1 (49.60%; eigenvalue 6.44), PC2 (24.87%; eigenvalue 3.48), and PC3 (410.40%; eigen-
value 1.46), were extracted from PCA. The 3D plotting of the extracted three components
positively confirms the association between Al, As, Co, Fe, Mn, and V (Figure 6a). The
2D plotting of PC1 and PC2 combined with sampling sites (Figure 6b) indicates that Al,
As, Co, Fe, Mn, and V are more associated together in the southern region samples. It can
be concluded that these elements originated from natural sources; this is in agreement
with [22,75]. As enriched from intensive industrial activity in the southern region and
adsorbed on Fe–Mn oxides surface [76].



Toxics 2022, 10, 466 13 of 22

Table 4. PCC matrix for PTEs in the investigated household dust (n = 38).

Al As Cd Co Cr Cu Fe Hg Mn Mo Ni Pb V Zn

Al 1.00 0.78 0.26 0.67 −0.03 0.10 0.56 0.06 0.57 0.03 0.51 0.27 0.81 0.63

As 1.00 0.28 0.91 −0.01 0.10 0.84 −0.09 0.86 0.22 0.50 0.11 0.90 0.49

Cd 1.00 0.24 0.59 0.69 0.27 0.30 0.22 0.42 0.62 0.65 0.35 0.61

Co 1.00 0.09 0.11 0.95 −0.13 0.97 0.33 0.49 0.09 0.87 0.40

Cr 1.00 0.88 0.27 0.07 0.14 0.79 0.67 0.64 0.11 0.39

Cu 1.00 0.25 0.13 0.14 0.66 0.81 0.79 0.16 0.68

Fe 1.00 −0.16 0.97 0.54 0.58 0.21 0.83 0.35

Hg 1.00 −0.10 −0.01 0.14 0.33 −0.03 0.22

Mn 1.00 0.42 0.51 0.12 0.81 0.35

Mo 1.00 0.67 0.56 0.32 0.30

Ni 1.00 0.79 0.55 0.87

Pb 1.00 0.27 0.69

V 1.00 0.48

Zn 1.00

Very Weak Weak Moderate Strong Very Strong

Toxics 2022, 10, x FOR PEER REVIEW 13 of 23 
 

 

Table 4. PCC matrix for PTEs in the investigated household dust (n = 38). 

 Al As Cd Co Cr Cu Fe Hg Mn Mo Ni Pb V Zn 
Al 1.00 0.78 0.26 0.67 −0.03 0.10 0.56 0.06 0.57 0.03 0.51 0.27 0.81 0.63 
As  1.00 0.28 0.91 −0.01 0.10 0.84 −0.09 0.86 0.22 0.50 0.11 0.90 0.49 
Cd   1.00 0.24 0.59 0.69 0.27 0.30 0.22 0.42 0.62 0.65 0.35 0.61 
Co    1.00 0.09 0.11 0.95 −0.13 0.97 0.33 0.49 0.09 0.87 0.40 
Cr     1.00 0.88 0.27 0.07 0.14 0.79 0.67 0.64 0.11 0.39 
Cu      1.00 0.25 0.13 0.14 0.66 0.81 0.79 0.16 0.68 
Fe       1.00 −0.16 0.97 0.54 0.58 0.21 0.83 0.35 
Hg        1.00 −0.10 −0.01 0.14 0.33 −0.03 0.22 
Mn         1.00 0.42 0.51 0.12 0.81 0.35 
Mo          1.00 0.67 0.56 0.32 0.30 
Ni           1.00 0.79 0.55 0.87 
Pb            1.00 0.27 0.69 
V             1.00 0.48 

Zn              1.00 
 Very Weak  Weak  Moderate  Strong  Very Strong 

HCA (Figure 5) reduced data into two main clusters. Cluster (1) includes: (a) Al, As, 
and V and (b) Co, Mn, and Fe. Cluster (2) was subdivided into (c) Cd, Ni, Zn, and Pb; (d) 
Cr, Cu, and Mo; and (E) Hg. Figure 6 presents the PCA component. Three components, 
PC1 (49.60%; eigenvalue 6.44), PC2 (24.87%; eigenvalue 3.48), and PC3 (410.40%; eigen-
value 1.46), were extracted from PCA. The 3D plotting of the extracted three components 
positively confirms the association between Al, As, Co, Fe, Mn, and V (Figure 6a). The 2D 
plotting of PC1 and PC2 combined with sampling sites (Figure 6b) indicates that Al, As, 
Co, Fe, Mn, and V are more associated together in the southern region samples. It can be 
concluded that these elements originated from natural sources; this is in agreement with 
[22,75]. As enriched from intensive industrial activity in the southern region and adsorbed 
on Fe–Mn oxides surface [76]. 

 
Figure 5. HCA dendrogram. Figure 5. HCA dendrogram.



Toxics 2022, 10, 466 14 of 22
Toxics 2022, 10, x FOR PEER REVIEW 14 of 23 
 

 

 
Figure 6. (a) PCA variable loading: 3D loading between the extracted 3 components; (b) 2D loading 
between PC1 and PC2 combined with sampling sites. 

PTEs in household dust can be attributed to indoor activities such as cooking, smok-
ing, carpet, paper, clothing, cosmetic and personal care products, electric instruments, and 
cleaning products [65,71,77,78]. A substantial portion of the PTEs emitted by various out-
door activities can travel considerable distances via atmospheric particulate matter and 
enter the indoor environment in a variety of ways [71]. Al is geochemically stable, while 
Fe and Mn are geochemically related elements that are abundant in the earth’s crust and 
considered as major elements in soil minerals. The weathering of pre-existing rocks, sed-
iments, and soils primarily releases these major elements [22,71,79] because the levels of 

Figure 6. (a) PCA variable loading: 3D loading between the extracted 3 components; (b) 2D loading
between PC1 and PC2 combined with sampling sites.

PTEs in household dust can be attributed to indoor activities such as cooking, smoking,
carpet, paper, clothing, cosmetic and personal care products, electric instruments, and
cleaning products [65,71,77,78]. A substantial portion of the PTEs emitted by various
outdoor activities can travel considerable distances via atmospheric particulate matter
and enter the indoor environment in a variety of ways [71]. Al is geochemically stable,
while Fe and Mn are geochemically related elements that are abundant in the earth’s crust
and considered as major elements in soil minerals. The weathering of pre-existing rocks,
sediments, and soils primarily releases these major elements [22,71,79] because the levels of
Al, Fe, and Mn in the investigated household dust samples are not polluted and relatively
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deficient. These elements are probably of predominantly geogenic origin and were not
enriched in the dust samples by anthropogenic activities. Some exceptions for Mn were
recognized in some sites moderately polluted with Mn. Mn can be enriched by many
anthropogenic sources such as Mn fungicides [80], Mn–Ni batteries [81], and pigment and
paints [82]. Similarly, Co and V concentrations in the majority of the studied samples
are below background levels and show a low degree of pollution, indicating that they
originated from natural sources before being transported and settling in household dust.

Anthropogenic sources of As, Cd, Cr, Cu, Ni, Pb, and Zn include traffic emissions,
braking engine wear, corrosion of vehicle parts, lubricating oils, coal, and fossil fuel
combustion, building and construction materials, rubbers, pesticides, and industrial emis-
sions [19,22,63,71,75,77,81,83]. Cr and Zn can be sourced from wood preservative furni-
ture [12,65]. Chemical and pharmaceutical industries, coal combustion, municipal solid
waste incineration, and cement manufacture are all anthropogenic sources of Hg. Build-
ing materials (interior decorations, paints, and fluorescent lamps), household appliances
and electronic devices, LCD displays, monitors, batteries, clothes dryers, irons, washing
machines, fluorescent bulbs, neon lights, and thermometers are other potential indoor
sources [84].

3.4. Health Risk Assessment

Results of human health risk assessment show that the calculated HQing, HQder, and
HQinh values for individual element (Table S3) and combined PTEs (Table 5; Figure 7a,b) in
the household dust were less than one for children and adults. In addition, HI values for
adults of the combined PTEs in the household dust were less than one, suggesting no po-
tential noncancer risks (Table 5; Figure 7b). On the other hand, HI values for children were
greater than those for adults; one site (site 16; Eastern region) recorded HI values higher
than one, suggesting potential noncancer risks for children (Figure 7a).
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The spatial distribution maps of the calculated HI (children), HI (adults), and CR
risks are presented (Figure 9) to inform decision makers about the riskiest districts so that
mitigation measures could be implemented. The presented maps show the same distribu-
tion for noncancer and cancer risk, with hot spots concentrated in the eastern, northern,
and western regions due to condensed road networks in these regions with permanent
traffic congestion (Figure 1). In addition, the southern region showed considerable risk
distribution due to the intensive industrial activity in this region. One of the most sig-
nificant limitations of this investigation is the analysis of few composed samples and the
undetermined indoor microenvironments. Additional investigation in highly polluted
regions should include specific indoor microenvironments such as entrances, kitchens,
living rooms, children’s rooms, and bedrooms to provide a more comprehensive analysis of
household dust geochemistry in various microenvironments and to differentiate between
PTE outdoor and indoor sources.
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4. Conclusions

This study is the first one to comprehensively measure the chemical composition of
household dust in Cairo City, Egypt. In general, the following important conclusions can
be gained:

(1) The levels of As, Cd, Cr, Cu, Hg, Mo, Ni, Pb, and Zn surpassed the background values
of UCC, indicating anthropogenic influences. The lowest degrees of pollution were
recorded for Al, Co, Fe, Mn, and V, while the highest degrees were recorded for Cd,
Cu, Hg, Pb, and Zn, reaching considerably to very high pollution.

(2) New Cairo recorded the slightest degree of contamination, ranging from considerably
to very high pollution, while in other Cairo regions household dust is very high
polluted. Elevated PTE concentrations in Cairo’s household dust may be due to
industrial activities and heavy traffic emissions.

(3) The health risk assessment model revealed that the vital route of potential PTE expo-
sure that leads to both noncarcinogenic and carcinogenic risks is ingestion, followed
by dermal and inhalation pathways. The noncarcinogenic risk was generally in the
safe range for adults’ exposure. Children are at risk in some sites, where HI values
for the measured PTEs in household dust are higher than the recommended safe
limit. Prolonged exposure to household dust in Cairo City would produce cancer risk
to inhabitants.
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(4) The critical contributors to noncancer risk are Pb, As, Cr, Mn, V, and Al. The main
causes of cancer risk are Ni, As, and Cr.

(5) The study’s findings call for regular detection and assessment of the PTE concentra-
tions and health risk in indoor dust in Cairo City, as well as initiation and facilitation
of public health policy development, prevention of anthropogenic source pollutants,
and implementation of specific control measures.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxics10080466/s1, Table S1: Samples distribution in administrative
regions and districts in Cairo City.; Table S2: Calculated Cf and Cdeg values; Table S3: Calculated
noncancer HQing, HQder, and HQinh values. Table S4: Calculated cancer LADDing, LADDder, and
LADDinh values.
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