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Abstract: Due to the continuous and adverse effects of microplastics on the environment, an increas-
ing number of studies have begun to focus on their migration patterns and removal from aquatic
environments. Herein, our study innovatively evaluated the ability of the capacity of ZIF-67, a
novel metal–organic framework (MOF) material, to adsorb polystyrene (PS) microplastics (MPs)
from aqueous solutions, aiming to explore the potential of MOF materials to remove MPs from
wastewater. The adsorption ratio of PSMPs (5 mg/L, 30 mL) by ZIF-67 reached up to 92.1%, and
the PSMP adsorption equilibrium was achieved within 20 min at 298 K. The adsorption of PSMPs
would be favored at a pH of 8, a PSMPs solution concentration of 5 mg/L, and a temperature of
298 K. Further analyses demonstrated that hydrogen bond interactions, π-π stacking, and electrostatic
interactions played a crucial role in the adsorption of PSMPs by ZIF-67 in aqueous solutions. Our
findings thus provide insight into novel methods to remove MPs from acidic and weakly alkaline
aquatic environments and wastewater.

Keywords: microplastics; MOF material; ZIF-67; adsorption; water environment

1. Introduction

Worldwide plastic production reached 368 million tons in 2019, and these outputs are
projected to reach 3.3 billion tons by 2050 [1]. These increases in plastic production and
consumption will inevitably lead to increases in the discharge of plastic waste. In natural
water or soil environments, microplastics (MPs, with size ranging from 1 µm to 5 mm)
are generated from the degradation of plastic products through natural processes such as
UV photodegradation, mechanical degradation, and hydrolysis [2–5]. MPs have become
extremely conspicuous and have already been detected in personal care products, food
(e.g., drinking water, milk, and table salt), and baby products [6–9]. Additionally, MPs are
known to adsorb many types of pollutants such as heavy metals, persistent organic pollu-
tants (POPs), and chemical additives such as flame retardants and antioxidants [2,10–17],
thus exacerbating their adverse effects on human and animal health [18–22]. For example,
after ingesting microplastics, the marine invertebrates’ digestive enzyme systems would
be damaged, and even their reproductive system might be affected [19,23]. Furthermore,
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microplastics can accumulate in the human body and lead to obesity, cancer, and infer-
tility [8,24–26]. As reported, microplastics have already been detected in wastewater in
large amounts (0.05 ± 0.024 n/L), including plastic particles, fibers, fragments, films, and
granules [27,28]. Microplastics will inevitably discharge into the aquatic environment, and
further affect the survival of animals, plants, and microorganisms [29,30]. Several methods
have been developed to remove MPs from wastewater, including filtration, coagulation,
foam flotation, and magnetic separation [31–35]. However, these methods cannot efficiently
remove smaller particle size plastics (<10 µm). Other studies have employed chitin sponge
or biochar to adsorb MPs from aquatic environments [36,37]. Nevertheless, additional re-
search is still required to identify novel methods and mechanisms to remove MPs (<10 µm)
from water environments.

Metal–organic framework (MOF) materials have recently garnered increasing atten-
tion due to their applicability in water remediation [38]. Among these materials, zeolitic
imidazolate frameworks (ZIF) are particularly promising, owing to their many advan-
tages [11,39]. Specifically, these materials can be easily prepared, and possess a large
specific surface area, stable structure, and large adsorption capacity [40–42]. ZIF-67 is a
porous material, with CO2+ and 2-methylimidazole acting as the central metal ion and
organic ligand, respectively [43,44]. Previous research has demonstrated that ZIF-67 could
effectively adsorb and remove pollutants (e.g., organic pollutants, heavy metals, and antibi-
otics) from water through interface forces, including hydrogen bonding, electrostatic action,
and π-π stacking [39,45–47]. However, very few studies have focused on the capacity of
ZIF-67 to remove PSMPs from aqueous solutions.

Our study thus evaluated the PSMPs (<10 µm) removal performance of ZIF-67 in
aqueous solutions. Specifically, this study assessed the key effects of ZIF-67 dose, contact
time, pH, contact temperature, and PSMPs concentration on the adsorption process to
explore the PSMP removal capacity of ZIF-67 in aqueous solution, as well as its potential
adsorption mechanisms. We hypothesized that ZIF-67 could effectively adsorb and remove
MPs from water through hydrogen bonding, electrostatic action, and π-π stacking, which
could serve as the basis for novel strategies to treat MP contaminated wastewater.

2. Materials and Methods
2.1. Chemicals and Materials

Fluorescent PSMPs (with average diameter of 1.0 µm, 1% w/v) were purchased from
the Tianjin Beisiline Chromtech Research Center, (Tianjin, China). The fluorescent PSMPs
stock solution was diluted using deionized water, then treated with an ultrasonic device
(KQ-100DE, KunShan Ultrasonic Instruments Co., Ltd., Jiangsu, China) for 10 min at 100 W
and 20 kHz to obtain the desired PS concentrations (5, 10, 15, 20, 25, 30, 40, and 50 mg/L).
The ZIF-67 used in this investigation was prepared through a high-throughput production
method [47]. The concentrated hydrochloric acid (HCl) and sodium hydroxide (NaOH)
used in this experiment were of analytical grade and were supplied by Tianjin Hengxing
chemical reagent Co., Ltd., Tianjin, China.

2.2. Material Characterization

A Zetasizer Nano ZS system (Malvern Panalytical Co., Ltd., Malvern, UK) was used to
measure the mean hydrodynamic diameters and Zeta potentials of ZIF-67 and PSMP parti-
cles at a 3–12 pH range. Fourier transform infrared spectroscopy (FTIR, tensor 27, Brooke,
Germany) was applied to characterize the possible functional groups in PSMP and ZIF-67
(before and after plastic adsorption) at a 500–4000 cm−1 range. The surface morphologies
of PSMPs and ZIF-67 (before and after adsorption) were observed via scanning electron
microscopy (SEM, Zeiss GmbH, Oberkochen, Germany). Fluorescence images of PSMPs
and ZIF-67 (before and after adsorption of plastics) were observed using a fluorescence
microscope (NE620-FL, Ningbo Yongxin Optical Co., Ltd., Zhejiang, China).
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2.3. Adsorption of PSMPs by ZIF-67

In the adsorption process, the ZIF-67 (with a constant mass) and PSMPs solutions
(with different concentrations, 30 mL) were added into a conical glass flask (100 mL), then
placed in an air bath oscillator (ZYC-1189L, Shanghai Zhetu scientific instrument Co., Ltd.,
Shanghai, China) at room temperature (25 ◦C) with a shaking speed of 150 rpm. Upon the
completion of the shaking process, the concentration of PSMPs in the solution supernatant
was determined with a fluorescence spectrometer (NF-900, Thermo Fisher Scientific, Seoul,
Korea), with a scanning speed of 600 nm/min; the voltage of the photomultiplier tube
was 400 V. The emission spectra were recorded at a 400–500 nm wavelength range after
excitation at 468 nm.

All experiments were conducted in triplicate using independent samples. Conical glass
flasks with a PSMP-only solution (without ZIF-67 addition) were set as the control group.

2.3.1. Effect of ZIF-67 Dose and PSMP Concentration

To investigate the effect of the ZIF-67 dose on PSMP adsorption, various amounts
of ZIF-67 (0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 g/L) were added into the PS solution (5 mg/L,
30 mL) in a 150 mL Erlenmeyer flask. The contact time and temperature were 20 min and
298 K, respectively.

The PSMP adsorption rates of ZIF-67 (0.4 g/L) were then measured in response to
various PSMP concentrations (5, 10, 15, 20, 25, 30, 40, and 50 mg/L). The contact time and
temperature were 20 min and 298 K, respectively.

2.3.2. Effect of Contact Time

The effect of reaction time on PSMP adsorption performance was assessed at different
contact times (1, 5, 10, 20, 30, 40, 50, and 60 min) at a constant 0.4 g/L ZIF-67 dose. The
volume of the PSMP solution (5 mg/L) was 30 mL, with a contact temperature of 298 K.

2.3.3. Effect of pH and Temperature

The effect of pH on PSMP adsorption performance by ZIF-67 was investigated at a
3–12 pH range, whereas the other conditions remained constant (ZIF-67 dose of 0.4 g/L,
contact time of 20 min, and 298 K temperature). The pH of the PSMP solution was adjusted
with HCl (1 mol/L) or NaOH (1 mol/L). The effect of temperature on the PSMP (5 mg/L)
adsorption by ZIF-67 (0.4 g/L) from the water environment was analyzed by setting the
temperature at 288, 298, and 308 K, with a contact time of 20 min.

The PSMP adsorption rate (η) and capacity (qt) of ZIF-67 were calculated using
Equations (1) and (2), respectively:

η =
C0 − Ct

C0
× 100% (1)

qt = (C0 − Ct)×
v
m

(2)

where C0 (mg/L) is the initial concentration of PSMPs; Ct (mg/L) is the concentration of
PSMPs in the solution after time t (min); v (L) is the volume of the PSMP solution; m (g) is
the ZIF-67 dose in the solution.

2.4. Adsorption Model

The kinetics and isotherm models for PSMPs adsorbed by ZIF-67 were studied to
explore the adsorption behavior of PSMPs particles by ZIF-67. Here, the pseudo-first-
order model (Equation (3)) and pseudo-second-order model (Equation (4)) were used
to fit the kinetic experimental results for PSMPs adsorbed by ZIF-67. Furthermore, the
adsorption isotherms were fitted by the Langmuir model (Equation (5)) and Freundlich
model (Equation (6)).

qt = qe

(
1 − e−k1t

)
(3)
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qt =
q2

e k2t
1 + qek2t

(4)

Ce

qe
=

1
klqm

+
1

qm
(5)

lnqe = lnkF +
1
n

lnCe (6)

where qe (mg/g) and qm represent the equilibrium and maximum theoretical adsorp-
tion capacity of PSMPs by ZIF-67, respectively; k1 (min−1) and k2 mg/(g × min) are the
equation constants for the pseudo-first-order model and pseudo-second-order model, re-
spectively. Kl (L/mg) and kf are constants for the Langmuir model and Freundlich model,
respectively; n is the Freundlich model constant; qm (mg/g) is the maximum theoretical
adsorption capacity.

3. Results and Discussion
3.1. Material Characterization

The SEM and fluorescence images of the PSMPs, ZIF-67, and the ZIF-67/PSMP com-
posite after adsorption are illustrated in Figure 1. As shown in the figure, the original
PSMPs exhibited a smooth surface and uniform spherical shape, with particle sizes ranging
from 1.0 to 3.0 µm. As demonstrated by both the SEM and fluorescence images, the ZIF-67
particles were irregular, with diameters ranging from 30 to 600 nm and a relatively smooth
surface. However, compared with the PSMPs, the fluorescence of ZIF-67 was markedly
weaker and was almost negligible. After adsorption, the fluorescence of the ZIF-67/PSMP
composite in the aqueous solution was markedly increased, indicating that the PSMPs had
attached to the surface of ZIF-67. These findings further confirmed that the PSMPs particles
were effectively adsorbed by ZIF-67 in the aqueous solution.
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Figure 1. SEM and fluorescence image of PSMPs (a,b), ZIF-67 (c,d), and the ZIF-67/PSMP composite
after adsorption (e,f), and schematic representation of PSMP adsorption by ZIF-67.

Figure 2a illustrates the hydrodynamic diameter distribution for the single ZIF-67
and PSMPs. As shown in the figure, the average diameters of ZIF-67 and PSMPs were
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approximately 92 nm and 1.45 µm, respectively. The Zeta potential (Figure 2b) of ZIF-67
and PSMPs were significantly different at a pH range of 3–12. The Zeta potential of the
PSMPs was almost negative at the aforementioned pH range due to the presence of sulfate
in the PSMPs [48,49]. Sulfate groups are negatively charged at a 2–12 pH range [48–50].
However, at a 6–10 pH range, the Zeta potential of ZIF-67 increased, and ZIF-67 became
positively charged. Once the pH exceeded 10, ZIF-67 tended to be negatively charged,
which was attributed to the OH− derived from water and hydrolysis of uncoordinated
Co2+ on the surface of ZIF-67 [47,51]. These variations in the Zeta potential of ZIF-67 and
PSMPs in aqueous solution might determine the PSMP removal performance of ZIF-67.

Figure 2. Hydrodynamic diameter distribution (a) and Zeta potential (b) of PSMPs and ZIF-67 in
aqueous solution.

The FTIR spectra for PSMPs and ZIF-67 during the adsorption process are illustrated
in Figure 3. For PSMPs, the absorption peak at 700 cm−1 was attributed to the single sub-
stitution peak of the benzene ring [52]. The peaks for PSMPs at 1450, 1500, and 1600 cm−1

were attributed to the skeleton vibration of the benzene ring [53,54]. Moreover, the peaks
at 2850, 2925, and 3031 cm−1 in the PSMPs were mainly attributed to the C-H stretch-
ing of aliphatic compounds, whereas the peak at 3420 cm−1 was assigned to -OH in the
PSMPs [55,56]. The FTIR peak for ZIF-67 was mainly ascribed to the ligand 2-methyl in the
MOF material [57]. The peak observed at 600–1500 cm−1 was attributed to the stretching
vibration of the imidazole ring in ZIF-67, whereas the peak at 3428 cm−1 was linked to the
stretching vibration of N-H and -OH [43]. After the adsorption process, the characteristic
peaks for PSMPs (700, 1450, 1500, 1600, 2850, 2925, 3031, and 3420 cm−1) were observed in
the ZIF-67/PSMP composite, thus confirming that the PSMPs were adsorbed on the surface
of ZIF-67. Additionally, the peak at 3300–3700 cm−1 in the ZIF-67 (after PSMP adsorption)
was mainly related to the vibration of hydroxyl groups [51]. In turn, this hydroxyl vibration
was mainly ascribed to the interaction between Co-OH or -NH (in ZIF-67) and the -OH
(in PSMPs) [43,47,58]. Furthermore, the imidazole ring (in ZIF-67) could be regarded as
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an aromatic compound, which could interact with other aromatic compounds (in PSMPs)
through π-π stacking interaction [43]. Therefore, the π-π stacking interactions should also
be presented between the ZIF-67 and in PSMPs in an aqueous solution [59,60]. Therefore,
hydrogen bonding and π-π stacking strengthened the interaction between ZIF-67 and
PSMPs in the aqueous solution.
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Figure 3. FTIR spectra for PSMPs and ZIF-67 during the adsorption process.

3.2. Effect of ZIF-67 Dose

Figure 4 illustrates the effect of the ZIF-67 dose on PSMP removal in aqueous solution.
At a ZIF-67 dose ranging from 0.1 to 0.6 g/L, the adsorption ratio of PSMPs by ZIF-67
increased from 65.4% to 90.2%. It could be attributed to the fact that more ZIF-67 could
provide more adsorption sites for PSMPs. However, once the ZIF-67 dose exceeded 0.4 g/L,
the adsorption ratio remained largely constant. Furthermore, the adsorption capacity of
PSMPs by ZIF-67 decreased from 34.5 to 7.2 mg/g when the ZIF-67 dose increased from
0.1 to 0.6 g/L (Equation (2)). The highest adsorption rate (92.1%) and adsorption capacity
(11.6 mg/g) of PSMPs in an aqueous solution was observed at a ZIF-67 dosage of 0.4 g/L.
Thus, the optimal dosage of ZIF-67 for the removal of PSMPs should be selected as 0.4 g/L.
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3.3. Adsorption Kinetics Model of PSMPs by ZIF-67

Figure 5 illustrates the adsorption capacity of PSMPs by ZIF-67 with increasing contact
time. In the first 20 min, the PSMPs would be rapidly adsorbed by ZIF-67, reaching a
maximum adsorption capacity of 11.6 mg/g. Once the contact time exceeded 20 min, the
PSMP adsorption capacity of ZIF-67 remained largely constant. Our findings thus indicated
that the adsorption of PSMPs by ZIF-67 in aqueous solution is a relatively fast process.
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Figure 5. Fitting kinetic model for PSMP adsorption by ZIF-67. Conditions: PSMP concentration,
5 mg L−1; ZIF-67 dose, 0.4 g/L; temperature, 298 K, reaction time, 20 min.

The experimental results for the adsorption of PSMP by ZIF-67 were fitted by the
pseudo-first-order and pseudo-second-order models, as shown in Figure 5 and Table 1.
The calculated R2 for the pseudo-second-order kinetic model (0.981) was close to that of
the pseudo-first-order model (0.977). However, the theoretical equilibrium adsorption
capacity (11.7 mg/g) calculated by the pseudo-first-order kinetic equation was closer to the
actual adsorption capacity (11.6 mg/g). Therefore, the pseudo-first-order kinetic equation
was deemed more suitable for describing the adsorption of PSMPs by ZIF-67. These
findings indicate that the removal of PSMPs by ZIF-67 is largely mediated by physical
adsorption [61]. The adsorption rate constant of ZIF-67 for PSMPs was 0.171 min−1,
which meant that ZIF-67 could reach the adsorption equilibrium for PSMPs within a
short time [62].

Table 1. Kinetic model and parameters of adsorption of PSMPs by ZIF-67.

Adsorbent
Pseudo-First-Order Pseudo-Second-Order

qe K1 R2 qe K2 R2

ZIF-67 11.7 0.171 0.977 12.7 0.018 0.981

3.4. Effect of pH

Figure 6 illustrates the effect of pH on the adsorption of PSMPs by ZIF-67 in an
aqueous solution. The schematic of the adsorption of PSMPs by ZIF-67 with the influence
of increasing pH was shown in Figure 7. As shown in the figure, the adsorption rate
of PSMPs by ZIF-67 was maintained at approximately 88.3% at a 3–10 pH range. This
high PSMPs adsorption rate at the aforementioned pH range was mainly attributed to the
stronger electrostatic attraction between the positively charged ZIF-67 and the negatively
charged PSMPs. Moreover, the π-π stacking and hydrogen bonding between the ZIF-67
and PSMPs also likely improved the removal of PSMPs in aqueous solution. When pH
increased further to an 11–12 range, the repulsion force between the negatively charged
ZIF-67 and negatively charged PSMPs at strongly alkaline conditions reduced the removal
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ratio of PSMPs by ZIF-67 from 88.3% to 64.4%. Therefore, ZIF-67 could effectively adsorb
PSMPs with a pH ranging from 3 to 10, while the highest PSMPs adsorption rate was
observed at a pH around 8.
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3.5. Adsorption Isotherm Analysis

The adsorption isotherm for the adsorption of PSMPs by ZIF-67 in an aqueous solution
was also investigated (Figure 8); the fitting parameters are summarized in Table 2. The
fitting coefficient (R2) for the Freundlich model (0.997) was much greater than that of the
Langmuir model (0.474), indicating that the Freundlich model was more suitable to describe
the adsorption of PSMPs by ZIF-67 in the aqueous solution. Additionally, this confirmed
that the adsorption process is controlled by a multilayer adsorption mechanism. The fitting
model results also indicated that the surface adsorption energy of ZIF-67 was uneven and
that the adsorption of PSMPs by ZIF-67 could be attributed to hydrophobicity [36,63,64]. In
the Freundlich model, the kf value and the 1/n value indicated the favorability of ZIF-67, to
interact with PSMPs [65]. Thus, the value of 1/n (0.327) and kf (2.58) confirmed that ZIF-67
would readily interact with PSMPs [64,65]. The ZIF-67 would maintain a high adsorption
rate (>82.2%) with ranging PSMPs concentrations (5 mg/L-50 mg/L), indicating a superior
state for removal of PSMPs by the ZIF-67.



Toxics 2022, 10, 70 9 of 14

Toxics 2022, 10, 70 9 of 14 
 

 

3.5. Adsorption Isotherm Analysis 

The adsorption isotherm for the adsorption of PSMPs by ZIF-67 in an aqueous solu-

tion was also investigated (Figure 8); the fitting parameters are summarized in Table 2. 

The fitting coefficient (R2) for the Freundlich model (0.997) was much greater than that of 

the Langmuir model (0.474), indicating that the Freundlich model was more suitable to 

describe the adsorption of PSMPs by ZIF-67 in the aqueous solution. Additionally, this 

confirmed that the adsorption process is controlled by a multilayer adsorption mecha-

nism. The fitting model results also indicated that the surface adsorption energy of ZIF-

67 was uneven and that the adsorption of PSMPs by ZIF-67 could be attributed to hydro-

phobicity [36,63,64]. In the Freundlich model, the kf value and the 1/n value indicated the 

favorability of ZIF-67, to interact with PSMPs [65]. Thus, the value of 1/n (0.327) and kf 

(2.58) confirmed that ZIF-67 would readily interact with PSMPs [64,65]. The ZIF-67 would 

maintain a high adsorption rate (>82.2%) with ranging PSMPs concentrations (5 mg/L-50 

mg/L), indicating a superior state for removal of PSMPs by the ZIF-67. 

 

Figure 8. Fitting adsorption isotherm models of PSMPs by ZIF-67 (conditions: PSMPs concentration, 

5 mg L−1; ZIF-67 dose, 0.4 g/L; temperature, 298 K; reaction time, 20 min). (a) Langmuir model; (b) 

Freundlich model. 

Table 2. Adsorption isotherm models and parameters of adsorption of PSMPs by ZIF-67. 

Adsorbent 
Langmuir Freundlich 

�� �� R2 �� �/� R2 

ZIF-67 0.002 1369.8 0.474 2.58 0.346 0.997 

3.6. Effect of Temperature 

Figure 9 illustrates the effect of contact temperature on the adsorption of PSMPs by 

ZIF-67. When the contact temperature ranged from 288 to 308 K, the PSMP adsorption 

rate by ZIF-67 in the aqueous solution first increased slightly (from 83.1% to 92.1%) and 

then decreased (from 92.1% to 86.4%). This increase in adsorption capacity (from 10.3 

mg/g to 11.5 mg/g) with increasing contact temperature (from 288 K to 298 K) was linked 

to the fact that the adsorption of PSMPs by ZIF-67 was mainly driven by physical adsorp-

tion (particularly at 288 K). Here, the adsorption of PSMPs by ZIF-67 was mainly at-

tributed to chemical adsorption, whereas the number of adsorption active sites at 298 K 

increased with increasing contact temperature. However, the slight decrease in adsorption 

capacity observed in our experiments (from 11.5 to 10.6 mg/g) was likely due to the de-

sorption of PSMPs from the ZIF-67 due to the increase in the thermal motion of particles 

with increasing temperature [66,67]. Therefore, our findings confirmed that increasing the 

temperature negatively affects the removal of MPs by MOF materials in aqueous solution. 

Figure 8. Fitting adsorption isotherm models of PSMPs by ZIF-67 (conditions: PSMPs concentration,
5 mg L−1; ZIF-67 dose, 0.4 g/L; temperature, 298 K; reaction time, 20 min). (a) Langmuir model;
(b) Freundlich model.

Table 2. Adsorption isotherm models and parameters of adsorption of PSMPs by ZIF-67.

Adsorbent
Langmuir Freundlich

K1 qm R2 Kf 1/n R2

ZIF-67 0.002 1369.8 0.474 2.58 0.346 0.997

3.6. Effect of Temperature

Figure 9 illustrates the effect of contact temperature on the adsorption of PSMPs by
ZIF-67. When the contact temperature ranged from 288 to 308 K, the PSMP adsorption rate
by ZIF-67 in the aqueous solution first increased slightly (from 83.1% to 92.1%) and then
decreased (from 92.1% to 86.4%). This increase in adsorption capacity (from 10.3 mg/g to
11.5 mg/g) with increasing contact temperature (from 288 K to 298 K) was linked to the
fact that the adsorption of PSMPs by ZIF-67 was mainly driven by physical adsorption
(particularly at 288 K). Here, the adsorption of PSMPs by ZIF-67 was mainly attributed
to chemical adsorption, whereas the number of adsorption active sites at 298 K increased
with increasing contact temperature. However, the slight decrease in adsorption capacity
observed in our experiments (from 11.5 to 10.6 mg/g) was likely due to the desorption of
PSMPs from the ZIF-67 due to the increase in the thermal motion of particles with increasing
temperature [66,67]. Therefore, our findings confirmed that increasing the temperature neg-
atively affects the removal of MPs by MOF materials in aqueous solution. Furthermore, the
relatively higher adsorption rate (92.1%) of PSMPs by ZIF-67 was determined at a contact
temperature of 298 K. The correlation observed between adsorption rate and temperature
was not obvious; thus, the Freundlich model constants at varying temperatures could not
be calculated. Therefore, the thermodynamic results would not be further discussed.

3.7. Compared with Other Treatments Technologies

Different treatment technologies for removing microplastics are summarized in Table 3,
including the adsorption, flocculation, electrocoagulation, and MBR route. For the floccula-
tion method, the additional chemical reagents of PAC (200 mg/L) and PAM (100 mg/L)
would be added, with MPs removal rate of 54.7% during the flocculation process [68].
Higher operating cost would be consumed in the MBR system, with PE/PET removal
efficiency of 98.5% within 35 h [69]. The electrocoagulation route would remove more
than 91% of microplastics with an applied voltage density of 10 V [70]. In addition, the
electrocoagulation process would require Na2SO4 (0.05 M) to improve the conductivity of
the solution [70,71]. The activated sludge process or biodegradation route had a relatively
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lower operating cost and wider application range; however, they took a longer time (more
than 56 days) and the removal rate of microplastics still needed to be improved [72,73].
M-CNTs (5 g/L) could nearly remove all of PSMPs (5 g/L) in an aqueous solution, and
the reaction time was up to 5 h. From the above comparison, the ZIF-67 materials have
advantages including a short reaction time (20 min), relatively higher removal efficiency
(92.1%), and a simple operation process.
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Table 3. Methods for the removal of microplastics.

Order Type of Microplastics Method MP Size Removal Efficiency Experimental Details Reference

1 PS Adsorption by
ZIF-67 1.45 µm 92.1%

MPs (5 mg/L), ZIF-67(0.4 g/L),
contact temperature (298 K),

contact time (20 min)
This work

2 PE, PET, PA Adsorption by
M−CNTs 48 µm 100%

MPs (5 g/L), M−CNTs (5 g/L),
contact temperature (298 K),

contact time (5 h)
[74]

3 PET Coagulation 100–400 µm 54.7%

PAC (100 mg/L), PAM
(200 mg/L), MPs (100 mg),

stirring speed of 500 rpm for 1
min and followed by 100 rpm

for 15 min

[68]

4 PA, PP, PE, PVC Activated sludge 0.02–0.3 mm 64.4% The abundance of MPs in the
influent (79.9 n/L) [72]

5 PS Biodegradation 0.3–1.25 mm 43.7%

Basal medium (liquid
carbon-free basal medium),

temperature (40 ◦C or 70 ◦C),
contact time (56 days)

[73]

6 PMMA, PE, CA, PP Electrocoagulation

PE: 286.7 µm,
PMMA: 6.3 µm,

PP: 1–2 mm,
CA:1–2 mm

93.2% for PE,
91.7% for PMMA,
98.2% for CA, and

98.4% for PP

Electrolyte (0.05 M Na2SO4), pH
(7.2), applied voltage density

(10 V), anode (Al)
[70]

7 PE, PET MBR <5 mm 98.5%
MBR pilot plant, Suction

cycle(9 min-ON/1 min-OFF),
HRT(35 h)

[69]

4. Conclusions

This paper mainly focused on the mechanism for interface between microplastics
and the prepared MOF materials. The current experiment mainly studied the influence
mechanism of single key factors on the adsorption of microplastics. Our research showed
that the ZIF-67 could effectively absorb different concentrations of PSMPs (5–50 mg/L) in a
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wide pH range (3–10), and a temperature ranging from 288 to 308 K. In addition, compared
with other technologies for removing PSMPs from water, ZIF-67 showed the superiority
including a lower cost and higher treatment efficiency.

This process was a challenging attempt, which not only provided a novel technol-
ogy for effectively removing microplastics in acidic and weakly alkaline wastewater, but
also expanded the application of porous materials in removing pollutants in aqueous
solutions. Further tests would be recommendable to verify the reusability of MOF ma-
terials in the adsorption process. We would also add more experimental groups to the
further investigation.
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