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Abstract: An experimental study is presented on the possibility of using the fluorescence from organic
dyes as a broadband light source together with a monochromator for applications in excitation–
emission matrix (EEM) fluorescence spectroscopy. A high-power single-chip light-emitting diode
(LED) was chosen as an excitation source with a central output wavelength at 365 nm to excite a
fluorescent solution of Coumarin 1 dye dissolved in ethanol. Two excitation configurations were
investigated: direct excitation from the LED and excitation through an optical-fiber-coupled LED.
A Czerny–Turner monochromator with a diffraction grating was used for the spectral tuning of the
fluorescence. A simple method was investigated for increasing the efficiency of the excitation as well
as the fluorescence signal collection by using a diffuse reflector composed of barium sulfate (BaSO4)
and polyvinyl alcohol (PVA). As research objects, extra-virgin olive oil (EVOO), Coumarin 6 dye,
and Perylene, a polycyclic aromatic hydrocarbon (PAH), were used. The results showed that the
light-emitting-diode-induced fluorescence was sufficient to cover the losses on the optical path to the
monochromator output, where a detectable signal could be obtained. The obtained results reveal the
practical possibility of applying the fluorescence from dyes as a light source for food system analysis
by EEM fluorescence spectroscopy.

Keywords: LED-induced fluorescence; organic dyes; EVOO; polycyclic aromatic hydrocarbons;
broadband light source; optical fibers; Czerny–Turner monochromator; diffuse reflector; barium
sulfate; polyvinyl alcohol

1. Introduction

Fluorescence spectroscopy is a rapid analytical technique, characterized by simplicity
and cost-effectiveness, for the characterization of molecules or events into fluorescing
samples. It is successfully applied in many fields such as forensic, agricultural, and
pharmaceutical science, bioscience, and medical diagnostics, as well as food safety and
quality control [1–6]. A typical fluorescence measurement involves irradiating the sample
with constant monochromatic light, usually set to the maximum of a given fluorophore
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absorption curve, and detecting the resulting fluorescence signal. This approach is typically
used when analyzing a sample that contains a single fluorophore. The studied samples
usually are complex systems composed of multiple fluorophores whose absorption and
emission spectra may be overlapped or not. In such samples, changing the excitation
wavelength causes the emitted fluorescence spectrum to change as well.

One of the methods used to analyze complex fluorescent samples is EEM fluorescence
spectroscopy. EEM fluorescence spectroscopy is a highly sensitive and non-destructive 3D
steady-state fluorescence technique that is a variation of standard fluorescence spectroscopy [7].
It allows for the simultaneous visualization of all the fluorophores of a complex sample in a
single three-dimensional plot. In this technique, the sample is excited with a monochromatic
light at several different wavelengths and the emitted fluorescence is acquired at each
excitation. With the excitation–emission data, 3D or contour plots can be obtained, which
could serve as a fluorescence fingerprint.

In the context of human nutrition, food represents a complex system, containing a
variety of proteins, carbohydrates, fats, vitamins, minerals, and other components. In
order to achieve a pleasant appearance and flavor and to expand the expiration date, often,
artificial additives are used in the manufacturing process. Despite the quality control in the
food manufacturing sector, there are cases of contamination or even adulteration. Food
adulteration refers to the deliberate deception or misrepresentation of food products for
economic gain. Many nutrients contained in the food matrix are naturally fluorescent; thus,
the fluorescence spectrum of the sample could be the sum of the individual spectra of the
fluorophores presented in it.

On the other hand, environmental pollution in combination with the methods of
food processing are the main sources for the contamination of foods with PAHs. These
organic compounds contain two or more fused aromatic rings and due to their persistence,
are widespread in the environment [8]. The development of methods for continuously
monitoring the presence of PAHs in foods is necessary mainly because they can affect
human health after dietary exposure and cause immunosuppressive, carcinogenetic, and
mutagenetic effects [9–11]. The reference method for the determination of PAHs in food
samples [12] combines thin-layer chromatography with subsequent UV spectrophotometry.
The main disadvantages here are related to the high solvent volumes and low sensitivity.
Also, the methods for the extraction, identification, and quantification of PAHs in food
samples are time consuming and challenging.

In this case, EEM fluorescence spectroscopy in combination with statistical methods
was successfully applied for the analysis of food samples [13,14]. This method has been
applied for the analysis of a variety of food products such as edible oils [15,16], honey [17],
water [18], and edible insects [19], as well as toxins that contaminate foods [20,21].

The light source is a core component of any spectroscopic technique. Typically, for
EEM fluorescence spectroscopy, powerful lamps are used as a broadband light source in con-
tinuous or pulsed mode in combination with a monochromator [22–29]. The main disadvan-
tages of these lamps are that they are bulky, expensive, and have a high energy consumption.

As an alternative, laser diodes (LDs) and LEDs could be used to obtain fluorescence
spectra [30–39]. A characteristic feature of the application of LDs and LEDs as fluorescence-
inducing sources is that no spectral selection mechanism is used, namely, a monochromator.
Instead, spectral selection is achieved by using individual LDs and LEDs emitting at a
specific wavelength. In principle, LDs are characterized by a lower beam divergence of
the radiation emitted by them compared to LEDs. This allows for easier focusing of their
radiation on the sample by means of optics, which induce strong fluorescence. LDs with
output wavelengths in the visible spectrum down to 405 nm, which emit an optical power
in the range of a few mW to a few W, are commercially available at an affordable price.

Regarding the spectral width of their output, of the order of 1 nm, LDs can be classified
as linear light sources. Thus, their spectral parameters correspond very well with the
characteristic features of EEM fluorescence spectroscopy. Unfortunately, the range of
available LDs wavelengths is limited.
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Unlike LDs, LEDs with a larger wavelength variety, covering the visible and ultra-
violet regions down to 250 nm, are commercially available at an affordable price. The
variety of optical powers, beam divergences, and spectral widths is significant. It can be
summarized that the beam divergences are greater than those of LDs, typically 120◦ for a
single-chip LED. The spectral width of their output on the order of 20 nm classifies them as
a band light source. The optical powers on the order of several hundred mW are emitted by
LEDs with wavelengths above 370 nm. For LEDs emitting below 370 nm, the optical power
decreases dramatically, with the price for the more powerful ones increasing significantly.

The laser-induced fluorescence from highly efficient organic dyes can be used for the
creation of broadband light sources for applications in light spectroscopy, for example,
all-fiber miniature light sources based on organic fluorescent dyes [40–43], in which fiber-
optic ferrules and capillary tubes are used as the basic constructions. The possibility of
coupling them not only to conventional optical fibers but also to hollow-core and photonic-
crystal fibers combined with fiber-optic micro-optics has been demonstrated. In this way,
their possible practical applications in the field of photonics could be expanded. The
stability and suitable mechanical properties of the ferrule by achieving laser generation in
an all-fiber liquid dye laser has also been demonstrated [44,45]. The potential of the laser-
induced fluorescence from organic dyes to be used as a light source for EEM fluorescence
spectroscopy by combining them with a monochromator has also been demonstrated [46].

In the present study, we demonstrate that the LED-induced fluorescence from an
organic dye can be used as a light source for EEM fluorescence spectroscopy. To the best of
our knowledge, no such approach has been reported in the scientific literature to date.

2. Materials and Methods
2.1. Fluorescent Medium

Two organic fluorescent dyes, Coumarin 1 and Rhodamine 6G (Merck KGaA, Darm-
stadt, Germany), were used in the experiments, which have quantum yields of 0.73 and
0.95, respectively. Coumarin 1 was dissolved in 99.9% ethanol with a dye concentration of
4.59 × 10−3 M and Rhodamine 6G was dissolved in 99.9% glycerol with a dye concentration
of 1.19 × 10−4 M. An analytical balance was used to prepare the fluorescent media (AS
82/220.R2 PLUS, RADWAG, Radom, Poland).

An EVOO, a Coumarin 6 dye (Merck KGaA, Darmstadt, Germany), and the PAH
Perylene (Merck KgaA, Darmstadt, Germany) were used as research objects. The EVOO
was purchased from a local supplier and was used with no further treatments. Coumarin
6 was dissolved in 99.9% ethanol with a dye concentration of 8.35 × 10−4 M and had a
quantum yield of 0.78. Perylene 99.5% was dissolved in 99.9% cyclohexane (Honeywell
Riedel-de Haën, Charlotte, NC, USA) with a concentration of 1.33 × 10−3 M and had a
quantum yield of 0.94.

2.2. Exciting and Receiving Components

An LED and a laser were used to induce fluorescence from the active media, which
were powered by a linear laboratory power supply (AX-3003L-3, Axiomet, Kraków, Poland).

A surface-mounted high-power LED was used (GD35-X-365-DL, Roithner Lasertech-
nik GmbH, Wien, Austria) with a peak wavelength of 365–375 nm, output optical power
of 500–700 mW, and was mounted on a heatsink. The LED was composed of a single die
emitter with a factory-installed quartz lens, as it emits through a beam angle of 120◦.

The laser used was a continuous-wave diode-pumped solid-state (DPSS) Nd:YAG
laser emitting at 532 nm, having a maximum output power of 5 mW.

The fibers from Figures 1–3 were multimode fused silica step-index optical fibers
(FG105UCA, Thorlabs Inc., New Jersey, NY, USA) with 105 µm/125 µm core/cladding
diameters and numerical aperture NA = 0.22. There are optical fibers with larger cores, but
we have deliberately chosen to limit ourselves to the largest core diameter with 125 µm
cladding. In this way, we deliver as much light as possible while ensuring the high
resolution of the output of the monochromator.
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2.3. Experimental Set-Up

For the experiment, a Czerny–Turner monochromator with a diffraction grating was
assembled, which is presented schematically in Figure 1. No special slits were used at either
the input or the output of the monochromator. Optical fibers with 105 µm core diameters
were placed at the entrance and at the exit of the monochromator, the cores of which
serve as slits. The input optical fiber (IF) and the output optical fiber (OF) were mounted
in zirconia ferrules and were polished with an optical fiber polishing machine (FibrMet,
Buehler Ltd., Lake Bluff, IL, USA) using diamond polishing papers with a decreasing grain
size, namely, 30 µm, 9 µm, 3 µm, and 1 µm. The prepared fibers were mounted in fiber
ferrule clamps (Thorlabs Inc., New Jersey, NY, USA).

A plane-ruled reflection grating placed on a diffraction grating mount was used, with
maximum efficiency at 300 nm (Newport Corp., Irvine, CA, USA). The grating was rotated
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manually by using a rotational micropositioner stage (M-481-A, Newport Corp., Irvine,
CA, USA) which allows for precise manual adjustments of 0.1◦ by means of a screw. UV-
enhanced aluminum concave mirrors mounted in kinematic mirror mounts were used,
which, together with all the other components, were mounted on an aluminum optical
breadboard (Thorlabs Inc., New Jersey, NY, USA).

To observe the output spectra, a fiber-optic spectrometer was used (AvaSpec-HERO,
Avantes, Apeldoom, The Netherlands) with a wavelength range of 250–626 nm, slit size
of 25 µm, and resolution of 0.85 nm. The spectrometer was connected with a solarization-
resistant fiber patch cable with a core diameter of 105 µm (Thorlabs Inc., New Jersey,
NY, USA).

Two configuration schemes for fluorescence induction were investigated: an illumina-
tion of the active medium through an excitation optical fiber (EF) connected to an LED and
a direct excitation through an LED, presented in Figures 2 and 3, respectively.

In the scheme in Figure 2, the radiation from an LED or a laser excites the active
medium in front of the facet of a receiving optical fiber (RF). The RF was placed in a
zirconia fiber-optic ferrule for stability whereby the optical axes of EF and RF are at a 90◦

angle. The resulting fluorescence signal λS was waveguided from the RF to the IF of the
monochromator. The EF was fixed to a micropositioner having three linear displacements
and a two-axis tilt platform (ULTRAlign 561D and 561-TILT-LH, Newport Corp., Irvine,
CA, USA). The position of the fiber tip was precisely controlled with the micropositioner.

In the scheme in Figure 3, the active medium was illuminated directly by the LED. The
fluorescence solution was placed in a capillary tube with a RF was placed inside to receive
the fluorescence λS and the tube was placed directly on the LED lens. The capillary tube
was made of borosilicate glass with an inner diameter of approximately 343 µm and a wall
thickness of approximately 64 µm. The tube was manually drawn from a larger-diameter
tube using a butane gas torch as a heating source.

To demonstrate the possibility of increasing the LED excitation as well as accepting
the fluorescence received by the fiber, we used a diffuse reflective layer composed of BaSO4
dissolved in PVA [47,48] applied to a cover glass. The PVA was dissolved in distilled water
at 90 ◦C and stirred manually until a homogeneous solution was obtained. Then, the BaSO4
powder was added, after which the mixture was stirred manually until thickened. The
solution was dropped onto a cover glass, which was left on a hot plate at 30 ◦C until the
water evaporated and a solid layer was formed. The prepared diffuse reflector was placed
on the capillary tube, as shown in Figure 4.
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3. Results

Figure 5 shows the obtained fluorescence spectra of Coumarin 1, excited, respectively,
through an optical-fiber-coupled LED and direct excitation by an LED. The corresponding
excitation set-up schemes are presented in Figures 2 and 3, respectively. The spectra
were obtained at the spectrometer’s minimum integration time of 5.22 ms. Also, the
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figure shows the output spectrum of the LED at 367 nm obtained through an EF, with the
EF and spectrometer fiber spaced apart to prevent detector saturation, which occurs at
65130 ADC counts.
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presented [49].

The LED was fed with a forward current value of 90 mA, where the full width at
the half maximum (FWHM) of 15.6 nm of the LED spectrum was measured. The LED
output wavelength was close to the absorption maximum of Coumarin 1 at 373 nm [49],
which, combined with the good overlap of the LED spectrum with the dye absorption
curve, resulted in very efficient excitation.

The resulting fluorescence spectrum of the transverse excitation through an optical-
fiber-coupled LED was centered at 450 nm and had an FWHM of 59.6 nm. As can be
seen, the intensity is sufficient and can be easily detected by the spectrometer, but will not
be sufficient to cover the losses on the way to the output of the monochromator despite
the high power of the LED. We attribute this to the characteristic feature of LEDs of their
emission area being greater compared to that of LDs.

Figure 6 shows the die emitter of the same LED type and with the lens removed, as
well as an optical fiber placed on top with a cladding diameter of 125 µm for comparison.
The picture was taken through an optical microscope (Olympus, Tokyo, Japan), and the di-
mensions of the LED emitting surface were determined to be approximately 1 mm × 1 mm.
This means that a significant part of the output radiation of the LED was not accepted
by the optical fiber; therefore, the intensity of the excitation radiation from the fiber was
too low and insufficient to cause significant fluorescence. For this reason, we resorted to
the scheme of Figure 3, where the receiving fiber, together with the capillary tube, were
positioned in such a way as to obtain a maximally intense fluorescent signal.
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Figure 6. An optical microscope image of the LED chip with an optical fiber on it with dimensions
for comparison.

The resulting fluorescence spectrum of the direct excitation by an LED is shown in
Figure 5 and had a central wavelength of 450 nm and an FWHM of 58 nm, again with the
RF and the spectrometer fiber slightly decoupled to prevent detector saturation. Clearly,
with this excitation configuration, the intensity of the excitation radiation was significant
and the fluorescence signal easily saturated the detector even at a minimal integration
time value.

Figure 7 shows a series of spectra from the monochromator output after tuning ac-
cording to the scheme presented in Figure 3. The peak of the maximum intensity had an
FWHM of 11.6 nm. The difference in the signal intensity before and after the monochro-
mator is significant due to energy losses at the fiber connectors, losses associated with the
focusing zone in front of the monochromator OF facet, and also from diffraction from the
grating itself.
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Figure 7. Output spectra from the monochromator after wavelength tuning the fluorescence signal
from Coumarin 1 in ethanol directly excited by a LED.

For comparison with an excitation source other than an LED, the scheme in Figure 2
was used, in which the difference was that the LED was replaced by a DPSS Nd:YAG laser
and the dye was replaced by Rhodamine 6G. Figure 8 shows the laser spectrum with a
peak at 531.7 nm and an FWHM of 0.74 nm, the fluorescence spectrum of Rhodamine 6G
before the monochromator with an FWHM of 39.6 nm as well as after the monochromator
with an FWHM of 11.7 nm centered at 558.8 nm. Again, the spectra were acquired at an
integration time of 5.22 ms.
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Figure 8. Fluorescence spectra of Rhodamine 6G in glycerol excited with a fiber-optic coupled DPSS
Nd:YAG laser. The fluorescence spectra are at the input and at the output of the monochromator.
Also shown is the excitation laser peak at 532 nm.

The spectra from the laser source and the fluorescence before the monochromator were
at slightly spaced connectors to keep the maximum intensities below the saturation level.
It can be seen that the radiation intensities after the monochromator with laser excitation
through an optical fiber and with direct LED excitation were similar, despite the higher
optical power of the LED. This is primarily due to the smaller emitter area of the laser,
resulting in a higher radiation density, and easier coupling to the optical fiber.

Due to the high divergence of the excitation radiation from the LED and the capture
of only part of the fluorescent signal, which was emitted in all directions, the efficiency
of the whole process was lowered. In an attempt to increase the useful fluorescent signal,
the LED was driven with a forward current ranging from 90 mA to its typical working
value of 150 mA with a 10 mA increment. The resulting spectra after the monochromator
are presented in Figure 9, where an increase in the peak value of the output intensity is
observed with uniform steps corresponding to the driving current of the LED.
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To limit the spread in space of a part of the excitation radiation and also of the
fluorescence signal, we used a low-cost and easy-to-manufacture optical element in the
form of a diffuse reflector. As a reflective substance, BaSO4 powder (having high reflectivity
across the UV-VIS-NIR range) and a PVA binder (with low absorbance in UV-VIS range)
was used. The prepared BaSO4/PVA reflector was used as shown in Figure 4, and the effect
of using it at an LED forward current of 150 mA is shown in Figure 9. As can be seen, even
such a simply made reflector gives a tangible positive effect, leading to an increase in the
intensity of the useful signal.

Figure 10 presents four fluorescence spectra from the same EVOO obtained with
different sample excitation schemes and with different spectral sources. The insets on each
of the figures present the schemes used for the excitation and reception of the signal.
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Figure 10. Fluorescence spectra from EVOO with (a) transverse excitation by direct LED illumination;
(b) longitudinal excitation through an optical-fiber-coupled LED; (c) transverse excitation through an
optical-fiber-coupled LED; (d) longitudinal excitation through an optical fiber with the fluorescence
of Coumarin 1.

In the case of Figure 10a, a drop of EVOO was placed on the facet of an optical
fiber mounted on a single-hole zirconia ferrule, and then positioned over the LED for
illumination. The intense peak around 370 nm is unabsorbed radiation from the LED.
We assume that the peak around 615 nm is associated with the fluorescence of pigments
from the chlorophyll group. Similar results were presented by other research groups
previously [50,51].

In the case of Figure 10b, a scheme with longitudinal excitation from an optical-fiber-
coupled LED was tested. A borosilicate glass ferrule was used with an outer diameter of
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2.3 mm and a length of 10.4 mm with two parallel openings along its length located around
its center, both with inside diameters of 125 µm. Two optical fibers with core diameters of
105 µm were placed in them, one for the excitation radiation and the other for receiving the
fluorescence. The two optical fibers were fixed with an optical glue and their faces were
polished on a polishing machine. The ferrule was placed in a tube that was filled with the
EVOO sample. The small peak around 370 nm was a reflection at the EVOO/air interface.
Visual observation of the irradiated zone shows strong fluorescence of a red color, which
we assume was from the characteristic strong peaks of chlorophyll and pheophytin around
670 nm, which is reported in the literature [52]. We failed to detect this peak due to the
spectral limitation of the used spectrometer at 626 nm.

In the case of Figure 10c, we used a transverse excitation through an optical-fiber-
coupled LED. The excitation radiation from the LED was directed by means of an optical
fiber and a micropositioner to the front of the RF, as shown in Figure 2, where a drop of
the EVOO sample is located. The peak around 370 nm was also from a reflection at the
EVOO/air interface. It can be seen that in all three cases of the LED excitation, the obtained
spectra were similar.

In the case of Figure 10d, longitudinal excitation from an optical-fiber-coupled LED
was used again, but this time, the excitation radiation was the fluorescence spectrum of
Coumarin 1 induced by using the scheme of Figure 4. The peak at 515 nm in Figure 10d
and also that in Figure 10b are associated with the presence of vitamin E. The peak at
480 nm and the weak peak around 445 nm in Figure 10d are associated with the presence
of oxidative products [53–56]. The obtained spectrum at an integration time of 1 s was
rather weakly intense. For this reason, we did not try excitation with radiation from the
monochromator because we were unable to detect the more intense fluorescence from
EVOO after 626 nm, which is commonly reported in the literature [52].

We therefore decided to use the highly efficient fluorescent dye Coumarin 6, which
emits its peak within the spectral range of our spectrometer.

Figure 11a shows the Coumarin 6 spectrum obtained under longitudinal excitation
through an optical fiber with fluorescence from Coumarin 1, a significant portion of which
overlaps the absorption spectrum of Coumarin 6 [57]. As can be seen from Figure 11a, the
obtained fluorescence at an integration time of 1 s is clearly pronounced.
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In Figure 11b, the obtained spectrum from Coumarin 6 is shown with longitudinal
excitation through an optical fiber with radiation from the monochromator at 443 nm.
The excitation spectrum falls entirely into the absorption spectrum of Coumarin 6, close
to its maximum at 457 nm [57]. In the same figure, the inset shows the scheme used to
capture the fluorescence of Coumarin 6. The obtained spectra show that the signal was
detectable, thereby demonstrating the ability to detect a specific fluorophore. However,
the fluorescence obtained was quite weak as it was observed for an integration time of 1 s.
This requires further improvements to be made to the LED-induced fluorescence scheme to
increase the intensity of the output radiation from the monochromator.

Figure 12a shows the spectrum of Perylene obtained under longitudinal excitation
through an optical fiber with fluorescence from Coumarin 1, which partially overlaps
the absorption spectrum of Perylene [58]. The resulting fluorescence signal was clearly
pronounced despite the slight overlap between the absorption and excitation spectra. We
believe that this is because of the sufficiently intense excitation fluorescence radiation.
In Figure 12a, the red lines mark the three characteristic Perylene fluorescence peaks,
respectively, at 445.5 nm, 466 nm, and 500 nm.
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Figure 12. Fluorescence spectra from Perylene in cyclohexane obtained with longitudinal excitation
through an optical fiber with (a) the fluorescence from Coumarin 1 in ethanol; (b) a 435 nm output
from the monochromator.

In the case of Figure 12b, the Perylene was longitudinally excited through an optical
fiber with radiation from the monochromator at 435 nm, which coincided very well with
the maximum absorbance peak from the Perylene curve. Despite the large losses to the
output of the monochromator and the fact that the excitation radiation at 435 nm was
not maximally intense, we still obtain a detectable signal. Moreover, the characteristic
fluorescence peaks of Perylene are clearly distinguishable. The peaks at 445.5 nm and
466 nm are clearly distinguished and we may speculate about the presence of the peak at
500 nm, all marked with red lines in Figure 12b.

4. Discussion

The obtained results show that the observation of fluorescence by excitation of the dye
solution from a fiber-coupled LED does not yield sufficient power despite the high optical
power of the LED and the factory-installed optics. This is due to the large divergence of the
excitation light and the large emitting surface of the LED chip compared to the diameter of
105 µm of the EF core. In this way, the EF receives a small fraction of the LED radiation,
resulting in a lower energy density in the excitation region of the fluorescent medium.
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From the comparison made with laser excitation through an optical fiber, it can be
seen that similar results comparable to those with direct LED excitation are easily achieved.
It should be noted that this is the case when using an excitation laser source of significantly
lower power, at a few mW at most. This opens up the possibility of using commercially
available high-power laser diodes or DPSS lasers, which would significantly increase the
intensity of the output fluorescence signal. As previously demonstrated by us [40–45], the
use of fiber micro-optics further increases the flexibility of such fiber-coupled laser-excited
broadband sources. In this way, potential opportunities for new research in this direction
are revealed.

Based on the experimental results, we can conclude that in the case of LED-induced
fluorescence, a configuration with direct LED excitation is more suitable compared to
the excitation through a fiber-coupled LED. We demonstrate the two main approaches to
increase the efficiency of LED-induced fluorescence. One way to increase the excitation
efficiency is to use the LED’s maximum capability to emit light without being damaged,
namely, by increasing the forward current. The other is to use an optical element, such as
the demonstrated BaSO4/PVA diffuse reflector, to concentrate the excitation radiation onto
the dye solution and direct more fluorescence to the RF. As can be seen from the presented
results, the second approach with a diffuse reflector has potential for development and
future experimentation in this direction. For example, increasing the concentration of
BaSO4 in the composition of the reflector and optimizing its shape will potentially lead to
the better collection of the dye fluorescence. The use of more than one LED for fluorescence
excitation, and using dyes with high quantum efficiencies, could potentially lead to a
significant increase in the fluorescence intensity.

The resulting monochromator spectrum with an FWHM of the order of 11 nm is
comparable to that of the LED excitation source, which is, in principle, used itself as an
excitation source for EEM fluorescence spectroscopy. It should be noted that the obtained
fluorescence spectra were produced using a highly sensitive fiber-optic spectrometer with
a 25 µm input slit illuminated by a 105 µm core optical fiber. Thus, only a small fraction of
the output monochromator or the research sample signals is detected by the spectrometer.

We hypothesize that using a larger spectrometer slit or a larger core fiber will yield
better results in terms of signal intensity, which, however, will be at the expense of reduced
spectral resolution. The complexity of the fluorescent peaks of different fluorophores or
distinctive peaks of a single fluorophore in a food matrix may merge and no longer be
measured separately. For these reasons, an optical fiber spectrometer with interchangeable
slits will be a more flexible solution for EEM spectroscopy in food system analysis. In
principle, it is possible to combine the radiation from the LED with the induced fluorescence.
In this way, the useful width of the light spectrum will increase, allowing for the broader
tuning of the radiation from the monochromator.

5. Conclusions

To the best of our knowledge, for the first time in the scientific literature, we demon-
strate the possibility of using LED-induced fluorescence from an organic dye as a light
source with potential applications in EEM fluorescence spectroscopy for food system anal-
ysis. The experimental results show that fluorescence can be induced and a detectable
signal can be obtained from both fluorophores with a smooth spectral profile like Coumarin
6 or those with a specific profile like Perylene. It was demonstrated that direct excitation,
without an optical fiber, was more suitable when using LEDs at which a sufficiently intense
fluorescent signal is generated. The ability to connect the output of the monochromator to
an optical fiber allowed for the testing of samples with a volume of the order of 1 µL.
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