
Citation: Wu, D.; Lu, B.; Xu, Z. Price

Forecasting of Marine Fish Based on

Weight Allocation Intelligent

Combinatorial Modelling. Foods 2024,

13, 1202. https://doi.org/10.3390/

foods13081202

Academic Editors: Tao Huang

and Wenge Yang

Received: 6 March 2024

Revised: 29 March 2024

Accepted: 10 April 2024

Published: 15 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

foods

Article

Price Forecasting of Marine Fish Based on Weight Allocation
Intelligent Combinatorial Modelling
Daqing Wu 1,2,* , Binfeng Lu 1,* and Zinuo Xu 3

1 College of Economics and Management, Shanghai Ocean University, Shanghai 201306, China
2 China Fisheries Development Strategy Research Center, Shanghai 201306, China
3 School of AI and Advanced Computing, Xi’an Jiaotong-Liverpool University, Suzhou 215400, China
* Correspondence: dqwu@shou.edu.cn (D.W.); m220751354@st.shou.edu.cn (B.L.)

Abstract: China is a major player in the marine fish trade. The price prediction of marine fish is
of great significance to socio-economic development and the fisheries industry. However, due to
the complexity and uncertainty of the marine fish market, traditional forecasting methods often
struggle to accurately predict price fluctuations. Therefore, this study adopts an intelligent combina-
tion model to enhance the accuracy of food product price prediction. Firstly, three decomposition
methods, namely empirical wavelet transform, singular spectrum analysis, and variational mode
decomposition, are applied to decompose complex original price series. Secondly, a combination of
bidirectional long short-term memory artificial neural network, extreme learning machine, and expo-
nential smoothing prediction methods are applied to the decomposed results for cross-prediction.
Subsequently, the predicted results are input into the PSO–CS intelligence algorithm for weight
allocation and to generate combined prediction results. Empirical analysis is conducted using data
illustrating the daily sea purchase price of larimichthys crocea in Ningde City, Fujian Province, China.
The combination prediction accuracy with PSO–CS weight allocation is found to be higher than that
of single model predictions, yielding superior results. With the implementation of weight allocation
intelligent combinatorial modelling, the prediction of marine fish prices demonstrates higher accuracy
and stability, enabling better adaptation to market changes and price fluctuations.

Keywords: price forecasting; marine fish; intelligent combinatorial modelling; neural network

1. Introduction

Given rapid economic development and the increase in disposable income in recent
decades, consumption structure has been in a state of constant upgrade, with residents
placing greater emphasis on dietary health and protein intake. As a rich source of protein,
marine fish play a significant role in the daily diets of people worldwide and hold an
important position globally. The evolving consumer mindset has led to a significant
increase in the demand for marine fish [1]. However, as the demand for healthy diets
continues to rise, the volatility of marine fish prices has also attracted widespread attention.

In recent years, there have been frequent fluctuations in marine fish prices, which has
had a severe impact on people’s lives and national economic stability. For instance, in the
Ningde area of the Fujian Province, China, there have been substantial price fluctuations
in artificially farmed larimichthys crocea. In the period leading up to the Chinese Spring
Festival in 2020, fish farmers urgently sold off large quantities of larimichthys crocea to
recoup their investments, resulting in a significant increase in supply and a subsequent
depression in prices, which fell below 3.15 US dollars/kg. Before the Mid-Autumn Festi-
val, the supply was severely inadequate, leading to a substantial increase in acquisition
prices, reaching over 5.83 US dollars/kg [2]. The price volatility of marine fish affects the
decision-making processes of producers, consumers, governments, and other stakeholders.
Therefore, accurately predicting changes in marine fish prices has become an urgent need
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for decision-makers and relevant stakeholders. Establishing an efficient and accurate ma-
rine fish price forecasting model is crucial in preventing adverse impacts on people’s lives
caused by unforeseen events. This measure plays a significant role in addressing issues
related to agriculture, rural areas, and farmers, and in promoting agricultural informa-
tization. The concept of “food systems thinking” emphasizes the importance of healthy
diets and the complexity of relationships between foods. In this study, we will apply this
concept, integrating marine fish price forecasting into a broader food system [3]. Through
this approach, we aim to establish a predictive system for marine fish prices, providing
decision-makers with more accurate information and promoting sustainable development
and precise agricultural management.

Predicting prices of marine fish is a focal issue in the field of marine fish price research,
and research methods exhibit diversification. The price of marine fish demonstrates com-
plex volatility and nonlinear characteristics, representing a typical complex time series
that poses significant challenges for accurate forecasting. Traditional econometric methods
commonly employed in price forecasting include autoregressive integrated moving average
(ARIMA) [4] and exponential smoothing (ETS) [5]. These methods have been widely used
in the field of price forecasting, where they have been adapted to various agricultural
product price characteristics, gradually improving the predictive capacity of models as
historical data becomes more abundant and precise [6,7]. Machine learning (ML) methods
possess powerful data-driven attributes and adaptive learning capabilities, enabling them
to effectively extract hidden factors that traditional methods fail to capture. Models such as
extreme learning machine (ELM) [8] and long short-term memory (LSTM) networks [9] are
employed to output results. Compared to traditional econometric methods, these models
exhibit higher accuracy, robustness, and generalization, allowing for more precise predic-
tion of agricultural product prices. On one hand, when dealing with high-dimensional and
large-scale prediction problems, shallow machine learning algorithms like support vector
machines (SVM) and backpropagation neural networks (BPNN) face significant limitations,
including the curse of dimensionality and ineffective feature representation [10]. On the
other hand, although individual model prediction errors fluctuate greatly, overall precision
decreases as the prediction horizon lengthens. However, not all artificial intelligence mod-
els outperform traditional econometric forecasting methods in practical predictions [11,12].
In previous research on predicting the prices of aquatic products, Hasan et al. [13] used the
ARIMAX model to forecast catfish prices, and the results indicated that the model has high
predictive accuracy both in-sample and out-of-sample. Nam and Sim [14] improved the
accuracy of the ARIMA model by using the improved Diebold Mariano test, demonstrating
better performance in predicting abalone prices. Gordon [15] used the ARDL/Bounds
model to forecast lobster prices. Wu et al. [16] used the VMD-IBES-LSTM mixed method
to predict the prices of five aquatic products in China, including grass carp, crucian carp,
carp, silver carp, and scallops. The results showed that this method better explained the
seasonality and trend of changes in the consumer price index of aquatic products in China.
Hence, appropriate prediction models should be selected based on the characteristics of the
data and task at hand.

Combination models, by integrating the advantages of traditional statistical methods,
intelligent optimization algorithms, and artificial intelligence techniques, set prior assump-
tions and perform data processing for prediction problems, thereby reducing learning
biases and significantly enhancing the fitting ability of predictive models [17]. In terms
of research methodology, scholars have gradually developed a “decompose–integrate”
hybrid model, which has improved predictive performance to some extent. Unlike general
hybrid models, the decompose–integrate framework first decomposes agricultural product
prices into multiple components, and then predicts each component using correspond-
ing forecasting methods. Since its inception, this approach has been applied in various
fields, such as commodity prices and energy, yielding favorable results [18]. In the field
of complex time series forecasting modeling, the decompose–integrate methodology is
considered an effective strategy for improving prediction accuracy. Its core idea is to use
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signal decomposition algorithms to break down complex time series into a series of rela-
tively simple and stationary sub-sequences, thereby reducing the complexity of prediction
modeling tasks [19]. Techniques such as empirical wavelet transform (EWT), empirical
mode decomposition (EMD) [20], and singular spectrum analysis (SSA) [21] have been
adopted to decompose the original data sequence and eliminate noise in the time series. By
separately modeling the decomposed components, such as trend, seasonality, and residuals,
and recombining them to obtain the predicted values of the original time series, more
accurate forecasting results can be achieved compared to directly modeling the original
time series.

However, a substantial amount of theory and practice have demonstrated that it is
impossible for a single model to capture both linear and nonlinear patterns in agricul-
tural product price sequences. Therefore, scholars have introduced hybrid models for
price prediction. A hybrid model combines the prediction results of different forecasting
methods to form new predictions. The most used combination strategy is to use statistical
methods, such as the mean method, median method, minimum error method, and more
complex Bayesian averaging method, to determine weights [22]. This strategy achieves
complementarity among individual models, thereby capturing the underlying patterns
in the sequence more accurately [23]. This conclusion has been proven in previous time
series literature [24]. In the field of swarm intelligence optimization algorithms, research
has shown that the cuckoo search (CS) algorithm has stronger comprehensive advantages
in terms of parameter number, versatility, and global optimization ability, and can flexibly
combine with other algorithms such as PSO, demonstrating wider applicability [25].

The research findings presented above indicate that time series decomposition exhibits
high accuracy and wide applicability in predicting marine fish prices. However, single-
model predictions have disadvantages such as limited adaptability, inadequate precision,
and poor robustness. Building upon previous research, this study proposes a weight
allocation method based on particle swarm optimization with cuckoo search algorithm
(PSO–CS). This paper presents several novel contributions:

(1) We introduce a weight allocation intelligent combinatorial modelling forecasting
framework, which strategically assigns weight distribution across distinct models.
This framework exhibits marked superiority in terms of flexibility, precision, and
robustness.

(2) In our approach, prior to forecasting, we employ various decomposition techniques
to partition the original dataset into multiple sub-series. This method accentuates
intricate details within the time series, thereby rendering sub-series fluctuations
smoother relative to the initial series, and subsequently improving predictive accuracy.

(3) We leverage the innate capabilities of self-learning and social learning introduced by
the PSO–CS algorithm to enable an enhancement in global search efficiency.

The remainder of this paper is organized as follows. Section 2 briefly introduces the
construction of the PSO–CS algorithm. Section 3 presents a weight allocation intelligent
combinatorial modelling forecasting framework. Section 4 provides an overview of the data
context. In Section 5, the results of the experiments are analyzed. Finally, the conclusion is
given in Section 6.

2. Fish Price Prediction Framework Based on PSO–CS Weight Allocation Algorithm

The basic idea of the particle swarm iteration-based cuckoo hybrid search optimization
algorithm is in the iterative process of particle swarms. The PSO algorithm is used to update
the velocity and position of the particles in each generation to obtain the optimal position of
a group of particles, and then the optimal particle position is entered into the CS algorithm
to continue to iteratively update. Based on the number of iterations of the original algorithm,
each particle swarm adds one update and calculation of the CS algorithm, and there is little
change in the running time.

Given m individual forecasting models, each assigned a corresponding weight denoted
as wi(1, 2, . . . , m), the combined forecast can be expressed as:



Foods 2024, 13, 1202 4 of 14

ŷcombined = ŷ1 ∗ w1 + ŷ2 ∗ w2 + · · ·+ ŷm ∗ wm (1)

For optimal weight assignment of combined models, determining the weights of each
individual prediction model is critical. In this study, the corresponding weights for each
individual model are estimated by constructing an optimization problem that minimizes
the error between the combined predicted and observed values.

Thus, an optimization problem estimating the reasonable weight of each individual
model is construed as below:

Min G(y− ŷcombined) s.t.
m

∑
i=1

wi = 1 (2)

where G is a predetermined function, such as sum squared (SSE), mean squared (MSE),
sum absolute (SAE), mean absolute (MAE), etc., and y is the observed value.

The proposed PSO–CS weight assignment method is based on an improved CS al-
gorithm, namely the PSO–CS algorithm. The CS algorithm, inspired by cuckoo’s brood
parasitic behavior, is a new population-based search paradigm. Cuckoos seek out nests of
other hosts and then lay their eggs, which may be found and discarded by the hosts. To
enhance the survival rate of their eggs, cuckoos can imitate the host’s eggs, or even take
them out. The CS algorithm is efficient, robust, and relatively simple in comparison with
other evolutionary computing algorithms due to its few control parameters. Furthermore,
the levy flight, instead of standard random walk, is applied in CS. This helps to explore
the huge solution space compared to the linear relationship, due to its infinite mean and
variance, as well as its nonlinear relationship. However, the huge exploration space of
the CS algorithm may lead to poor convergence and accuracy of solutions, so the PSO
algorithm is introduced to optimize the CS algorithm. The proposed PSO–CS weight
assignment method can be expressed as follows:

The objective function F(w) = ∑n
i=1 y− |ŷn ∗ xn| is defined, where xn is the value of

the weight coefficient, ŷn is the nth individual forecasting model, and ∑n
i=1 xi = 1.

Parameters include population size N, maximum number of iterations T, minimum
weighing value wmin, maximum weight wmax, the acceleration coefficients c1 and c2, max-
imum discovery, and probability pa ∈ [0, 1]. A set of randomly generated host nests
Xi = {xi1, xi2, . . . , xiD} and the corresponding velocities Vi = {vi1, vi2, . . . , viD}, and host
nests Xi(i = 1, 2, . . . , N) to its location in the D-dimensional space, is a potential solution
to the problem. In the t iteration, the update speed of the first i (the first nest) is built by
optimizing the location of the first i.

pbest(t)i =
{

pbest(t)i1 , . . . , pbest(t)i,D

}
(3)

The optimal position for the entire population gbest(t) is calculated, and then the
nested positions are updated:

v(t+1)
ij = w× v(t)ij + c1 × rand(0, 1)×

[
pbest(t)ij − x(t)ij

]
+c2 × rand(0, 1)×

[
gbest(t)j − x(t)ij

] (4)

x(t+1)
ij = x(t)ij + v(t+1)

ij (5)

These are v(t+1)
i,j and x(t+1)

ij , and they represent (t + 1) of w = wmax − wmax−wmin
T × t,

which are the inertia weights. x(t)ij = pbest(t)ij updates the x(t+1)
ij , where L(λ) ∼ u =

t−λ(1 < λ ≤ 3) is x(t+1)
ij = x(t)ij + α ~ L(λ), and α is the step size, which should be pro-

portional to the size of the optimization problem. This x(t+1)
ij will change randomly with

probability pa.
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Replacements x(t+1)
ij are defined by the x(t)ij if the fitness value F

(
x(t+1)

ij

)
> F

(
x(t)ij

)
.

Then, the list of nests is found by sorting the list of t generations of the best nests.
The PSO–CS hybrid optimization algorithm combines the search capability of PSO and

the global search capability of CS to improve the optimization capability of the algorithm
in general. Experimentally, it has been proven that the accuracy of the PSO–CS hybrid
optimization algorithm is significantly better than that of the PSO algorithm, and it is more
stable [26].

3. Forecasting Framework

This article proposes an optimal combination framework for predicting the prices of
marine fish based on the PSO–CS weighted aggregation model, as shown in Figure 1. The
framework consists of five steps:

• Step 1: Data decomposition. The price data of marine fish is decomposed into multi-
ple sub-sequences using EWT, VMD, and SSA decomposition techniques, aiming to
identify the main sequences.

• Step 2: Individual prediction. The selected sub-sequence components are sequentially
inputted into various prediction models, including LSTM, ELM, and ETS models, to
obtain predictions for each component.

• Step 3: Removal of large errors. An error analysis is performed on the predicted results
of the components. Components with significant errors are removed, and the original
sequence of the removed component is merged with the residual sequence.

• Step 4: Combination. The predicted results of each group of components are summed
to obtain the final prediction result for that group.

• Step 5: Prediction aggregation. The PSO–CS weight allocation method is employed
to determine the optimal weights for different individual predictions. Then, the
predictions of each component are weighted accordingly to obtain the final aggregated
prediction result.

Figure 1. Diagram of the combined forecasting framework.
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4. Empirical Analysis
4.1. Data Description

In 2020, the annual aquaculture production of larimichthys crocea in China reached
254,000 tons, accounting for 14.5% of the total marine fish aquaculture production in the
country. The larimichthys crocea aquaculture industry has become one of the distinctive
pillar industries in the eastern Fujian Province.

This research data came from the WeChat official account platform of “Ningde Larim-
ichthys Crocea”, operated by the Fishery Association of Ningde City, Fujian Province,
and selected the daily reference price for sea surface purchase of larimichthys crocea of
400–500 g published by the platform as the research object. The selected time period ranged
from 13 May 2015 to 24 May 2023, and missing values were filled using the backward filling
method. A total of 2948 daily price data points were collected, as shown in Figure 2.

Figure 2. Price trend of Ningde’s larimichthys crocea from 13 May 2015 to 24 May 2023.

Descriptive statistics for the reference purchase prices of larimichthys crocea in the
Ningde sea area covering the period from 13 May 2015 to 24 May 2023 are presented
in Table 1 (in Chinese Renminbi, RMB). The time series data exhibited right asymmetry
and platy kurtosis (non-Gaussian distribution), indicating high volatility and challenging
predictability. Therefore, a systematic investigation into forecasting methodologies was
warranted to enhance the efficiency of predicting these non-Gaussian time series datasets.
The sample data was divided into three subsets. The training set consisted of the first 80% of
the price series, totaling 2358 data points; the validation set consisted of the remaining
20% of the series, totaling 590 data points.

Table 1. Descriptive statistics of the reference price of the sea surface purchase of Ningde’s larim-
ichthys crocea from 13 May 2015 to 24 May 2023. RMB.

Norm Average Maximum Minimum Upper
Quartile

Standard
Deviation Skewness Kurtosis

14.7436 26.0000 11.5000 14.5000 2.1167 2.3174 8.3753

4.2. Evaluation Indicators

To accurately evaluate the prediction ability of different models, this paper used
five indicators to evaluate the models: mean square error (MSE), root mean square error
(RMSE), mean absolute error (MAE), absolute percentage error (MAPE), and symmetric
mean absolute percentage error (SMAPE). It is crucial to clarify that the mean absolute
percentage error (MSE, RMSE, MAE, MAPE, SMAPE) values were computed specifically
for the validation sample, and not for the entire dataset. This distinction ensured the
accuracy and relevance of the assessment, focusing on the predictive performance within
the validation set rather than across the entire dataset.
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MSE =
1
N

N

∑
i=1

(x̂t − xt)
2 (6)

RMSE =

√√√√ 1
N

N

∑
i=1

(x̂t − xt)
2 (7)

MAE =
1
N

N−1

∑
i=0
|x̂t − xt| (8)

MAPE =
1
N

N

∑
i=1

∣∣∣∣ x̂t − xt

xt

∣∣∣∣× 100% (9)

SMAPE =
2
N

N

∑
i=1

|x̂t − xt|
|x̂t|+ |xt|

× 100% (10)

5. Results
5.1. Decomposition Result

In VMD decomposition, the parameter K represents the number of decomposed
modes. A value of K that is either too large or too small can result in excessive noise
or loss of information, which adversely affects the accuracy of subsequent predictions.
Therefore, when selecting VMD parameters, it is necessary to balance the relationship
between the value of K and prediction accuracy. Generally, the optimal value of K can
be determined through methods such as cross-validation to ensure that VMD effectively
extracts the important oscillatory patterns from the data and establishes accurate models
for subsequent data analysis and prediction. After conducting experiments, the final
decision was made to set the value of K in VMD decomposition as 5. The decomposed IMF
components are shown in the following Figure 3.

Figure 3. VMD decomposition.

In this study, the EWT (empirical wavelet transform) algorithm was employed to
decompose the original sequence. Subsequently, seven empirical mode components (EMCs)
were obtained, as shown in the Figure 4. It can be observed that the EWT decomposition
results exhibited a characteristic shift from low frequency to high frequency.
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Figure 4. EWT decomposition.

The original sequence was subjected to embedding, decomposition, grouping, and
recombination steps through singular spectrum analysis (SSA), resulting in the extraction
of six distinct component sequences, as illustrated in Figure 5.

Figure 5. SSA decomposition.
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5.2. Single-Model Prediction Results

After decomposing the original sequence, each component was subjected to combined
predictions using LSTM, ELM, and ETS models. The predictive performance of individual
models was evaluated, and the results are presented in Table 2. The corresponding MAPE
accuracies for different single models are illustrated in Figure 6. The line chart of prediction
results is shown in Figure 7.

Table 2. Assessment of the results of the single-model prediction of the sea surface purchase price of
greater amberjack (Lepomis macrocephalus).

Models MSE RMSE MAE MAPE SMAPE

LSTM

Single model 0.0256 0.1599 0.0693 0.4846 0.6528
EWT 0.0246 0.1569 0.0658 0.4525 0.6173
VMD 0.0231 0.1518 0.0748 0.5217 0.6275
SSA 0.0159 0.1259 0.0428 0.2989 0.4840

ELM

Single model 0.0136 0.1165 0.0479 0.3282 0.5712
EWT 0.0137 0.1170 0.0551 0.3770 0.6132
VMD 0.0081 0.0902 0.0481 0.3307 0.4889
SSA 0.0006 0.0240 0.0113 0.0775 0.3314

ETS

Single model 2.4673 1.5708 1.1937 8.8844 7.7578
EWT 1.9050 1.3802 1.1124 7.5960 7.6910
VMD 6.3686 2.5236 2.0953 17.5228 15.6253
SSA 1.8503 1.3603 1.0969 7.6466 7.6380

Ave 1.0597 0.6481 0.4928 3.7101 3.5915

Figure 6. MAPE values for each single model of the sea surface purchase price of greater amberjack
(Lepomis macrocephalus).

Firstly, in most cases, the predictive accuracy of the non-decomposition model was
higher than that of the models using EWT, VMD, and SSA decomposition techniques.
However, the predictive accuracy of the ETS model based on VMD decomposition was
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lower than that of other decomposition models. In ETS prediction, errors in the VMD
decomposition results were amplified.

Secondly, it can be observed that the predictive accuracy of the models based on
LSTM and ELM were higher than that of the ETS model. The main reason for this is that
LSTM and ELM are artificial intelligence algorithms that excel in handling information
contained in different components after decomposition. Generally speaking, they have
stronger adaptability compared to linear models. Prediction models based on artificial
intelligence algorithms are more suitable when combined with decomposition techniques.
On the other hand, the ETS model is a complex nonlinear prediction model that is more
suited for short-term trend forecasting. These findings indicate that the performance
of decomposition techniques and prediction models tends to be diverse. Therefore, the
combination of models is particularly important for mitigating the risk of model selection.

Regarding decomposition techniques, the predictive model using the SSA decomposi-
tion technique yielded better results in predicting the acquisition price of Spanish Mackerel
on the sea surface compared to the predictive models using EWT, VMD decomposition,
and no decomposition. The MAPE values were reduced by 37.57%, 58.54%, and 42.88%,
respectively, indicating that the SSA decomposition technique effectively discovered the
hidden factors behind the price fluctuations in this dataset.

Figure 7. Results of different combinations of prediction models for greater amberjack.

5.3. Combined Model Prediction Results

This section presents the performance of PSO–CS weight allocation for combined
prediction. Table 3 showcases the weight allocation results for the combined prediction of
the acquisition price of larimichthys crocea in the sea.

Table 3. Results of the prediction weight allocation for the combination of the sea surface purchase
price of greater amberjack.

Models Weight 1 Weight 2 Weight 3 Mini Fitness

EWT 0.97762 0.017449 0.054719 5.4956
VMD 0.45978 0.20007 0.39683 4.7631
SSA 0.3202 0.56079 0.16737 5.5289

LSTM 0.27499 0.69521 0.081055 5.5193
ELM 0.54832 0.31219 0.19195 5.5163
ETS 0.13105 0.90177 0.022209 8.0085
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Tables 4 and 5 present the evaluation of the predicted results and the reduction in
prediction error for the PSO–CS weighted combination forecasting of larimichthys crocea’s
sea surface purchase price. In most cases, the performance of the PSO–CS weighted
combination method was superior to that of the single-model forecasting methods. PSO–CS
overcomes the limitations of linear methods by adaptively optimizing weights instead of
directly classifying weights based on the performance of individual models, resulting in
better performance. Compared to single-model forecasting methods, the PSO–CS approach
reduced MSE, RMSE, MAE, MAPE, and SMAPE by 44.43%, 22.69%, 12.21%, 22.88%, and
14.13%, respectively.

Table 4. Assessment of the results of the forecasting of the sea level purchase price combinations for
greater amberjack.

Models MSE RMSE MAE MAPE SMAPE

based on EWT 0.01857427 0.13628745 0.09340442 0.65263831 0.818293917
based on VMD 0.92698336 0.96279975 0.79625986 5.37405448 5.594460685
based on SSA 0.04924591 0.22191419 0.1785835 1.2566242 1.327562983

based on LSTM 0.00845136 0.09193128 0.05254116 0.36355915 0.57555956
based on ELM 0.00692352 0.08320768 0.03967529 0.27210333 0.494659372
based on ETS 5.16845769 2.27342422 1.91025014 12.9420506 14.04080338

Ave 1.02977268 0.62826076 0.51178573 3.47683835 3.80855665

Table 5. Reduction rate of assessment error for the combination of forecasting results of the sea
surface purchase price of greater amberjack (Lepomis macrocephalus).

Models MSE RMSE MAE MAPE SMAPE

based on EWT 0.97132576 0.75282352 0.77280464 0.76762124 0.72438143
based on VMD 0.56545996 −0.0443994 −0.0768843 0.12261747 −0.0041503
based on SSA 0.92085782 0.55914784 0.5345503 0.53012071 0.52806995

based on LSTM 0.62066388 0.38158246 0.16872412 0.17270049 −0.0004921
based on ELM 0.22984798 0.04248147 0.02329428 0.02244412 −0.0369583
based on ETS −0.6419242 −0.3304881 −0.3896967 −0.2429374 −0.36305

Ave 0.44437186 0.22685796 0.17213207 0.2287611 0.141300095

However, it exhibited poor performance in the ETS-based forecasting method. This
may be due to the larger errors in the ETS during the single-model forecasting process,
which hindered the effective utilization of PSO–CS in the weight allocation stage, leading
to inferior results. Similarly, the VMD-ETS-based forecasting already yielded significant
errors in the single-model forecasting stage, making it challenging for the PSO–CS weighted
combination model to demonstrate its performance in the weight allocation stage.

Figure 8 illustrates the reduction in average error of the PSO–CS method compared
to single-model predictions. Considering the above, the experimental results effectively
demonstrate the robustness of the proposed PSO–CS hybrid model.

5.4. Results and Discussion

Understanding the forecast horizon required by decision-makers is crucial for effec-
tive decision-making when conducting price predictions. The forecast horizon can vary
depending on the application scenario, covering various needs from short-term to long-
term. For instance, if decision-makers need to make decisions in the coming months, then
price predictions for the next month may be more practically meaningful. Conversely, if
decision-makers need to plan for future years strategically, then predictions spanning two
years or longer may be more critical.

In this study, we recognized that different decision-makers have varying demands for
price predictions over different time horizons. Therefore, this paper chose daily prices with
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higher volatility as the research focus, as it better captured the factors influencing prices.
Furthermore, the ratio of the training set to the validation set was set at 4:1. Our goal was
to develop a flexible and customizable intelligent combinatorial model that could generate
price predictions over different time horizons according to the needs of decision-makers.
We recommend that decision-makers maintain a sample size and forecast horizon ratio of
4:1 when using our model for predictions. This way, whether short-term strategic planning
or long-term strategic planning is the goal, our model can provide accurate and reliable
prediction results to assist decision-makers in making informed decisions.

Figure 8. Average error reduction of PSO–CS method relative to single model.

The proposed predictive model in this paper may encounter variations in the avail-
ability and quality of aquaculture market data across different countries. When conducting
cross-national comparisons, particular attention should be paid to the completeness, accu-
racy, and timeliness of the data. Cultural factors and consumption habits in the seafood
market can also differ significantly between countries. For instance, demand levels and
price sensitivity for certain marine fish may vary noticeably. Therefore, when conducting
cross-national comparisons, it is crucial to consider these cultural and market differences,
as different markets may potentially require customized analyses and model adjustments.
Additionally, different types of marine fish (such as fish, shellfish, crustaceans, etc.) may
exhibit varying data behaviors in the market, necessitating targeted data collection and
analysis. Whether the proposed model’s performance in the Chinese market can be ex-
trapolated to other countries’ seafood markets and applied to other types of marine fish
products needs to be assessed through a series of validations and tests, possibly employing
techniques like cross-validation and model comparisons to evaluate the model’s robustness
and applicability. The proposed model in this paper provides some reference value for
price prediction in global marine fish markets.

6. Conclusions

The prediction of marine fish prices holds significant importance in the fields of
agriculture and fisheries. This study investigates the design and application of an intelligent
weight allocation method, which offers decision-makers more scientifically and reliably
predicted price outcomes. This aids in guiding relevant decision-making and strategic
planning processes. It is crucial for decision-makers, producers, and consumers alike.
Decision-makers can utilize price forecasts to formulate rational policies and strategies that
promote sustainable development and maximize benefits. These aid regulatory bodies in
market supervision by maintaining a fair competitive environment. Producers can devise
reasonable production plans and supply chain management based on the forecast results,
thereby meeting market demand and enhancing efficiency. Consumers can better plan their
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purchasing behavior through price predictions, avoiding economic burdens resulting from
future price increases.

This paper proposes a weight allocation model based on PSO–CS, which effectively
integrates multiple decomposition and forecasting models to improve the accuracy and
stability of price prediction in marine fish. By utilizing daily purchase prices of larimichthys
crocea in Ningde City, Fujian Province as data, several conclusions were derived regarding
the sample interval. Firstly, the decomposed ensemble prediction model significantly
improved the predictive performance compared to direct prediction models. Secondly, the
accuracy of the SSA-ELM prediction model was 46.33% lower than the other three models
on average, which was better than the other individual models. Thirdly, the combination
prediction model based on PSO–CS weight allocation exhibited significantly superior
performance compared to single-model predictions. The limitations of this study lie in
the potential performance of the model in specific contexts, which may be favorable, but
its applicability in other market environments or periods requires further verification and
exploration. Additionally, the seafood market is influenced by various external factors
such as climate change and policy adjustments, which could impact the model’s predictive
outcomes and necessitate consideration and control measures.

In conclusion, the marine fish price prediction framework based on weight alloca-
tion intelligent combinatorial modelling holds significant importance in the agricultural
and fisheries sectors. Our research provides a scientific basis for decision-making and
business operations in related fields, offering beneficial insights for future research and
practical applications.
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