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Abstract: India has increased its wheat production phenomenally in the last two decades and
it now has a buffer stock of 9.7 million tonnes. However, despite the release of several wheat
cultivars, the end-use quality traits of Indian wheat varieties have not been explored in-depth to
determine the increasing demand of the domestic processing industry as well as export. In this study,
55 wheat genotypes including 47 released varieties, and 8 genetic stocks were grown along with
10 Australian varieties grown during cropping seasons: 2019–2020 and 2020–2021 and diversity in
different physiochemical and rheological traits was evaluated. They showed considerable diversity
in all the quality traits studied. However, very few genotypes could be found suitable for any one
end-use. Five genotypes were found to possess four to five traits for superior bread-making quality.
Two varieties and three advanced breeding lines had up to four good chapati quality traits. None
of the released varieties investigated had suitable traits for biscuit making; however, two breeding
lines possessed requisite quality traits suitable for biscuit making. It is, therefore, concluded that
systematic breeding efforts are required to develop genotypes that bring together the most important
quality traits in a single genotype to be suitable for domestic industry as well as for export.

Keywords: diversity; dough; genotype; end-use; traits; glu-1 score; quality; rheological; wheat

1. Introduction

Wheat (Triticum aestivum L.) stands as the second most cultivated grain crop globally
in terms of acreage and production volume. In the marketing year of 2023–2024, the
global production volume of wheat reached nearly 784.9 million metric tons [1]. India
is the second-largest producer and consumer of wheat globally, with China leading in
production. China produced around 135 million metric tons, while India’s production
stood at approximately 112 million metric tons during the same period (2023–2024). Among
grains, wheat grain/flour stands out for its versatility in producing various end products.
However, efforts to understand the processing quality of different wheat varieties in India
have been limited. The end-use characteristics of a wheat genotype are significantly
influenced by its texture, protein content, and starch characteristics. Indian wheat varieties
are notably known for their hard grain texture, which affects milling properties and flour
quality. The hardness of the grain determines the milling force required, with hard grains
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demanding greater force and resulting in more damaged starch granules and increased
water absorption capacity of the flour/dough [2]. Research studies have highlighted the
importance of endosperm hardness in influencing milling properties, flour yield, starch
damage, water absorption, dough consistency, and development time [3,4].

In grain endosperm, gluten serves as the primary storage protein, consisting of
glutenins and gliadins. When mixed with water, these proteins interact to form a complex
network crucial for dough development [5]. Glutenin, particularly high-molecular-weight
glutenin subunits (HMW-GSs), plays a vital role in providing stability and elasticity to the
gluten structure [6]. Encoded by genes on chromosome 1A, 1B, and 1D, HMW-GSs exhibit
allelic variation influencing gluten properties. The cumulative Glu-score, derived from
these alleles, is a key predictor of flour quality [7,8]. Additionally, low-molecular-weight
glutenin subunits (LMW-GSs), encoded by Glu-3 loci, contribute to gluten viscoelasticity
and are closely linked to gliadin genes on chromosome 1A. Understanding the genetic
regulation of these gluten components is essential for improving wheat quality [9,10].

The baking industry adopts various tests to assess the rheological characteristics of
wheat flour, predicting its suitability for specific applications without conducting actual
baking tests [11,12]. Different wheat flours are recommended based on properties like
protein percentage, sedimentation value, damaged starch percent, and gluten strength for
various products such as bread, biscuits, and chapati [13,14]. In many wheat exporting
countries, wheat is classified into different classes based on its traits in most exporting
nations, but such classification is lacking in India. Adopting international standards for
evaluating wheat quality is crucial for industry adoption and further quality improvement.
In this study, advanced breeding lines and released varieties have been evaluated using
internationally accepted methods to ascertain their quality traits and utility for different
end products, highlighting potential donors for enhancing end-use quality.

2. Materials and Methods
2.1. Plant Materials

In the present investigation, a total of sixty-five wheat genotypes were used for study.
These included ten advanced breeding lines, forty-five bread wheat varieties that had
been released for various agro-climatic zones in India, and ten Australian wheat varieties
(Table S1). The experimental trials were conducted with a randomized complete block (RBD)
design with two replications at experimental fields of the Indian Agricultural Research
Institute (IARI), New Delhi, India, during two consecutive cropping seasons: 2019–2020
and 2020–2021. Each experimental plot comprised two rows, each stretching 3 m in length,
separated by a 10 cm spacing between rows, making a sub-plot size of 0.3 m2, and the total
area of the experimental field amounted to 39 m2.

2.2. Protein Isolation and SDS-PAGE

An HMW-GS protein from each wheat genotype was isolated from flour of five seeds
using the Zhen and Mares method [15]. Flour was mixed with 60% ethanol (v/v) for
30 min to wash out gliadins. The mixture was centrifuged at 5000 rpm for 10 min, and
the supernatant was discarded. The pellet was treated with an extraction buffer of DTT,
SDS, 1 M Tris-HCl (pH 6.8). The mixture was vortexed for 30 min and centrifuged at
10,000 rpm for 10 min. Supernatant containing glutenin protein was collected and SDS–
polyacrylamide gel electrophoresis (SDS-PAGE) analysis was performed [15]. SDS-PAGE
gel was prepared using 10% gradient separation gel (pH 8.5) and a 4% stacking gel (pH
6.8); gel was placed in an electrophoresis tank filled with a running gel buffer of Tris,
glycine, and SDS (pH of 8.3), and protein samples were loaded into the wells after adding
protein loading dye. Electrophoresis was carried out at a constant current of 40 mA for
4 h, and the gels were stained overnight in solution of 0.1% w/v Commissive brilliant
blue R-250, 50% w/v methanol, and 10% w/v trichloro acetic acid. After staining, the gels
were rinsed with distilled water and washed on a horizontal shaker until the excess dye
was removed. Protein bands on the gel were identified and scored according to standard
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nomenclature [16], using reference cultivars with known HMW-GSs. Glu-1 scores of the
studied lines were determined based on the numeric scale developed by Payne et al. for
HMW-GS alleles [7].

2.3. Quality Analysis

The evaluation of 17 different traits was conducted using internationally accepted
methods of the American Association of Cereal Chemists (AACC, 2000) [17]. The traits
included grain hardness index (GHI), thousand kernel weight (TKW), and grain diameter
(GD) and were evaluated using the Single Kernel Characterization System (SKCS) using
Perten Instruments4100, Sweden, as per the AACC method 55-31.01. The test weight
(TW) was evaluated (in kg/hL) by an instrument developed at ICAR-IIWBR as per AACC
55-10.01. The grain was milled using the two-lane Quadrumat Senior mill of Brabender
Instruments, Germany. Total bran (TB), fine bran (FB), and flour recovery (FR) were
calculated following the AACC method No. 26-50.01. Protein percent (P%) was estimated
using the Foss NIRS DS2500 instrument. SDS–sedimentation Value (SDS-SV) was estimated
through the AACC method 56-70. Wet gluten (WG), dry gluten (DG), and gluten index (GI)
were evaluated using the Glutomatic 2200 of Perten Instruments, Sweden, as per AACC
38-12.02. Water absorption (WA), dough development time (DDT), dough stability (STAB),
degree of softening (DOS), and farinograph quality number (FQN) were evaluated using
the Farinograph®-E from Brabender, Germany, as per AACC method 54-21.02.

2.4. Statistical Analysis

Statistical analyses were conducted to elucidate relationships among traits studied
across various genotypes. Pearson’s correlation coefficient (r) was employed to assess
associations between traits within the studied genotypes, utilizing mean values derived
from four replications (two each in 2019 and 2020). This analysis was performed using
SPSS 25. Principal Component Analysis (PCA) was used to characterize variability within
subsets of variables and explore relationships among traits across genotypes, using XLSTAT
statistical package (Version 2014.0.3). Scatter Plot Analysis (SPA) was used to visually
represent relationships among numerical variables across genotypes. Agglomerative Hier-
archical Clustering (AHC) analysis was conducted to evaluate pairwise genetic similarity
among genotypes, based on the Jaccard similarity coefficient to compute a similarity matrix.
AHC analysis was carried out using the XLSTAT statistical package (Version 2014.0.3).
These statistical methods collectively provided insights into trait relationships and genetic
similarity among the studied genotypes.

3. Results
3.1. Quality Trait Variation and Their Correlations

Each variety is listed along with its respective Glu-A1, Glu-B1, and Glu-D1 subunit
compositions, as well as its Glu-1 score (Table S1). The Glu-1 score exhibited a range from
4 to 10 across the studied genotypes. Varieties like Annuello, Barham, and Baxter dis-
played diverse compositions, with different combinations of gluten subunits contributing
to their Glu-1 scores. These subunit compositions play a crucial role in determining the
technological properties and end-use quality of wheat varieties (Table 1).

The analysis of 65 wheat genotypes revealed significant variability across 19 distinct
quality traits. The grain hardness index exhibited a broad range from 16.087 to 94.21,
showcasing considerable diversity among varieties studied. The total bran content varied
between 19.62 and 34.04, with fine bran yield ranging from 2.10 to 10.63. Flour recovery
after milling displayed a variance of 8.04, ranging from 61.36% to 75.12%, indicating a
wide range of milling outcomes influenced by grain texture. The gluten index ranged from
10.169 to 100, reflecting a significant variation in gluten content among varieties also. The
protein content ranged from 8.7% to 19.8%, offering potential for diverse end products.
The wet gluten content spanned from 21.75% to 43.2% (Table 2), with dry gluten yield
ranging from 7.2% to 18.8%. Significantly, around 60% of the genotypes exhibited dry
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gluten exceeding 10%. SDS–sedimentation value showed substantial variability, ranging
from 26 to 68 mL, indicating genetic influences on sedimentation traits. Water absorption
ranged from 52.5% to 70.3%, while dough development time ranged from 0.7 to 20 min.
The Farinograph quality number ranged from 9 to 200, underscoring the diverse dough
quality across genotypes (Table 2). These findings highlight the extensive variability and
potential applications of the studied wheat varieties.

Table 1. Glu-1 scores frequency and percentage in wheat genotypes.

Glu-1 Scores Frequency Percent

4 2 3.1
5 2 3.1
6 6 9.2
7 10 15.4
8 27 41.5
9 4 6.2
10 14 21.5

Total 65 100

Table 2. The mean values of quality parameters of grain and flour of different wheat genotypes.

Parameters Mean Std. Error ± Mean Std. Dev. Variance Range Minimum Maximum

Glu-1 scores 7.94 0.18 1.49 2.24 6 4 10
GHI 66.90 2.88 9.23 539.94 78.12 16.08 94.21
TKW (gm) 35.65 0.80 6.52 42.63 32.74 21.21 53.96
GD (mm) 2.72 0.03 0.25 0.06 1.22 2.13 3.35
TW (kg/hL) 75.72 0.54 4.36 19.07 23.21 58.53 81.74
TB (%) 26.21 0.31 1.51 6.64 14.41 19.62 34.04
FB (%) 6.24 0.30 1.67 6.11 8.52 2.10 10.63
FR (%) 67.54 0.35 2.83 8.04 13.76 61.36 75.12
SDS-SV (mL) 47.03 1.14 3.19 84.46 42 26 68
P (%) 13.39 0.25 1.02 4.10 11.10 8.77 19.88
WG (%) 32.03 0.65 5.26 27.71 21.44 21.75 43.20
DG (%) 11.15 0.28 2.27 5.15 11.62 7.22 18.84
GI 67.18 2.94 9.78 65.59 89.83 10.16 100
WA (14%) 61.66 0.49 3.95 15.66 17.8 52.5 70.3
DDT (min) 5.58 0.65 5.24 17.51 19.3 0.7 20.0
STAB (min) 6.60 0.42 1.42 11.74 14.7 1.5 16.2
DOS (FU) 58.69 5.80 16.80 190.27 182 1 182
FQN 84.32 5.73 26.22 136.37 191 9 200

Pearson’s correlation analysis conducted on the studied wheat genotypes revealed
several significant associations among quality traits (Table 3). Significantly, a +ive cor-
relation was observed between Glu-1 scores, Glu index (GI), and farinograph quality
number in baking. The grain hardness index exhibited significant +ive associations with
fine bran, dough development time, dough stability, and farinograph quality number
(p ≤ 0.01). However, grain hardness showed significant −ive correlations with total bran
yield and degree of softening at a 99% level of significance. Fine bran and flour recovery
also displayed significantly +ive associations with grain hardness index. Flour recovery
also exhibited positive correlation with SDS–sedimentation value and −ive correlation with
water absorption. A strong +ive correlation was observed between fine bran and water ab-
sorption. Furthermore, GI showed +ive correlations with Glu-1 scores, SDS–sedimentation
value, farinograph quality number, dough development time, dough stability, and water
absorption. Protein percent also showed +ive correlations with SDS–sedimentation value,
dry gluten, and wet gluten. SDS–sedimentation value was found to be positively correlated
with dry gluten, wet gluten, and Glu index but negatively correlated with thousand kernel
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weight, grain diameter, and test weight. Similarly, farinograph quality number showed
+ive correlations with Glu-1 scores, grain hardness index, SDS–sedimentation value, Glu
index, water absorption, dough development time, and dough stability but showed a
strong −ive correlation with degree of softening. Additionally, dough development time
exhibited significant +ive correlation with degree of softening. These findings contribute to
a comprehensive understanding of wheat quality traits.

Table 3. Pearson’s correlation coefficients between different quality traits of wheat genotypes.

Glu-1
Score GHI TKW

(gm)
GD

(mm)
TW

kg/hL
TB
(%)

FB
(%)

FR
(%)

SDS-
SV

(mL)

P
(%)

WG
(%)

DG
(%) GI WA

(14%) DDT STAB DOS FQN

Glu-1
Score 1

GHI 0.263 * 1
TKW
(gm) −0.091 −0.022 1

GD
(mm) −0.11 0.082 0.962

** 1

TW
kg/hL −0.003 0.276 * 0.724

**
0.719

** 1

TB (%) −0.264 * −0.410
**

−0.505
**

−0.537
**

−0.557
** 1

FB (%) 0.112 0.683
**

0.393
**

0.464
**

0.458
**

−0.369
** 1

FR (%) 0.143 0.322 0.477
** 0.084 0.417

**
−0.587

**
−0.536

** 1

SDS-
SV

(mL)
0.208 −0.177 −0.448

**
−0.491

**
−0.594

** 0.13 −0.549
**

0.360
** 1

P (%) −0.038 −0.059 −0.661
**

−0.610
**

−0.572
**

0.376
**

−0.399
** 0.006 0.434

** 1

WG
(%) −0.19 −0.114 −0.660

**
−0.631

**
−0.585

**
0.411

**
−0.493

** 0.056 0.393
**

0.779
** 1

DG
(%) −0.056 −0.113 −0.631

**
−0.619

**
−0.664

** 0.316 * −0.499
** 0.148 0.547

**
0.812

**
0.891

** 1

GI 0.408 ** 0.179 0.024 −0.017 0.003 −0.176 0.03 0.134 0.354
** −0.031 −0.241 −0.017 1

WA
(14%) 0.168 0.753

** 0.092 0.203 0.252 * −0.321
**

0.784
**

−0.391
**

−0.331
** −0.166 −0.247

*
−0.255

* 0.148 1

DDT 0.205 0.321
** 0.091 0.099 0.029 −0.169 0.340

** −0.143 −0.068 −0.057 −0.182 −0.086 0.402
**

0.392
** 1

STAB 0.270 * 0.358
** −0.01 −0.005 −0.088 −0.189 0.132 0.057 0.409

** 0.049 −0.1 0.027 0.538
** 0.279 * 0.422

** 1

DOS −0.362 ** −0.595
** 0.084 0.033 0.048 0.258 * −0.393

** 0.108 −0.231 −0.071 0.089 −0.025 −0.442
**

−0.501
**

−0.398
**

−0.792
** 1

FQN 0.349 ** 0.506
** −0.048 −0.007 −0.04 −0.19 0.334

** −0.118 0.234 0.062 −0.116 −0.012 0.489
**

0.511
**

0.516
**

0.905
**

−0.831
** 1

Yellow color highlights positive while orange color highlights negative significant correlation. ** indicates
significant correlation at p ≤ 0.01. * indicates significant correlation at p ≤ 0.05.

3.2. Principal Component Analysis (PCA) of Quality Traits

PCA showed that the first two components captured 61.91% of the differences among
the wheat varieties. These components, labeled PC1 and PC2, contributed to the overall
variation in the traits (Figure 1). The genotype plot and biplot graph of this analysis are
shown in Supplementary Figure S1 and Figure S2, respectively. The traits wet gluten, dry
gluten, protein (%), and SDS–sedimentation value fall into the first cluster, among which
wet gluten and protein (%) depicted the strongest correlation while wet gluten and SDS–
sedimentation value showed the weakest correlation. The plot suggests that wet gluten,
dry gluten, and protein percentage can predict high SDS–sedimentation value reliably. On
the other hand, traits like dough stability, Farinograph quality number, gluten index, and
Glu-1 score tend to cluster together on the right side, showing strong correlations between
dough stability and gluten index, as well as Farinograph quality number. Conversely, the
weakest correlation was found between degree of softening and Glu-1 score. This means
that Farinograph quality number and gluten index are likely to predict the Glu-1 score and
vice versa. Since Farinograph data might not be readily available to breeders, analyzing
high-molecular-weight gluten can serve as a useful proxy for assessing dough stability and
flour quality. Additionally, the loading positions of protein percentage, degree of softening,
and Farinograph quality number with dough stability are at right angles, suggesting no
direct correlation between them. Therefore, wheat varieties with high protein percentages
may not necessarily exhibit high stability or Farinograph quality. Dough development
time, grain hardness index, and water absorption traits showed significant correlations,
with dough development time and grain hardness index having the strongest correlation,
while dough development time and water absorption showed a +ive correlation. Degree
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of softening, located in the third quadrant, exhibited a negative correlation with dough
stability, Farinograph quality number, Glu-1 score, and gluten index.
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Figure 1. Principal component analysis (PCA) biplot of the measured traits; length of arrows indicates
the relative size of contribution of the trait in the PCA.

3.3. Dendrogram Construction

Dendrogram (Figure 2) was constructed using AHC analysis, revealing the presence of
five main clusters based on the similarity matrix. These clusters categorized all genotypes
into distinct groups according to their rheological and physiochemical properties. Cluster-
I comprised twelve genotypes, including eight Australian varieties (Annuello, Barham,
Baxter, Binnu, Datatine, Drysdale, Gladius, Janz), and four Indian genotypes (HPW 311,
HQW 2, QBP 13-10, WL 711). Clusters II, III, and IV consisted of 14, 22, and 6 Indian
genotypes, respectively, without any Australian varieties. In contrast, Cluster-V included
two Australian and nine Indian genotypes.
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Figure 2. Dendrogram showing the diversity among wheat genotypes.



Foods 2024, 13, 1125 7 of 11

3.4. Scatter Plots

The first scatter plot (Figure 3) was created using degree of softening and SDS–
sedimentation value, with Glu-1 scores and grain hardness (represented by the size of the cir-
cle). The second plot was constructed using dough stability (STAB) and SDS–sedimentation
value with Glu-1 scores. In the SPA graph, the SDS–sedimentation value of the studied
genotypes was plotted on the x-axis, while DOS was plotted on the y-axis. The grain
hardness index (GHI) was depicted with the size of the circle in the graph, where larger
circle sizes represented higher GHI values. The Glu-1 score of the germplasm was repre-
sented with different colors, with details placed in the top right corner of the graph. This
SPA construct aids in understanding the clustering of genotypes and their comparative
closeness concerning the used traits. It revealed a cluster of Indian genotypes with an
SDS-SV ranging from 35 to 45 and STAB from 3 to 11.5.
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sented with different colors, with details placed in the top right corner of the graph. This 
SPA construct aids in understanding the clustering of genotypes and their comparative 
closeness concerning the used traits. It revealed a cluster of Indian genotypes with an SDS-
SV ranging from 35 to 45 and STAB from 3 to 11.5. 
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Figure 3. Scattered plot analysis (SPA) showing the diversity among wheat genotypes with STAB,
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4. Discussion
4.1. Variability of Traits among Genotypes

The wheat varieties under study demonstrated a broad spectrum of quality traits, with
the Glu-1 score serving as a key indicator of flour gluten strength, also proposed by Payne
et al. [16]. These scores are influenced by the presence of HMW-GS in genotypes, with
higher scores preferred for bread-making flour. In our study, most genotypes exhibited
Glu-1 scores of 8 (41.5%).

Grain texture and hardness are important factors in global grain trade and end-use
suitability assessments. Following the classification proposed by Morris et al. [18], based on
the grain hardness index obtained from the SKCS, genotypes were categorized into hard,
medium hard, medium soft, and soft grain types. Among the genotypes studied, Naphal
and advanced breeding lines of the QBP series were identified as having soft grains, while
others fell into the medium hard and hard grained categories. Among Australian varieties,
Barham, Binnu, EJA Jitaring, and Longreach Orion were classified as soft wheat, while
others were categorized as hard grain.

Protein content is another crucial parameter influencing both grain trade and end-
product suitability, with its inheritance being highly quantitative and greatly influenced
by environmental factors. The P (%) in our study exhibited wide diversity suitable for
various end products. Additionally, SDS-SV is used in the industry to predict flour quality,
with higher values indicating stronger flour. The majority of genotypes studied were
identified as medium strong gluten types. Gluten index (GI) elucidates the elasticity grade
and extensibility of flour, with studies indicating a good correlation between GI and SDS-
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SV, suggesting their capability to assess comparable gluten strength characteristics [19].
Farinograph water absorption (WA) is primarily influenced by the endosperm texture and
gluten content. DDT serves as a measure of protein quality, with stronger flours typically
requiring longer development times compared to weaker flours [13].

4.2. Correlation among Traits

Our study highlighted numerous significant associations between genotypes and
rheological traits, emphasizing the key role of kernel shape and size in determining test
weight and serving as an approximate indicator of flour recovery [20,21]. Milling quality
stands out as a crucial determinant in wheat trade, heavily reliant on grain size and texture.
We observed a correlation between Grain hardness index and flour recovery, consistent with
findings reported by Katyal et al. [22]. Furthermore, yield components such as test weight,
thousand kernel weight, and grain diameter exhibited a −ive correlation with protein and
its components (P%, DG, WG, and SDS-SV), aligning with earlier reports [20,21].

Previous studies have highlighted a correlation between Farinograph stability time
and flour strength, emphasizing its significance as a key predictor of gluten strength. No-
tably, significant correlations between bread volume and STAB have also been reported [23].
Typical bread flour characteristics include higher water absorption (≥60%), a dough de-
velopment time of ≥3 min, and STAB of ≥8 min [24]. In our sample set of 65 genotypes,
26.66% of genotypes met at least two of the criteria for bread flour quality, while several
genotypes displayed characteristics indicative of soft grain, suggesting decreased tolerance
to mixing. This variability underscores the broad range of weak to strong gluten suitable
for various end-use products.

Wheat bran, a by-product of the milling process, typically constitutes 14–19% of the
total grain weight [25]. In our study, we observed a positive correlation between flour bran
and flour recovery with grain hardness, along with +ive correlations between flour bran
and water absorption. These findings are consistent with earlier studies [24,25], which
reported that an increase in bran proportion leads to higher flour protein (%). Furthermore,
our investigation confirmed +ive correlations between protein (%) and quality attributes
SDS-SV and wet and dry gluten in line with previous research [26,27]. SDS-SV, linked
to the swelling of gluten strands, emerged as an indicator of genotype-specific gluten
strength, supported by other studies demonstrating a close +ive association between gluten
strength and SDS-SV [28,29]. The PCA study highlighted the potential of certain traits
like wet gluten and protein percentage as predictors for flour quality. Additionally, it
emphasized the importance of high-molecular-weight analysis in assessing dough stability
and quality. Genotypes with high protein content did not always exhibit high stability. The
findings underscored correlations between various traits, providing valuable insights for
wheat breeders.

4.3. Genotypes Identified for End-Use Based on Scatter Plot Analysis

Quality assessment in wheat involves a multifaceted approach, as superior end-use
suitability necessitates the presence of multiple quality traits within specific ranges. While
various indirect tests have been devised to assess wheat technological quality, none have
proven entirely satisfactory. Thus, in our study, a combined interpretation of these tests
using Scatter Plot Analysis proved valuable in determining the flour suitability for different
end-uses. An ideal bread-making flour is characterized by high protein content, high
sedimentation value, high water absorption, high stability time, high gluten index, and low
degree of softening [30]. Higher protein content enhances water absorption, necessitating a
longer mixing time for optimal dough consistency [12]. Conversely, low-protein content
(8–10%), low water absorption, and low dough stability are deemed suitable for biscuit
making [31]. Previous studies have highlighted the suitability of hard wheat (high GHI) for
bread and chapati making, while soft wheat (low GHI) varieties are preferred for biscuit
making [32,33].
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The data analysis revealed limited diversity in the studied wheat lines regarding
quality traits. Most Indian genotypes clustered within a specific range of SDS-SV and STAB,
indicating a narrower variability. Some Australian and Indian lines exhibited traits suitable
for bread making, while others showed potential for biscuit making. Varieties like UP2425
and HD2687 demonstrated traits similar to C306, making them potential alternatives
for chapati production. Breeding lines like QBP 12-8 and QBP 12-10 showed promise
for biscuit making, albeit with certain limitations. Notably, the Indian variety Naphal
could be valuable for enhancing biscuit making quality. While the optimal quality traits
for chapati making have not been extensively researched, high-quality chapati typically
requires flour with high protein content, significantly damaged starch, and notable water
absorption capacity [34]. Recent studies have suggested that whole meal flours with
lower to moderate dough stability yield better chapatis, with a preference for medium–
strong dough [35]. Furthermore, a chapati’s tearing force is influenced by protein/gluten
content and dough development time [31]. Harisha (2023) conducted an in-depth analysis
comparing the quality traits of the landmark Indian wheat variety C306, renowned for its
chapati quality, with 40 other wheat varieties of India. Varieties with hard to very hard
grain, low to moderate protein, low sedimentation value, and low to moderate dough
stability demonstrated outstanding chapati quality [36].

5. Conclusions

The extensive analysis conducted in our study highlights the considerable variabil-
ity present among Indian wheat varieties across various quality traits. However, when
considering the combination of traits, only a few genotypes exhibit the desirable char-
acteristics sought after by end-users. Currently, many wheat varieties released through
national breeding programs prioritize yield and disease resistance, lacking targeted quality
traits. Consequently, millers often need to adjust milling conditions to optimize flour
suitability for specific applications. Our research findings identify genotypes suitable for
different end-use categories by comprehensively analyzing multiple traits. The demand for
wheat-based ready to eat foods is experiencing significant growth, expanding at an annual
rate of 14%, and is projected to have a market worth of $25 billion. To meet this demand,
targeted breeding programs focusing on specific traits are crucial. Both the milling and
baking industry and research organizations should collaborate to invest in quality breeding
programs and enhance the capacity of human resources. This collaborative effort will pave
the way for the development of wheat varieties tailored to meet the evolving demands of
the food industry, ensuring superior end products for consumers.
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