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Abstract: The coffee industry generates a wide variety of by-products derived from green coffee pro-
cessing (pulp, mucilage, parchment, and husk) and roasting (silverskin and spent coffee grounds). All
these fractions are simply discarded, despite their high potential value. Given their polysaccharide-
rich composition, along with a significant number of other active biomolecules, coffee by-products
are being considered for use in the production of plastics, in line with the notion of the circular econ-
omy. This review highlights the chemical composition of coffee by-products and their fractionation,
evaluating their potential for use either as polymeric matrices or additives for developing plastic
materials. Coffee by-product-derived molecules can confer antioxidant and antimicrobial activities
upon plastic materials, as well as surface hydrophobicity, gas impermeability, and increased me-
chanical resistance, suitable for the development of active food packaging. Overall, this review aims
to identify sustainable and eco-friendly strategies for valorizing coffee by-products while offering
suitable raw materials for biodegradable plastic formulations, emphasizing their application in the
food packaging sector.

Keywords: polysaccharides; phenolics; lipids; circular economy; composites; bioplastics

1. Introduction

Since the 1960s, world plastic production has increased, reaching 360 million tons
in 2018 [1]. A great part of the produced plastics are single-use materials made of non-
biodegradable, petroleum-based molecules, with the most part being landfilled or dis-
carded in water streams, ending in oceans as microparticles. Seeking to diminish the global
nonbiodegradable plastic environmental impact, efforts are being made to use recyclable,
biodegradable, or compostable plastic packaging materials by 2030 [2]. In this context, bio-
plastics have attracted the attention of the plastics industry. Bioplastic is a plastic material
which is either bio-based or biodegradable [3], whereby none of the compounds released
from the plastic formulations present environmental toxicity. The synthesized polyester
polylactic acid (PLA) is one of the most commonly used polymers for bioplastic produc-
tion [4]. However, when compared with the most widely used petrochemical plastics, PLA
has low thermal stability [5] and poor water vapor and gas barrier properties [6], limiting
its application range. PLA has been obtained from the fermentation of different starch-rich
vegetables, such as corn, beet, or wheat bran [7], representing a societal disadvantage, since
these raw materials are directly used in human and animal nutrition. To avoid any kind of
competition between different industry sectors, biomolecules of interest for developing
bioplastics must be recovered from agri-food by-products. This goal has been pursued
by using agri-food by-products such as apple pulp waste as a carbon source for microbial
fermentation in the production of bioplastic polymers, namely, polyhydroxyalkanoates
(PHAs) [8]. Another strategy is the use of starch and lipidic molecules recovered from
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potato and rice by-products in the development of starch-based films [9–12]. The film-
forming ability of starch allows its use as the main polymer matrix for the development of
bioplastic materials, while lipids are used to confer hydrophobicity and plasticity/elasticity.
Herein, instead of simply being discarded, agri-food by-products may be introduced into
new bioplastic processing chains, promoting a circular economy between the agri-food and
plastic sectors. Furthermore, agri-food by-products can be used to confer biodegradability
upon petroleum-based plastics, or to increase the biodegradation rate of synthetic plastics,
as observed when potato peel waste is incorporated into polyethylene and polypropylene
formulations [13], and when cellulose fibers obtained from sugar cane leaf are added into
polyvinyl alcohol (PVA) formulations [14].

Coffee production generates a number of by-products derived from the plant, namely,
the flowers, which are available at pre-harvesting, by-products derived from the harvesting
of the cherries, and the leaves, stems, twigs, and wood, mainly left post-harvesting, which
have potential uses in the food sector [15]. The coffee industry, while processing the
cherries, also generates a variety of by-products with distinct chemical compositions,
including coffee pulp (CP), mucilage (CM), parchment (CPm), husks (CH), silverskin (CS)
and spent coffee grounds (SCG). These by-products have been proposed for multiple
applications due to their high biodegradability, namely, as substrates for the production of
enzymes, bioethanol, and biogas by microorganisms [16]. Coffee by-products have also
been suggested as biosorbents for water treatment [17–19] or as a source of dietary fiber
and food ingredient active compounds, including chlorogenic acids and caffeine [15,20,21].
The diversity of coffee by-products represents a source of different molecules suitable for
the development of plastics with different physicochemical and/or biological properties.
This review focuses on the feasibility of using coffee by-products for the development
of plastics with improved physicochemical, mechanical, barrier, and biodegradability
properties, detailing their chemical composition and discussing their potential for use
either as polymeric matrices or as a functional additive for food packaging.

2. Coffee By-Products and Their Potential for Use in the Development of Plastics
2.1. The Coffee Industry and Its By-Products

The coffee industry is one of the largest food industries in the world. It is divided into
two main sectors: the first includes the separation of shell and mucilaginous part from the
coffee cherries in order to recover coffee beans, implemented in coffee-producing countries;
the second is responsible for the roasting and brewing transformation steps, which occur
after shipping the beans to coffee distributing and consuming countries. According to
the International Coffee Organization (ICO), global coffee production reached 169 million
60 kg bags in 2019/2020 [22]. The great demand for this product has led to the production
of an excessive amount of by-products during all coffee processing steps (Figure 1).

Coffee flowers are known as a source of caffeine and trigonelline, as well as phenolic
compounds [23]. However, as no toxicological data seems to be available for their use in
foods [15], their potential for valorization is still limited. Coffee leaves contain a large diver-
sity of compounds [24] which may be valorized as bioactive compounds with antioxidant,
anti-inflammatory, antihypertensive, antibacterial, and antifungal activities [15]. Although
no studies exist for their application in food packaging, coffee leaves seem to be a very
promising source of compounds for this purpose.
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processing methods [25], which yield different by-products. CH result from the dry pro-
cessing method. It correspond to the outer layers (from endocarp to epicarp) removed 
from the dried cherry, representing 45% of fresh coffee cherry weight [26]. This means 
that per 100 kg of dry processed fresh coffee cherries, 45 kg of CH are obtained. CH are 
also named “cascara”, corresponding to a mixture of skin, pulp, mucilage, parchment, and 

Figure 1. Schematic representation of coffee cherry structure and coffee processing-derived by-products. The percentages
refer to the amount of each by-product obtained from fresh coffee cherries.

Coffee cherry can be processed by two different methods, designated as dry and
wet processing methods [25], which yield different by-products. CH result from the dry
processing method. It correspond to the outer layers (from endocarp to epicarp) removed
from the dried cherry, representing 45% of fresh coffee cherry weight [26]. This means
that per 100 kg of dry processed fresh coffee cherries, 45 kg of CH are obtained. CH are
also named “cascara”, corresponding to a mixture of skin, pulp, mucilage, parchment,
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and part of silverskin resulting from the dry processing method [27]. “Sticky” CH is an
additional by-product that can be obtained when the parchment layer is not removed
with the outer layers, resulting in a by-product with a high level of protein and low level
of fiber [28,29]. In the wet processing method, CP, also named “fresh cascara”, is a by-
product that corresponds to a mixture of coffee cherry outer skin and pulp layer that can
be separated by depulping in water [27]. CM is a sticky mucilage layer obtained by the
mechanical action of the applied equipment or by the action of fermenting enzymes when
the depulped coffee beans are placed in fermentation tanks. After washing, drying, and
dehulling the fermented coffee beans, CPm is the last by-product of this process. From
100 kg of wet processed fresh coffee cherries, 39 kg of CP, 22 kg of CM, and 39 kg of CPm
are obtained [27], which means that part of the water added during wet processing is
retained in CP and CM. All these by-products remain in coffee-producing countries, being
incinerated or used for biofuel production [30,31], limiting their reuse in other applications.

During green coffee roasting, bean blow-up leads to the release of a thin layer called CS.
When the roasted coffee beans are ground and used for brew preparation, the compounds
that are not extracted by hot water are named SCG. For 100 kg of green coffee beans,
around 2.1 kg of CS [27] and 65 kg of SCG [16] are produced. Since 100 kg of fresh coffee
cherries give rise to around 21 kg of green coffee beans [32], 0.4 kg of CS and 14 kg of
SCG are obtained from 100 kg of coffee cherries. Although most of the CS and SCG is
usually incinerated or landfilled, these materials have the potential to be used as food
ingredients [33,34], mainly due to their dietary fiber-rich composition. Moreover, the use of
SCG has been proposed for diverse applications, such as cosmetics, animal feed, bioethanol
production, adsorbents, and fertilizers [27].

The valorization of coffee by-products and potential applications depend on their
chemical composition (Table 1).

2.1.1. Coffee Pulp and Mucilage

Coffee pulp (CP) is one of the main coffee wet processing by-products. CP has a
high moisture content (78–81% wt) [31,35], due to the incorporation of water during the
washing of coffee cherries before the depulping process. This high-water activity promotes
microbial spoilage, a problem faced by all by-products where the water content is not
decreased to a level that promotes stabilization. On a dry weight basis, CP is mostly
constituted of cellulose (36%), pectic polysaccharides (21%), a fraction of alkaline soluble
polysaccharides defined as hemicelluloses (9%), and free sugars (5%) [36]. CP pectic
polysaccharides comprise 80% galacturonic acid, 63% methyl esterification degree (DE),
6% acetylation degree (DA), and high molecular weight (4 × 105 g/mol), giving rise
to a gel-forming ability in the presence of high sucrose concentration and low pH [37].
Nevertheless, the CP content in pectic polysaccharides and free sugars is lower when
compared with other vegetable-derived pulps such as apple pomace [38]. This may be a
consequence of carbohydrate degradation caused by the action of endogenous enzymes,
since wet CP is not immediately dried and/or frozen after the depulping process. CP is also
made up of proteins (9%), alkaloids (1%), lipids (0.8%), and phenolic compounds (3 mg g−1

of gallic acid equivalents, GAE) [36]. The CP protein content is often estimated according
to the Kjeldahl method and using the N× 6.25 conversion factor, after the total nitrogen
determination. However, CP is also composed of other nitrogenous compounds, namely
caffeine (C8H10N4O2) and trigonelline (C7H7NO2). Therefore, most reported CP protein
content values may be overestimated. Concerning CP lipids, they are derived from the
cherry skin (epicarp), with cutin being the most abundant compound. Cutin is a polyester
formed by esterifiedω-hydroxy andω-hydroxy-epoxy fatty acids and glycerol [39]. The
CP phenolic composition includes hydroxycinnamic acids (59%), flavanols (17%), and
hydroxycoumarins (6%) [40].
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Table 1. Chemical composition of coffee by-products.

Composition Pulp
(CP)

Mucilage
(CM)

Parchment
(CPm)

Husks
(CH)

Silverskin
(CS)

Spent Coffee
Grounds (SCG)

Moisture
(% wt) 78–81 [31,35] 84 [41] 9 [42] 13–15 [29,43] 4–7 [34,44–46] 61 [47]

Component (% dry wt basis)
Free sugars 5 [36] ND ND ND ND ND ND ND ND ND ND
Cellulose 36 8 [48] 12 [49] 28 [50] 24 [51] 16 [47]

Hemicelluloses 9 18 35 25 16
50

33% GM
17% AG

Pectic polysaccharides 21 30 ND ND ND ND ND ND ND ND
GalA (%) 80 [37] 52 [52]
DE (%) 63 85
DA (%) 6 6

Mw (g mol−1) 400,000 12,000 [48]
Total carbohydrates 71 * ND 56 * ND 47 * ND 53 * ND 40 [51] 66 [47]

Lignin ND ND ND ND 32 [49] 38 [50] 29 ND ND
Melanoidins ND ND ND ND ND ND ND ND 5 [34] 16 [47]

Protein 9 ** [36] 17 [48] ND ND 8–11 ** [29,53] 19 ** [34,44,45,51] 5
Lipids 0.8 ND ND ND ND 1–3 2–5 13–15 [47,54]

Ash ND ND ND 1 [55] 3–7 [29,55] 5–7 2 [56]
Caffeine 1 [36] ND ND 0.13 [42] 1 [29,53] 1 [57] 0.01–0.5

Total phenolics
(% w/w GAE) 0.3 ND ND 0.2 1 [58] 2 1–2

AG: arabinogalactans; DA: degree of acetylation; DE: degree of methyl esterification; GAE: gallic acid equivalents; GalA: Galacturonic
acid; GM: galactomannans; Mw: Molecular weight; ND: Not determined. * Estimated from the sum of cellulose, hemicelluloses, pectic
polysaccharides, and free sugars of each coffee by-product. ** Protein content may be overestimated due to the presence of other nitrogenous
compounds in the same composition.

Coffee mucilage (CM) has a high moisture content (84% wt) [41], in the same order
of magnitude as that of CP. On a dry weight basis, CM is mainly constituted by pectic
polysaccharides (30%), hemicelluloses (18%), proteins (17%), and cellulose (8%) [48]. CM
pectic polysaccharides have 52% galacturonic acid, 85% DE, 6% DA, and gel-forming
ability [52]. However, this ability may be compromised, given the lower molecular weight
of CM pectic polysaccharides (1.2 × 104 g/mol) when compared with CP [48]. Also, the
higher content of pectic polysaccharides observed in CM contradicts a previous study,
where it was reported that CP had a pectic polysaccharide content two times higher than
CM [59]. The presence of pectic polysaccharides in the chemical compositions of CM
and CH enhances their potential to be directly applied in the development of bioplastics.
CM pectic polysaccharides derived from fermentation and from the mechanical removal
process have similar chemical compositions. Fermentation only induces a slight decrease of
the pectic polysaccharide intrinsic viscosity and average molecular weight, and a two-fold
increase of its DA [60], which would not compromise the valorization of fermentation-
derived CM.

2.1.2. Coffee Husks

Coffee husks (CH) are the only by-product derived from coffee cherry drying and
dehusking (Figure 1). CH have a moisture content of 13–15% [29,43], depending on the
drying process time. On a dry weight basis, CH are constituted of lignin (38%), cellulose
(28%), and a fraction of hemicelluloses (25%) rich in xylose residues [50], possibly derived
from glucuronoxylans, a polysaccharide usually present in lignified tissues [61]. CH are
also made up of proteins (8–11%), lipids (1–3%), and caffeine (1%) [29,53]. CH ashes
account for 3–7% [29,55]. As in CP, the protein content may be overestimated due to the
presence of other nitrogenous compounds. The lipid fraction may derive from the cherry
skin cutin and also from silverskin partially removed during the dehusking process [27].
CH are rich in phenolic compounds (13 mg g−1 of GAE), mainly caffeic and chlorogenic
acids [58]. The paucity of data available shows that for the valorization of CH, much more
research is required.

2.1.3. Coffee Parchment and Silverskin

Coffee parchment (CPm) is a fibrous endocarp that covers the coffee cherry epidermis
and endosperm. Since this by-product is obtained after drying and dehulling the beans, its
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moisture content is low (9% wt) [42]. On a dry weight basis, CPm is composed of xylans
(35%), lignin (32%), and cellulose (12%) [49]. CPm ashes account for 1% [55]. This compo-
sition shows the insoluble nature of CPm, with possible application in the development
of food packaging plastics. CPm has a high water (3 mLg−1) and oil (4 mLg−1) holding
capacity [49], allowing its use as barrier, avoiding condensation of water inside food pack-
aging, as well as the migration of fat from greasy foods. CPm is also composed of caffeine
(0.13%) and phenolic compounds (2 mg g−1 of GAE), namely gallic acid, chlorogenic acids,
p-coumaric acid, and sinapic acid [42], which provide antioxidant activity. As observed for
CH, the potential for the of valorization of CPm is significant.

Coffee silverskin (CS) is a thin tegument of the coffee bean outer layer, being the
most abundant by-product associated with coffee roasting. It has a low moisture content
(4–7% wt) [34,44–46], facilitating its storage and direct use. CS composition is similar
to that of CPm, given their proximity inside the cherry. On a dry weight basis, CS is
constituted of polysaccharides (40%), mainly cellulose (59%), with a small proportion of
xylose (19%), arabinose (9%), galactose (9%), and mannose (4%) [51]. No information
about CS polysaccharides glycosidic-linkage composition has been yet reported. CS also
contains lignin (29%) [51], proteins (19%), and lipids (2–5%), while CS ashes account for
5–7% [34,44,45,51]. Furthermore, CS contains caffeine (1%) and phenolic compounds (2%
w/w GAE), mainly chlorogenic acids as 3-O-caffeoylquinic acid and 4-O-caffeoylquinic
acid [57]. As in CP and CH, the protein content of CS may be overestimated because of
other nitrogenous fractions present in CS, since most of the reported studies used the
nitrogen content for protein quantification in non-purified fractions. The presence of lipids
in CS, in contrast to CPm, is due to its proximity to the cherry endosperm (coffee bean),
which has a significant fraction of lipids (8–18% of the green coffee bean dry weight) [41].
Because CS derives from the roasting process, it is also composed of melanoidins (5%),
which are nitrogenous high molecular weight heterogeneous polymers formed through
Maillard reactions during roasting [34].

2.1.4. Spent Coffee Grounds

Spent coffee grounds (SCG) are wet solid residues (61% of moisture [47]) that re-
main after coffee brewing, being produced all over the world where coffee is consumed.
The high accessibility of this coffee by-product facilitates the study of its chemical char-
acterization and further applications. On a dry weight basis, SCG are constituted by
polysaccharides (66%), mainly galactomannans (50%), arabinogalactans (25%), and cellu-
lose (25%) [47,62]. Coffee galactomannans are high molecular weight polysaccharides with
low branching degree, arranged by a backbone of (β1→4)-linked mannose residues, with
O-6 single (α1→6)-linked galactose and single (1→5)-linked arabinose residues [63]. They
are water-soluble and form highly viscous and stable aqueous solutions with film-forming
ability [64,65], which makes them suitable raw materials for the production of edible and
biodegradable films or coatings for food applications [66]. The amount of melanoidins in
SCG is estimated to be 16%, with 5% of proteins [47], 13–15% lipids [47,54], 0.01–0.5% of
caffeine, and phenolic compounds (1–2% w/w GAE) [56]. SCG phenolic composition in-
cludes mainly chlorogenic acids (85%), such as 3-O-caffeoylquinic acid, 4-O-caffeoylquinic
acid, and 5-O-caffeoylquinic acid, and also caffeic acid (6%) [67]. Ashes account for 2% [56].
SCG-derived oil is composed mainly of linoleic (45%) and palmitic (38%) acids [68], and
also by diterpenes (15%), namely kahweol, cafestol and 16-O-methylcafestol [69]. Although
slight variations can occur in the chemical composition of SCG according to the coffee brew
extraction conditions [70] and the composition of the roasted coffee beans, which depends
on the coffee species and postharvest processing conditions, the SCG overall composition
seems to be highly consistent for food packaging applications.

2.2. Coffee By-Products for the Production of Plastics

The use of coffee by-products in the development of sustainable plastic formulations
for food packaging follows two main strategies: (1) the use of crude coffee by-products as
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functional additives for plastics; or (2) the use of coffee by-product-derived extracts with
film-forming ability or functional properties (Figure 2).
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2.2.1. Crude Coffee By-Products as Functional Additives for Plastics

The crude form of coffee by-products, namely CH, CS, and SCG, has been incorporated
into plastic formulations. This strategy presents a zero-waste approach, since all the
crude fractions can be used without generating residues. Many studies have reported the
incorporation of crude coffee by-products into nonbiodegradable plastics (Table 2), with
the goal of conferring biodegradability upon petroleum-based materials. This can be seen
as a first step towards a full bio-based and biodegradable formulation which is able to
provide the same functionalities as petroleum-based materials.

Table 2. Functional additives for nonbiodegradable plastic formulations using crude coffee by-products.

By-Product Coffee-Based Powder Polymeric Matrix Developed Materials and Main Properties Ref

CH CH powder PP Composites with poor interfacial adhesion
between CH and the polymeric matrix [71]

PP (plus maleic anhydride grafted PP) Composites with good interfacial adhesion [72]
HDPE (plus maleic anhydride grafted PE) Composites with good interfacial adhesion [73]

PP (plus maleic anhydride grafted PP) Composites with decreased susceptibility
towards fire [74]

PP (plus maleic anhydride grafted PP) Composites with decreased
carbon footprint [75]

CH powder alkali treated PP Composites with improved mechanical and
thermal performance [76]

CS CS powder HDPE Composites with poor interfacial adhesion
between CS and the polymeric matrix [77]

CS powder alkali treated and
esterified with palmitoyl chloride HDPE Composites with decreased

water absorption [77]

SCG
SCG powder PP Composites with poor interfacial adhesion

between SCG and the polymeric matrix [78]

SCG powder treated by
oil removal PP (plus maleic anhydride grafted PP)

Composites with increase interfacial
adhesion, compatibility, and

water resistance
[79]

SCG powder esterified with
palmitoyl chloride PP Composites with better particle dispersion

and decreased water uptake [80]

SCG powder alkali treated
and bleached

PP (plus silane and styrene-ethylene-
butene-styrene-graft-maleic anhydride)

Composites with improved interfacial
adhesion and mechanical properties [81]

SCG powder treated by
acid hydrolysis PE Antioxidant films with

improved biocompatibility [82]

CH: coffee husks; CS: coffee silverskin; HDPE: high-density polyethylene; PE: polyethylene; PP: polypropylene; SCG: spent coffee grounds.
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Nonbiodegradable Formulations

CH [71] and SCG [78] powder can be incorporated into polypropylene (PP)-based
formulations, and CS powder [77] into high-density polyethylene (HDPE)-based formula-
tions. These composites showed increased rigidity and decreased elongation at break, due
to the poor interfacial adhesion between coffee by-products and the polymeric matrices.
This incompatibility can be caused by the different nature of molecules in the same plastic
formulation. While coffee by-products are mainly constituted of carbohydrates rich in
hydroxyl groups, thus possessing a polar nature, the matrix of petroleum-based polymers
is constituted by nonpolar hydrocarbons.

One strategy to increase the interfacial adhesion between coffee by-products and
petroleum-based polymers is the addition of malleated compatibilizers into the formu-
lation. For instance, maleic anhydride grafted PP [72] and PE [73] were added, together
with CH powder, to PP and PE-based formulations, respectively. The maleic anhydride
groups interacted with the hydroxyl groups of CH carbohydrates through covalent bonds,
while the long molecular chains of malleated compounds entangled the hydrophobic
petroleum-based matrix, increasing the constituent compatibility and giving rise to with
good interfacial adhesion [83]. Also, the incorporation of CH powder together with maleic
anhydride grafted PP in a PP-based formulation reduces the flammability of the compos-
ite [74] and the carbon footprint [75], compared with neat PP composites.

Another strategy to increase compatibilization is the chemical modification of crude
coffee by-products before their addition into petroleum-based formulations. Herein, small
modification techniques, such as alkaline treatment or esterification of coffee by-products
are proposed. The performance of an alkaline treatment upon crude CH seems to be
effective at improving the mechanical and thermal performance of PP-based compos-
ites [76]. Alkali treatment removes alkaline soluble polysaccharides, lipids, impurities, and
a fraction of the lignin from coffee by-products, exposing more cellulose molecules and
increasing the number of reaction sites [84]. For instance, alkali treated and bleached SCG,
and its mixture with PP-based formulations, together with silane and styrene-ethylene-
butene-styrene-graft-maleic anhydride as coupling agents, showed improved composite
interfacial adhesion and mechanical properties by establishing stronger interactions with
the polymeric matrix [81]. Alternatively, the addition of SCG powder esterified with
palmitoyl chloride can originate better particle dispersion and a decrease in water uptake
upon PP-based composites [80]. During esterification, the polar carbohydrate hydroxyl
groups of coffee by-products react with acetyl groups, decreasing the molecule polarity
and increasing their compatibility with the nonpolar hydrocarbon-based matrix [85]. This
chemical modification also leads to the hydrophobization of coffee by-product compounds.
In a combination of the two chemical modification techniques previously described, the
incorporation of alkali treated and esterified CS powder into high-density polyethylene
(HDPE)-based formulations can be performed to develop composites with decreased wa-
ter absorption [77]. All composites containing CS are brownish, the intensity of which
increased with CS concentration, due to the presence of melanoidins [34]. Another strategy
that increases the compatibilization between SCG and a PP-based matrix is the removal of
the SCG lipid fraction [79]. The defatting process leads to a better dispersion of SCG into a
malleated-PP-based matrix, improving its interfacial adhesion and producing composites
with better water resistance. SCG acid hydrolysis can remove the majority of carbohydrates,
increasing the accessibility to SCG phenolic compounds. When added to a polyethylene
(PE)-based formulation, acid hydrolysis treated SCG are able to increase the antioxidant
ability and biocompatibility of the resultant films, enhancing their potential for use for the
preservation of food lipids [82].

Although a large number of studies are already available in the literature concerning
the addition of crude coffee by-products to increase the biodegradability of petroleum-
based plastics, no biodegradability studies have been described. There is a need for
biodegradation tests in order to evaluate if crude coffee by-products have the ability to
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confer biodegradability upon petroleum-based materials, minimizing their negative impact
on the environment.

Biodegradable Formulations

Crude coffee by-products have also been used as additives of biodegradable plastic
formulations (synthetic and bio-based) (Table 3).

Table 3. Functional additives for biodegradable materials formulations using crude coffee by-products.

By-Product Coffee-Based Powder Polymeric Matrix Developed Materials and Main
Properties Ref

CH CH powder PCL Films with increased biodegradation rate [86]

CH powder treated with (3-
glycidoxypropyl)trimethoxysilane PBAT

Composites with increased
hydrophobicity, stiffness, and reduced

production cost
[87]

Torrefied CH powder PLA
Injection specimens with increased

mechanical resistance and
thermal stability

[88]

CH and CPm CH and CPm powder PHB Composites with increased thermal
stability and water absorption [89]

CS CS powder PBAT and P(3HB-co-3HV) Composites with antioxidant activity [90]
CS powder treated with

(3-aminopropyl)triethoxysilane PBAT and P(3HB-co-3HV) Composites with antioxidant activity and
increased interfacial adhesion [91]

CS powder P(3HB-co-3HV)
Composites possessing an overall

migration below the limit required for
food packaging materials

[92]

CS powder Potato starch
Antioxidant and UV-protective films

with increased elasticity, stretchability,
and water resistance

[93]

SCG

SCG powder treated with
tetraethyl orthosilicate

Maleic-anhydride-grafted
PLA formulation

Homogeneous composites with
increased water resistance

and biodegradability
[94]

Torrefied SCG powder PBAT Composites with
increased hydrophobicity [95]

SCG powder PVA (plus chitosan)
Homogeneous composites suitable for

the adsorption of pharmaceuticals
contaminants from water

[96]

Corn starch Films with increased tensile strength [97]
Cellulose Photosensitive films [98]

Pectin Films with increased water resistance [99,100]

CH: coffee husks; CPm: coffee parchment; CS: coffee silverskin; P(3HB-co-3HV): poly(3-hydroxybutyrate-co-3-hydroxyvalerate); PBAT:
polybutylene adipate terephthalate; PCL: polycaprolactone; PHB: polyhydroxybutyrate; PLA: polylactic acid; PVA: polyvinyl alcohol; SCG:
spent coffee grounds.

Concerning the direct use of coffee by-products in their crude form, CH powder, when
added to polycaprolactone (PCL)-based formulations, increases their biodegradation rate
by acting as a support for microorganism adhesion [86]. CH and CPm can also be used
as reinforcing fillers of polyhydroxybutyrate (PHB)-based compounds, a biodegradable
thermoplastic polyester produced by bacterial fermentation, increasing their water absorp-
tion and thermal stability by delaying their degradation temperature [89]. Moreover, crude
CS can be used as an additive of PBAT and poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
(P(3HB-co-3HV)) blended formulations, leading to the development of composites with
increased rigidity and antioxidant properties [90], in accordance with the reported antioxi-
dant activity verified in CS extracts [57,101,102]. Crude CS has the potential to integrate
bio-based industrial injection molding formulations for coffee capsules, as demonstrated
by its addition to P(3HB-co-3HV), together with acetyl tributyl citrate and calcium car-
bonate as a plasticizer and inorganic filler, respectively. However, the low interfacial
adhesion between CS and P(3HB-co-3HV) matrix obtained after injection molding of the
composites [92] needs to be improved.

To improve the compatibility between coffee by-products and synthetic biodegradable
polyesters, the modification of coffee by-products by silane-based compounds has been pro-
posed. Silane molecules, such as (3-glycidoxypropyl) trimethoxysilane, have bifunctional
groups that can act as coupling agents between the hydroxyl groups of polysaccharides
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and the epoxy of the nonpolar polyester that constitute the synthetic matrix [103]. It
was claimed that the incorporation of silane treated crude CH into polybutylene adipate
terephthalate (PBAT)-based formulations can yield composites with higher hydrophobicity
and stiffness than neat PBAT-based composites, as well as lower production costs (32%),
making these materials competitive with conventional commercial polymers [87]. Better
interfacial adhesion between CS and PBAT/P(3HB-co-3HV) blend can also be obtained after
performing silane treatment on crude CS [91]. Tetraethyl orthosilicate can also be used to in-
crease the homogeneity, water resistance, and biodegradability of maleic-anhydride-grafted
PLA/SCG-based formulations [94].

The torrefaction of coffee by-products before their addition into bioplastic-based for-
mulations is another strategy adopted to increase the biocompatibility between crude
coffee by-products and polyesters. In this context, torrefaction has been used as a strategy
to produce coal fuel from biomass at 200–300 ◦C under inert nitrogen gas atmosphere [104],
making it possible to increase the hydrophobicity of the material by the dehydration of
cellulose and lignin, thereby reducing the number of hydroxyl groups available [105]. The
addition of torrefied CH into PLA-based formulations increases the mechanical resistance
and improves the thermal stability by delaying the degradation time of the corresponding
mold injected specimens [88]. Moreover, the torrefaction of SCG increases the hydrophobic-
ity of PBAT/SCG-based composites, enhancing the potential of this treatment to develop
hydrophobic food packaging materials, which can extend food shelf-life by preventing
interaction with water [95].

When applied to polar polymeric matrices, coffee by-products can be blended with
other polar compounds, such as polysaccharides, to develop homogeneous materials, as
observed when chitosan was incorporated into PVA/SCG-based formulations [96]. As a
result, SCG can be successfully incorporated into the polymeric matrix, yielding composites
which are suitable for adsorbing pharmaceutical contaminants in water [96]. This property
may also be relevant for active food packaging.

When coffee by-products are added into polysaccharide-based formulations, good
compatibilization can be achieved without previous treatment or incorporation of any
compatibilizer agent into the plastic formulation. The incorporation of crude SCG powder
into corn starch-based formulations leads to the development of films with increased
tensile strength [97]. Similarly, the incorporation of crude SCG powder into cellulose-based
formulations leads to the development of films with decreased light transmission (high light
resistance), with potential for use in vegetable packaging [98]. Moreover, crude SCG has
the potential to increase the water tolerance of pectin-based films [99,100]. Regarding crude
CS, its addition into potato starch-based formulations led to the development of films with
increased elasticity, stretchability, and water resistance while conferring antioxidant and
UV-protective abilities upon the pristine potato starch-based films [93]. Therefore, blending
coffee by-products with polysaccharide-based formulations can lead to the creation of
materials which are competitive with nonbiodegradable food packaging plastics.

2.2.2. Coffee By-Product-Derived Extracts with Film-Forming Ability or
Functional Properties

Coffee by-products are a source of compounds with film-forming ability or functional
molecules, such as lipids, phenolics, and polysaccharides, which are suitable for the
production of plastics with improved performance for food packaging (Table 4).

Regarding lipid-rich extracts, among all coffee by-products, only SCG have been
used due to their high lipid content (13–15% dry wt basis) (Table 1). SCG-derived oil can
be incorporated into PLA-based formulations, giving rise to composites with increased
toughness and suitable for 3D-printing applications, due to the uniform distribution of SCG-
oil molecules within the polymeric matrix [106]. Also, the addition of SCG fatty acids-rich
extracts combined with diatomite leads to the development of multifunctional PLA-based
films with increased interfacial adhesion and decreased oxygen permeability [107]. Herein,
the molecules of SCG-extract and diatomite act as reinforcing fillers, hindering the diffusion
of air molecules through the PLA-based matrix.
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Phenolic-rich extracts obtained from coffee by-products have been used to confer
active properties upon plastic polysaccharide-based formulations. Phenolic-rich extracts
obtained from CP develop yellowish films with increased water resistance (decreased
water vapor permeability and water solubility), antioxidant, and antimicrobial properties
when incorporated into chitosan-based formulations [108], having the potential to prevent
food oxidation reactions when used as packaging due to the radical scavenging activity
of coffee phenolic compounds [109]. Moreover, the inherent antimicrobial activity of
coffee phenolic compounds, namely chlorogenic acids, can also confer protection against
microbial spoilage [110]. Similarly to chitosan-based formulations, corn starch-based
films with increased tensile strength, decreased water vapor and oxygen permeabilities
(by 30% and 50–85%, respectively), and antioxidant/antibacterial activities have been
reported by the addition of CH hydrothermal aqueous extracts [58]. These extracts have
also been used to confer antioxidant activity and to decrease the oxygen permeability of
corn starch/PLA-based films [111]. Gellan gum-based films with antifungal properties
have also been prepared with phenolic-rich extracts obtained from CPm [42]. Phenolic-
rich extracts recovered from SCG can also originate from PVA/cassava starch- [112] and
cassava starch- [113] based films with active properties, namely antioxidant, antimicrobial,
and antibacterial activities. Although the increased tensile strength of the films has been
attributed to the phenolic compounds present in the extracts, it is possible that this effect
is due to co-extracted polysaccharides. In addition, the co-extraction of alkaloids, such as
caffeine, may also contribute to the antimicrobial properties of the films [114].

Regarding polysaccharides, cellulose-rich materials have been used to enhance the
physicochemical and mechanical performance of bioplastics. After delignification and
bleaching CH, the obtained cellulose fibers (10–50 µm diameter and 1–3 mm length [115])
are capable of increasing the toughness of corn starch-based formulations [58]. After
hydrolysis of CH-derived cellulose, the resulting cellulose nanocrystals (2–20 nm diameter
and 100–600 nm length [116]) are capable of increasing the traction resistance of corn
starch/PLA-based matrices [111]. On the other hand, cellulose nanocrystals-derived from
CS (8 nm diameter and 80 nm length) decrease the water vapor and oxygen permeabilities
of PLA-based matrices [117]. Moreover, galactomannan and arabinogalactan-rich extracts
derived from SCG increase the light barrier, tensile resistance, and surface hydrophobicity
of carboxymethyl cellulose-based films [118].

Coffee by-product-derived polysaccharides with film-forming ability can be directly
used to form bioplastics. Pectic polysaccharides (DE 85%) obtained from CM can be
used as polymeric matrices in bioplastics production, yielding biodegradable films with
rigidity and water insolubility [52] for use as food packaging. Moreover, polysaccharide-
rich extracts obtained from SCG can yield light-brownish films [64], with potential to
protect foodstuffs from light when used as packaging. However, these SCG-derived films
are heterogeneous and possess surface aggregates, which compromise their mechanical
performance. While the brownish coloration derives from SCG melanoidins, the presence
of aggregates (visible dark brown spots) may be related with the formation of complexes
between polysaccharides and chlorogenic acids during film development. The partial
removal of (β1→4)-linked glucose residues from this extract (12%) by enzymatic hydrolysis
can be performed to obtain a fraction rich in galactomannans which is able to form light-
brown heterogeneous films with higher rigidity. The presence of less (β1→4)-linked
residues in the extract increases the galactomannan intermolecular bonds [65]. Future
research in this area is essential to extend the application range of these materials, e.g.,
making them suitable for food packaging applications.
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Table 4. Coffee by-products used as a source of extracts with film-forming ability or with functional properties for
biodegradable materials formulations.

By-Product Coffee-Based Molecules Polymeric Matrix Developed Materials and Main Properties Ref

CP Phenolic-rich extract Chitosan Films with increased water resistance,
antioxidant, and antimicrobial properties [108]

CM Pectic polysaccharides Pectic polysaccharides Biodegradable films with rigidity and
water insolubility [52]

CPm Phenolic-rich extract Gellan gum Films with improved antifungal properties [42]

CH Antioxidant and antibacterial
aqueous extract Corn starch

Antioxidant and antibacterial films with
increased tensile strength and decreased

water vapor and oxygen permeability
[58]

Cellulose fibers Corn starch Films with increased stiffness [58]
Antioxidant and antibacterial

aqueous extract Corn starch/PLA Antioxidant films with decreased
oxygen permeability [111]

Cellulose nanocrystals Corn starch/PLA Films with increased tensile strength and
decreased gas permeabilities [111]

CS Cellulose nanocrystals PLA Films with increased tensile strength and
decreased gas permeability [117]

SCG Polysaccharide-rich extract Carboxymethyl cellulose Active brown films with increased light
barrier, hydrophobicity, and tensile resistance [118]

Oil PLA Composites with increased toughness
suitable for 3D-printing applications [106]

Fatty acids-rich extract PLA (plus diatomite) Films with increased interfacial adhesion and
decreased oxygen permeability [107]

Phenolic-rich extract PVA/cassava starch Antioxidant, antimicrobial, and
antibacterial films [112]

Cassava starch Antioxidant, antimicrobial, and
antibacterial films [113]

Polysaccharide-rich extract Galactomannans Heterogeneous films with
light-brownish coloration [64]

Galactomannans-rich extract Galactomannans Heterogeneous and rigid films with
light-brownish coloration [65]

CH: coffee husks; CM: coffee mucilage; CP: coffee pulp; CPm: coffee parchment; CS: coffee silverskin; PLA: polylactic acid; PVA: polyvinyl
alcohol; SCG: spent coffee grounds.

3. Conclusions and Future Perspectives

This review addresses the potential of using coffee by-products either as crude addi-
tives or as coffee by-products-derived extracts rich in lipids, phenolics, and polysaccharides,
to improve the physicochemical, mechanical, barrier, and biodegradability properties of
film-forming materials, thereby contributing to food packaging sustainability. Moreover,
coffee by-products can be used as a source of compounds with film-forming ability, such as
pectic polysaccharides from pulp and mucilage, and galactomannans from spent coffee
grounds, in the development of bioplastics. Although coffee husks, coffee silverskin, and
spent coffee grounds are the most studied plant parts regarding food packaging, all coffee
by-products have potential for this purpose. Due to their inherent physicochemical consti-
tution, coffee by-products may give rise to packaging materials with decisive properties for
food preservation, such antioxidant activity, antimicrobial properties, increased mechanical
resistance, and surface hydrophobicity, as well as improved gas barrier performance. These
properties enable coffee by-products to extend their application range to the active food
packaging sector while contributing to the circular economy. To this end, the dehydration
of coffee byproducts, or any other procedure which allows them to retain their quality, is a
requirement. Most studies to date were only performed on a laboratory scale, using solvent
casting technology, and failed to provide information about the biodegradability perfor-
mance of the developed materials. Aiming to fulfil the requirements of the active food
packaging industry, the evaluation of the biodegradability, processability, and upscaling
potential of coffee by-product-based materials is a significant challenge.
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