
Citation: Bai, J.; Ge, C.-X.; Wu, Z.-S.

Optical Trapping of Chiral Particles

by Dual Laser Beams. Photonics 2023,

10, 905. https://doi.org/10.3390/

photonics10080905

Received: 4 July 2023

Revised: 30 July 2023

Accepted: 31 July 2023

Published: 4 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

photonics
hv

Article

Optical Trapping of Chiral Particles by Dual Laser Beams
Jing Bai 1,*, Cheng-Xian Ge 2 and Zhen-Sen Wu 3

1 School of Electronic Engineering, Xi’an University of Posts & Telecommunications, Xi’an 710121, China
2 The 39th Research Institute of China Electronics Technology Corporation, Xi’an 710065, China;

cxge@stu.xidian.edu.cn
3 School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China;

wuzhs@mail.xidian.edu.cn
* Correspondence: jbai@stu.xidian.edu.cn; Tel.: +86-134-7405-9068

Abstract: In this paper, an analytical method for studying the radiation force (RF) of chiral spheres
generated by dual laser beams is presented under the framework of generalized Lorenz–Mie theory
(GLMT). According to the coordinate transformation relations, the arbitrarily incident laser beam is
represented by vector spherical harmonic functions (VSHFs) in the sphere system. The entire induced
field expression coefficients of dual laser beams can be obtained by superposition of each illuminated
field. Based on the momentum conservation theory, the concrete expression of lateral and axial RF on
chiral sphere is derived. The current theories are shown to be valid by comparison with the existing
reference. To investigate the stable capture state of chiral sphere, the influences of the corresponding
parameters of chiral particles and dual laser beams on the trapping and manipulation are investigated
in detail. The analytical study on the RF of dual laser beams on chiral particles is an efficient method
for improving optical tweezers technology and can become an encouraging approach to realize the
high accuracy operation of chiral particles.

Keywords: radiation force; dual beam trap; chiral particle; spherical vector wave functions

1. Introduction

Optical tweezers technology was first discovered by Ashkin according to the exper-
imental phenomenon of capturing and accelerating particles by laser beam [1,2], which
has attracted widespread attention in the fields of molecular biology [3–9], physics [10],
nanotechnology [11], particle sizing, and chemical engineering since it can capture and
manipulate living samples without physical contact with particles. At present, optical
tweezers technology has become an important means for manipulating various particles
due to its special characteristics [12]. In recent years, scholars have studied dielectric meta-
surfaces that allow the parallel trapping of multiple particles [13], and they experimentally
demonstrated the near-field enhancement provided by the meta-surface and simulated its
trapping performance. Generally, in the current literature on the correlations of the particles
and the shaped beam, optical tweezers are mainly set using a single laser beam [14–17].
With the continuous progress of laser technology, the research on the interaction between
particles and single beams is relatively mature. Various new wave sources such as the
Laguerre–Gaussian beam [18], Bessel beam [19], Hermite beam [20], and various vortex
beams have become the research focus of many scholars [21,22]. However, single beam
trapping typically only allows for the capture of particles at a specific location, limiting its
applicability in studying multi-particle systems and complex microstructures. Additionally,
due to the limited trapping range of a single beam, it may not be effective in capturing
particles in complex or sparsely distributed particle systems, leading to reduced experi-
mental efficiency and accuracy. To address these limitations and drawbacks associated
with single beam particle trapping, composite dual beam particle trapping has emerged
as a promising solution. This technique offers high precision, high resolution, and high
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efficiency, effectively overcoming the shortcomings of single beam methods. As a result, it
has generated significant interest in various fields, including biomedicine, remote sensing,
communication, and micro-manipulation [23]. Dual beam optical trap was first proposed
by Ashkin [24]. He demonstrated the stability of dual beam optical trap by experimentally
tracking particles of micron size in liquid and gas. On this basis, a large number of scholars
have studied the capture and manipulation of particles by dual beam optical tweezers.
Koen et al. [25] described the design and construction of two different types of multiple
beam optical tweezers, and the advantages and disadvantages of optical tweezers are
discussed, along with details of specific implementations. In 1998, Zemánek et al. utilized
the coupled dipole theory to study the RF of Rayleigh spheres irradiated by a Gaussian
standing wave [26] and gave a detailed discussion on the influence of a wide variety of
parameters on RF [27,28]. However, the method is only effective to analyze the RF on
smaller targets. For larger targets, Gauthier et al. proposed the radial optics method to
study the RF on spherical particles immersed in a dual beam trap and demonstrated the
mechanism of particle manipulation and trapping [29]. For targets of comparable size
with incident wavelength, dipole and geometric optical methods will no longer apply. To
solve this problem, Gouesbet et al. [30] proposed the GLMT to research the interactions
between light and particles and gave detailed discussions of shape factors [31]. Accord-
ing to the study, Zemánek et al. made a comparison in optical trapping performance of
submicron-sized particles in single progressive beam and dual Gaussian standing wave [28],
and proved that a standing wave well can provide greater axial capture force than sin-
gle Gaussian beam under certain conditions. Cizmar et al. [32] proposed a method for
three-dimensional compression of high refractive index particles by dual Bessel beam
interference, which is used to study the RF of the back-propagating Bessel standing beam.
In addition, Casabri et al. simulated the RF of three beams and found that the theoretical
results are consistent with the experimental data [33]. Horst et al. [34] calculated the RF
on isotropic sphere irradiated by two back-propagating Gaussian beams. Zhao et al. [35]
researched the trapping performance of nanoparticles surrounded by absorbing dielectric
illuminated by bi-linearly polarized light. Crivellari [36] proposed a new type of dual-well
optical tweezers designed for counter-propagating beams by using the conservation of
linear momentum. Zhang et al. [37] proved that particles in dual orthogonal polarized
plane waves are subject to trapping forces. Later, Li et al. [38] studied the RF of dual
counter-propagating Gaussian beam on an anisotropic sphere placed in it based on GLMT
theory, and analyzed the effect of incident angles on the RF. Nevertheless, the references
mentioned above mainly reflected on the research of RF on homogeneous isotropic particles
by dual beams. There are still few theoretical studies of the trapping force of dual laser
beam on chiral particles.

Chiral medium was first proposed as an optically active substance in the 19th century.
Chiral structures refer to geometric configurations that cannot be overlapped with their
mirror images through translation and rotation. Typical examples of such structures include
helices (both left-handed and right-handed), mirror-image enantiomers of molecules, DNA,
amino acids, and more. With its unique optical rotation characteristics, chiral material
has been widely manufactured and used in biomedicine, micro-molecular manipulation,
physics, and fuel combustion [39–41]. In the past few decades, the interaction between
chiral material and laser beams has been extensively studied by many researchers. In
addition to numerical methods based on T-matrix [42], moment method [43,44], FDTD [45],
and FDFD [46], the analytical method relies on the advantages of an accurate solution;
many scholars have been able to investigate the scattered properties of chiral particles.
Gordon firstly tried to obtain the derivation of the scattered amplitude matrix of chiral
particles by using the GLMT [47]. Later, Wu [48] proposed an analytical method to analyze
the scattering of large chiral particles and deduced the scattering coefficients. During recent
years, Cui researched the analytical solutions of Laguerre–Gaussian beam on chiral particles
with arbitrary shapes [49]. Our team [50] analytically studied the interactions between
high-order Bessel beam and cluster chiral nanostructures. In order to better investigate the
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electromagnetic interactions with chiral media, many scholars have devoted themselves to
the study of capture performance of chiral particles. In 2011, Guzatov et al. [51] reported
the RF of circularly polarized plane waves on chiral spheres. In 2014, Chen et al. [52]
analyzed the lateral trapping effects of Bessel beams on chiral particles by using the dipole
approximation method. In 2017, based on Fast Fourier Transform (FFT), Du and other
scholars [53] proposed a pure numerical method to calculate the trapping force of chiral
materials. However, FFT algorithms usually need to calculate the optical force in the
whole space, which leads to a serious decline in the calculation speed. In order to solve
the problem, Zheng et al. deduced the analytical expression of surface light force based
on the GLMT and eliminated the limitation of calculation speed [54–56]. Shang et al.
reported an iterative analytical solution for the RF of chiral dielectric spheres in large
sizes [57]. However, the above-mentioned work mainly involves the effects of single
planar waves and progressive circular Gaussian beams on the trapping properties of
chiral particles. The literature has rarely mentioned studies on the capture performance of
standing laser beam on chiral spheres. Investigating RF on spherical particles by Gaussian
standing beams is very different from the traditional single beam, especially for chiral
nanoparticles, which need to be further researched. In the formula derivation presented in
this paper, we stably and efficiently calculate the scattering coefficients of chiral spheres
using the iterative formula and the recursive relationship for the logarithmic derivatives
of the Riccati–Bessel functions [18]. We then apply this method to the calculation of the
radiation force and rigorously derive the expression for the trapping force on chiral spheres
under the illumination of dual laser beams. Furthermore, our derivation is based on a
more general scenario where the scattering coefficients and radiation force formulas are
applicable to the study of trapping forces induced by dual beams of arbitrary shapes
if the expansion coefficient of the incident beam is known. The results on RF of chiral
nanoparticles with arbitrary polarized standing laser beams may have potential application
value in microscopy detection and manipulation of chiral structures.

The thesis is arranged as follows: In the second part, based on GLMT, the incident field
and scattered field of chiral nanoparticles by arbitrarily irradiated double laser beams are
deduced. Applying the deduced scattered result, the third part combines the momentum
conservation theory to obtain the lateral and axial RF on chiral spheres by double laser
beams. In the fourth part, software simulations are used to present the numerical influence
of various parameters. Finally, Section 5 is the summary of the thesis. We hope that the
theoretical results of this paper can make contributions to the study of optical capture of
chiral particles. In the subsequent analysis, a time dependence of the form exp(−iωt) is
assumed for all the electromagnetic (EM) fields but is ignored throughout the treatment,
where ω is the angular frequency.

2. Theoretical Analysis

In this paper, the expansion of dual laser beams in a spherical system is obtained first,
and then the scattered theory of chiral sphere by single beam is extended to dual laser
beams. As shown in Figure 1, the subject researched here is the random irradiation of dual
Gaussian beams with arbitrary polarizations on chiral particle system. To facilitate a better
understanding of the chirality properties, we have provided molecular structures inside the
chiral sphere that exhibit mirror-image enantiomeric characteristics in Figure 1. Suppose
the radius of the chiral particle is a, the sphere is located at Oxyz system, and its center
is coincident with center O. The first laser beam transmits along +z1 direction in system
O1x1y1z1, and its beam center is O1. The second laser beam propagates along positive z2
direction in system O2x2y2z2 and its beam center coordinate is O2. The beam centers O1 and
O2 in the particle coordinate system Oxyz are denoted as (x1, y1, z1) and (x2, y2, z2). Take
the first laser beam as example, we establish an intermediate system Ox10y10z10 similar to
the first laser beam system Ox1y1z1 as presented in Figure 2a, the angles α1 and β1 indicate
the arbitrariness of the propagation and polarization about the first laser beam, where α1 is
set as the angle between first beam transmitted axis and z-axis and β1 refers to the angle
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between the first beam polarized orientation and x-axis. Similarly, α2 and β2 are set to be
the angle of incidence and polarization of secondary laser beam. As presented in Figure 2b,
K1, K2 represent the wave numbers of dual Gaussian waves. Since the case is the same
with Figure 2a, only the representation of the angle is different, so the illustration is not
repeated here.
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Figure 1. Schematic diagram of chiral particle irradiated by dual Gaussian beams.
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Figure 2. (a) The intermediate system Ox10y10z10 established parallel to first laser beam coordinate
system Ox1y1z1. (b) Illuminated angle α2 and polarized angle β2 of second laser beam.

As presented in Figure 2, the first laser beam can be expanded according to the VSHFs
in the intermediate system Ox10y10z10 as follows:

Ei1 = E0
∞
∑

n=1

n
∑

m=−n

[
ai10

mnM(1)
mn
(
r10, k0

)
+ bi10

mnN(1)
mn
(
r10, k0

)]
Hi1 = E0

k0
iωµ0

∞
∑

n=1

n
∑

m=−n

[
ai10

mnN(1)
mn
(
r10, k0

)
+ bi10

mnM(1)
mn
(
r10, k0

)] (1)

In the above equations, k0 = 2π/λ, where λ presents the wavelength of the laser beam
in free space. E0 represents electric field amplitude. ω represents the angular frequency,
µ0 is the surrounding medium’s magnetic permeability. Superscript “10” in the above
equation denotes the variates in the intermediate system Ox10y10z10. The r10 means the
position vector of the center O1 of the first beam in the intermediate system Ox10y10z10.
The expansion coefficients ai10

mn, bi10
mn can be obtained as follows:

ai10
mn = igm

n,TECnm, bi10
mn = gm

n,TMCnm (2)

where the beam factor gm
n,TE and gm

n,TM can be obtained by using the traditional integral
method and the specific expansion can refer to the literature [58,59].

Cnm =

{
in−1 2n+1

n(n+1) , m ≥ 0

(−1)|m| (n+|m|)!
(n−|m|)! in−1 2n+1

n(n+1) , m < 0
(3)
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In Equation (1), M(q)
mn and N(q)

mn denote the vector spherical harmonic functions (VSHFs)
and q = 1, 2, 3, 4 represents four kinds of spherical Bessel functions in the SVWFs, Whose
expressions used here are the same as those used in Ref. [60]:

M(q)
mn = imz(q)n (kr) Pm

n (cos θ)
sin θ eimφ θ̂ − z(q)n (kr) dPm

n (cos θ)
dθ eimφφ̂

N(q)
mn = n(n + 1) z(q)n (kr)

kr Pm
n (cos θ)eimφ r̂ + 1

kr
drz(q)n (kr)

dr
dPm

n (cos θ)
dθ eimφ θ̂

+im 1
kr

drz(q)n (kr)
dr

Pm
n (cos θ)

sin θ eimφφ̂

(4)

where z(q)n (kr) represents an appropriate kind of spherical Bessel functions: the first kind jn,
the second kind yn, or the third kind h(1)n and h(2)n , denoted by q = 1, 2, 3, or 4, respectively.
Pm

n (cos θ) is the associated Legendre Function of the first kind. Then, the incident, scattered,
and internal fields can be expressed as an infinite series of these vector functions.

According to the coordinate transformation theorem [61], the VSHFs of the intermedi-
ate and particle coordinate systems are related as follows:

(M, N)(1)mn

(
r10, k0

)
=

n

∑
s=−n

ρ(m, s, n)(M, N)(1)sn

(
r1, k0

)
(5)

By using the rotation relations between coordinates [62], the coordinate of O1 in the
middle system Ox10y10z10 can be obtained as (x10, y10, z10):x10

y10
z10

 =

 cos α1 cos β1 sin α1 cos β1 sin β1
− sin α1 cos α1 0

− cos α1 sin β1 − sin α1 sin β1 cos β1

x1
y1
z1

 (6)

By substituting Equation (5) into Equation (1), the final incident field expansion of the
first laser beam in the sphere system Oxyz can be expressed as:

Eip1 = E1
∞
∑

n=1

n
∑

m=−n

[
aip1

mnM(1)
mn
(
r1, k0

)
+ bip1

mnN(1)
mn
(
r1, k0

)]
Hip1 = E1

k0
iωµ0

∞
∑

n=1

n
∑

m=−n

[
aip1

mnN(1)
mn
(
r1, k0

)
+ bip1

mnM(1)
mn
(
r1, k0

)] (7)

where (
aip1

mn, bip1
mn

)
=

n

∑
s=−n

ρ(s, m, n)Cns

(
ai10

ms , bi10
ms

)
(8)

ρ(s, m, n) = (−1)m+s
[
(n + m)!(n−m)!
(n + s)!(n− s)!

]1/2
u(n)

ms (−α) (9)

u(n)
ms (−α) = ∑

σ

(
n + s
n−m− σ

)(
n− s
σ

) (
cos

α

2

)2σ+m+s
(

sin
−α

2

)2n−2σ−m−s
(10)

where the superscript “1” represents the corresponding parameters of the first laser beam.
r1 denotes the position vector of the center O1 of the first laser beam in the sphere system
Oxyz. aip1

mn and bip1
mn represent the first incident coefficients. Superscript ip1 represents the

x-direction line polarization, y-direction line polarization, right circularly polarization
(RCP), and left circularly polarization (LCP) wave incidence when ip1 is ix1, iy1, iR1, iL1,
respectively. The incident coefficients of different polarizations are satisfied:

aiy1
mn = −ibix1

mn biy1
mn = −iaix1

mn

aiR1
mn =

√
2(aix1

mn + bix1
mn)/2 biR1

mn =
√

2(bix1
mn + aix1

mn)/2
aiL1

mn =
√

2(aix1
mn − bix1

mn)/2 biL1
mn =

√
2(bix1

mn − aix1
mn)/2

(11)
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Similar to the first beam, the expression of the second incident laser beam in the sphere
system Oxyz is:

Eip2 = E2
∞
∑

n=1

n
∑

m=−n

[
aip2

mnM(1)
mn
(
r2, k0

)
+ bip2

mnN(1)
mn
(
r2, k0

)]
Hip2 = E2

k0
iωµ0

∞
∑

n=1

n
∑

m=−n

[
aip2

mnN(1)
mn
(
r2, k0

)
+ bip2

mnM(1)
mn
(
r2, k0

)] (12)

where (
aip2

mn, bip2
mn

)
=

n

∑
s=−n

ρ(s, m, n)Cns

(
ai20

ms , bi20
ms

)
(13)

At this time, the total incident fields of the dual laser beams can be gained by adding
electromagnetic fields of each incident Gaussian beams:

Eip = Eip1 + Eip2 Hip = Hip2 + Hip2 (14)

the total expansion coefficients can be expressed as:

aip
mn = aip1

mn + aip2
mn, bip

mn = bip1
mn + bip2

mn (15)

For the chiral medium sphere, the intrinsic structure relationship is as follows:

D = εcE + iκ
√

ε0µ0H B = −iκ
√

ε0µ0E + µcH (16)

In the above formula, εc, µc, and κ represent the dielectric constant, magnetic perme-
ability, and chiral parameters. ε0 and µ0 represent the dielectric constant and magnetic
permeability in free space. Considering that laser beam propagation in the optically active
medium can be always broken down into two patterns: RCP and LCP beams, there are two
kinds of wave numbers in the chiral medium: RCP beam with kR and LCP beam with kL,
which can be denoted as [63]:

kR = ω(
√

εcµc + κ
√

ε0µ0)kL = ω(
√

εcµc − κ
√

ε0µ0) (17)

According to the previous work [63,64], the internal fields of chiral spheres can be
obtained by SVWFs as [48]:

Eint =
∞
∑

n=1

n
∑

m=−n

[
AmnM(1)

mn(r, kR) + AmnN(1)
mn(r, kR) + BmnM(1)

mn(r, kL)− BmnN(1)
mn(r, kL)

]
Hint = Q

∞
∑

n=1

n
∑

m=−n

[
AmnN(1)

mn(r, kR) + AmnM(1)
mn(r, kR) + BmnN(1)

mn(r, kL)− BmnM(1)
mn(r, kL)

] (18)

where Q = −i
√

µcεc, Amn , and Bmn denote the internal coefficients. Similarly, the
scattering fields are expressed in the following forms:

Es = E0
∞
∑

n=1

n
∑

m=−n
[As

mnM(3)
mn(r,k0) + Bs

mnN(3)
mn(r,k0)]

Hs = k0E0
iωµ0

∞
∑

n=1

n
∑

m=−n
[As

mnN(3)
mn(r,k0) + Bs

mnM(3)
mn(r,k0)]

(19)

Based on the boundary conditions in [48] and by substituting Equations (14), (18) and
(19), the scattered coefficients As

mn and Bs
mn of dual laser beams on chiral sphere can be

obtained as follows:

As
mn = Asa

n aip
mn + Asb

n bip
mn Bs

mn = Bsa
n aip

mn + Bsb
n bip

mn, (20)
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where

Asa
n =

ψn(x0)

ξn(x0)

D(1)
n (xR)−ηr D(1)

n (x0)

ηr D(1)
n (xR)−D(3)

n (x0)
+ D(1)

n (xL)−ηr D(1)
n (x0)

ηr D(1)
n (xL)−D(3)

n (x0)

ηr D(3)
n (x0)−D(1)

n (xR)

ηr D(1)
n (xR)−D(3)

n (x0)
+ ηr D(3)

n (x0)−D(1)
n (xL)

ηr D(1)
n (xL)−D(3)

n (x0)

, (21)

Asb
n =

ψn(x0)

ξn(x0)

ηr D(1)
n (xR)−D(1)

n (x0)

ηr D(1)
n (xR)−D(3)

n (x0)
− ηr D(1)

n (xL)−D(1)
n (x0)

ηr D(1)
n (xL)−D(3)

n (x0)

ηr D(3)
n (x0)−D(1)

n (xR)

ηr D(1)
n (xR)−D(3)

n (x0)
+ ηr D(3)

n (x0)−D(1)
n (xL)

ηr D(1)
n (xL)−D(3)

n (x0)

, (22)

Bsa
n = Asb

n , (23)

Bsb
n =

ψn(x0)

ξn(x0)

ηr D(1)
n (xR)−D(1)

n (x0)

D(1)
n (xR)−ηr D(3)

n (x0)
+ ηr D(1)

n (xL)−D(1)
n (x0)

D(1)
n (xL)−ηr D(3)

n (x0)

D(3)
n (x0)−ηr D(1)

n (xR)

D(1)
n (xR)−ηr D(3)

n (x0)
+ D(3)

n (x0)−ηr D(1)
n (xL)

D(1)
n (xL)−ηr D(3)

n (x0)

, (24)

In the above equations, ψn(z) = zjn(z) and ξn(z) = zh(1)n (z) are the first and the third type
of Riccati–Bessel functions, respectively. D(1)

n (z) = ψ′n(z)/ψn(z) and D(3)
n (z) = ξ ′n(z)/ξn(z)

denote logarithmic derivatives of the Riccati–Bessel functions. The recursive relationship
among D(1)

n (z), D(3)
n (z) and ψn(z)/ξn(z) can be referred in [48]. In Equations (21)–(24),

ηr =
√

ε/µ/
√

εc/µc, x0 = ka, xR = kRa, xL = kLa represent the dimensional parameters of
the chiral dielectric sphere, respectively.

3. Calculation of Radiation Force

Several decades ago, many scholars studied the RF on a sphere irradiated by a light
beam. In accordance with the typical EM theory, the optical beam will carry momentum and
energy in the process of transmission. While the strong convergent laser beam irradiates
on the particles, because of the existence of scattering phenomenon, some momentum is
delivered from incident beam to irradiated particles. Under the momentum mechanics,
the RF acting on particles is equivalent to the change rate of the momentum received from
incident light. Based on electromagnetic scattering theory and Maxwell’s tensor theory, we
derived an expression for the RF on chiral sphere particle by dual Gaussian beams:

→
F =

〈∮
s

n̂·
↔
TdS

〉
(25)

〈↔
T
〉

=
1
2

Re
[

εEE∗ + µHH∗ − 1
2

ε|E|2
↔
I − 1

2
µ|H|2

↔
I
]

(26)

where
↔
T is the Maxwell stress tensor, dS represents an arbitrary closed spherical surface

surrounding the chiral sphere, n̂ represents the outward normal unit vector,
↔
I means the

dual tensor, and 〈 〉 represents mean value of time. E=Eip+Es and H=Hip+Hs represent the
total fields.

By substituting Equation (26) into Equation (25) and using recursive and orthogonal
relations of the SWVFs [65], the trapping force of the chiral sphere under the illumination
of dual Gaussian beams can be obtained as:
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Fx + iFy = nP0
πck0

2w2

∞
∑

n=1

n
∑

m=−n
[N−1

mn N−1
m+1n

√
(n−m)(n + m + 1)(aip

mnBs∗
m+1n

+bip
mn As∗

m+1n + Bs
mnaip∗

m+1n + As
mnbip∗

m+1n + 2As
mnBs ∗

m+1n + 2Bs
mn As ∗

m+1n)

−iN−1
mn N−1

m+1n−1(n− 1)(n + 1)
√

(n−m−1)(n−m)
(2n−1)(2n+1) (aip

mn As ∗
m+1n−1

+bip
mnBs ∗

m+1n−1 + As
mnaip∗

m+1n−1 + Bs
mnbip∗

m+1n−1 + 2As
mn As ∗

m+1n−1 + 2Bs
mnBs ∗

m+1n−1)

−iN−1
mn N−1

m+1n+1n(n + 2)
√

(n+m+1)(n+m+2)
(2n+1)(2n+3) (aip

mn As∗
m+1n+1+

bip
mnBs ∗

m+1n+1 + As
mnaip∗

m+1n+1 + Bs
mnbip∗

m+1n+1 + 2As
mn As ∗

m+1n+1 + 2Bs
mnBs ∗

m+1n+1)]

(27)

Fz =
2nP0

πck2
0w2 Re

∞
∑

n=1

n
∑

m=−n
[in(n + 2)

√
(n−m+1)(n+m+1)

(2n+1)(2n+3) N−1
mn N−1

mn+1

×(aip
mn+1 As ∗

mn + As
mn+1aip ∗

mn + bip
mn+1Bs ∗

mn + Bs
mn+1bip ∗

mn + 2As
mn+1 As ∗

mn

+2Bs
mn+1Bs ∗

mn)−mN−2
mn(aip

mnBs ∗
mn + bip

mn As ∗
mn + 2As

mnBs ∗
mn)]

(28)

In the above equations, Nmn =
√
(2n + 1)(n−m)!/4π/(n + m!), m = 0,±1,±2, . . . . . . ,

±n, c denotes the light speed in vacuum. p = πw2
√

ε/µE2
0/4 represents the incident power.

4. Numerical Simulation

In this part, numerical calculations taking into account the influence of variety of
parameters, for example beam polarization form, waist width, particle radius, chiral
parameters, particle refractive index, and material losses on RF, are analyzed in detail.
Considering that there are few reports on optical trapping experiments in air, the main
reason is that the high refractive index contrast between air and liquid makes it more
difficult to achieve optical capture of a single beam in air than in liquid [66]. However, the
standing beam configuration consisting of dual beams can offer sufficient chance to control
airborne particles, as the capture is carried out with the amendments of radiation pressure.
In general, creating a standing wave well requires two relativistic propagating laser beams
carrying the same amplitude, the same frequency, and a fixed phase difference. In order to
leave an intuitive show about standing Gaussian beam, difference between magnitude plots
for the electric field of single Gaussian beam and Gaussian standing beam with varying
waist width are given in Figure 3, in which, the single Gaussian beam travels in the +z
direction and the standing wave consists of two Gaussian beams transmitting along +z
direction and −z direction, respectively. All beams are denoted by RCP-polarization and
wavelength λ = 1064 nm. The electric field amplitude is denoted E0 = 1, the direction of
standing wave is set α1 = 0◦, α2 = 180◦, and the beam center is x1 = y1 = 0, x2 = y2 = 0.
It can be found that in Figure 3a–d, as the beam waist width increases, the electric field
intensity distribution range gradually expands, at this time the convergence degree and
the gradient force well will decrease, but the capture position is always at the center of the
single beam. However, by contrast with single laser beam, the standing laser beam can
form periodic nodes and antinodes as shown in Figure 3e–h, and since a battery of trapping
points are constituted following the axis of wave propagation, the standing potential well
can capture particles in multiple positions, which is the advantage of the Gaussian standing
potential well compared with a single beam.
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Figure 3. Illustrates the effects of waist width on the electric components of single progressive
Gaussian beam and standing Gaussian beam. (a–d) The intensity distribution of single Gaussian
beam. (The parameters are λ = 1064 nm, α = 0

◦
, x = y = 0). (e–h) The intensity distribution of

Gaussian standing beam. (The parameters are α1 = 0◦, α2 = 180◦, x1 = y1 = 0, x2 = y2 = 0). The
waist radii used are: w1 = 0.6 µm in (a,e); w1 = 0.7 µm in (b,f); w1 = 0.8 µm in (c,g) and w1 = 1.0 µm
in (d,h).

Figure 4 illustrates the distribution of the axial RF with the varying axial position of
the beam center acting on the degraded chiral particle by single laser beam and dual laser
beams in Figure 4a,b, separately. To prove the correctness of theory and procedure, chiral
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sphere (κ = 0) is degenerated into non-chiral isotropic sphere. The lines indicate the results
calculated in literature [28], and the points indicate the theoretical calculations in this paper.
The incident angle of standing wave is: α1 = 0◦ α2 = 180◦ and wavelength is 1.064 µm. The
beam center is x1 = y1 = 0 x2 = y2 = 0, and the spherical radius is denoted as 80 nm. As
shown in Figure 4, we can find that the degraded consequences in this paper coincide well
with the literature ones, which indicates the correctness of our procedures and formulas.
There are two kinds of forces caused by the interaction between particles and light waves.
One is the gradient force caused by the Lorenz effect of EM field acting on particles and
makes particles shift in light intensity gradient direction. The other one is scattering force
that makes sphere move along the direction of the light wave incidence. The calculation of
the axial RF of the beam acting on the particle by using the GLMT is based on the boundary
conditions, so it is the resultant of these two forces. As shown in Figure 4a, when the center
of the beam moves closer to the particles, there will be a trapping force pointing to the beam
center. At this time, the gradient effect is larger than the scattering force, and the particle
will be directed to the beam waist center, so as to realize the stable capture of particles in
the light field. Compared to the RF generated by the forward single Gaussian beam, the
trend of the axial RF generated by the Gaussian standing beams is more complicated in
Figure 4b. A number of stable points are created when two relativistic propagating laser
beams carry the same amplitude, the same frequency, and a fixed phase difference. This is
due to the fact that standing laser beam field can form a periodic structure as in Figure 3, so
particles can be trapped at multiple locations. In addition, it can be observed that the axial
RF produced by the dual beams is two orders of magnitude larger than that produced by a
single Gaussian beam. This is due to the fact that interference introduced by dual beams
can lead to extra energy transfer, thus giving the particles higher speed and greater axial
RF. This is one of the advantages of dual Gaussian beams over single Gaussian beam in
particle capture.

Photonics 2023, 10, x FOR PEER REVIEW 11 of 20 
 

 

magnitude larger than that produced by a single Gaussian beam. This is due to the fact 
that interference introduced by dual beams can lead to extra energy transfer, thus giving 
the particles higher speed and greater axial RF. This is one of the advantages of dual 
Gaussian beams over single Gaussian beam in particle capture. 

  
(a) (b) 

Figure 4. The axial RF for the degenerated chiral dielectric sphere is compared with the literature 
[28] results: (a) Comparison of the axial RF of particles irradiated by single laser beam. (b) Compar-
ison of the axial RF of particles irradiated by dual laser beams. ( 80nma = , 1.064μmλ = , 0 0.75w λ=

, 0 1.0n =  , 1 1 0x y= =  , 2 2 0x y= =  , 0
1 1 0α β= =  , 0

2 2 180α β= =  , 01 02 0.6μmw w= =  , 0 0.1wP =  ; The 
relative refractive index 1.19n = ; The phase discrepancy 3 2π ). 

Figure 5 presents the variation curves of the axial RF of standing laser beams on chiral 
sphere with different linear polarization angles. The dual beams are both x-direction lin-
early polarized and transmits in the z+  ( 0

1 0α =  ) and z−  ( 0
2 180α =  ) directions, sepa-

rately. The wavelength in the free space is 1064nmλ =  and the waist width is 

01 02 0.8μmw w= = . We set the first laser beam with the polarization angle 0
1 0β = , the cor-

responding angle of the second laser beam is taken as 0 0 0 0
2

0 ,30 ,60 ,90β = , respectively. The 
other parameters used in the calculation are as follows: the sphere radius is 800nma = , 
the refractive index is 2n = , the chirality is selected 0.3κ = . Note that the phase differ-
ence is zero in Figure 5 but not 3 2π , where 3 2π  is a simulation relative to Figure 4b. A 
great deal of calculations indicate that the equilibrium point position has a little shift on 
the whole, but the relative relationships of equilibrium point position are not changed 
when the phase difference is not zero. In the remainder of this paper, the effect of phase 
difference will not be discussed. As shown in Figure 5, axial RF presents maximally if the 
polarized directions of standing laser beams are identical. This phenomenon is consistent 
with the results in Ref. [38], which indicates that the axial RF exerted on particles by stand-
ing Gaussian beams is identical when their polarization directions are the same or change 
synchronously. In other words, the axial RF curve for chiral particles only manifests if the 
polarized angle changes out of sync. The increasing difference will cause axial RF de-
creases due to the standing wave field’s influence under distinct polarization conditions. 
Notably, axial trapping presents smallest if the polarized directions of dual laser beams 
are perpendicular to each other. Furthermore, it can be observed that with the decrease of 
the polarization angle difference, more capture points appear, which means that the prob-
ability of capturing chiral particles by the standing Gaussian beams is enhanced.  

-3 -2 -1 0 1 2 3
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

F Z
/p

N

z1=z2/μm

 Single beam ：Zemánek+2003
 Single beam ：Our Results

0.0 0.2 0.4 0.6 0.8 1.0 1.2
-30

-20

-10

0

10

20

30

F Z
/p

N

-z1=-z2/μm

 Dual beam:Zemánek+2003
 Dual beam: Our results

Figure 4. The axial RF for the degenerated chiral dielectric sphere is compared with the literature [28]
results: (a) Comparison of the axial RF of particles irradiated by single laser beam. (b) Comparison
of the axial RF of particles irradiated by dual laser beams. (a = 80 nm, λ = 1.064 µm, w0 = 0.75λ,
n0 = 1.0, x1 = y1 = 0, x2 = y2 = 0, α1 = β1 = 0◦, α2 = β2 = 180◦, w01 = w02 = 0.6 µm, P0 = 0.1 w;
The relative refractive index n = 1.19; The phase discrepancy 3π/2).

Figure 5 presents the variation curves of the axial RF of standing laser beams on chiral
sphere with different linear polarization angles. The dual beams are both x-direction linearly
polarized and transmits in the +z(α1 = 0◦) and −z(α2 = 180◦) directions, separately. The
wavelength in the free space is λ = 1064 nm and the waist width is w01 = w02 = 0.8 µm.
We set the first laser beam with the polarization angle β1 = 0◦, the corresponding angle of
the second laser beam is taken as β2 = 0◦, 30◦, 60◦, 90◦, respectively. The other parameters
used in the calculation are as follows: the sphere radius is a = 800 nm, the refractive index
is n = 2, the chirality is selected κ = 0.3. Note that the phase difference is zero in Figure 5
but not 3π/2, where 3π/2 is a simulation relative to Figure 4b. A great deal of calculations
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indicate that the equilibrium point position has a little shift on the whole, but the relative
relationships of equilibrium point position are not changed when the phase difference is
not zero. In the remainder of this paper, the effect of phase difference will not be discussed.
As shown in Figure 5, axial RF presents maximally if the polarized directions of standing
laser beams are identical. This phenomenon is consistent with the results in Ref. [38], which
indicates that the axial RF exerted on particles by standing Gaussian beams is identical
when their polarization directions are the same or change synchronously. In other words,
the axial RF curve for chiral particles only manifests if the polarized angle changes out of
sync. The increasing difference will cause axial RF decreases due to the standing wave
field’s influence under distinct polarization conditions. Notably, axial trapping presents
smallest if the polarized directions of dual laser beams are perpendicular to each other.
Furthermore, it can be observed that with the decrease of the polarization angle difference,
more capture points appear, which means that the probability of capturing chiral particles
by the standing Gaussian beams is enhanced.
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Figure 5. The variation curves of the axial RF of standing laser beams on chiral sphere with different
linear polarization angles. (a = 800 nm, λ = 1064 nm, w01 = w02 = 0.8 µm, n0 = 1.0, n = 2n0,
x1 = y1 = 0, x2 = y2 = 0, α1 = β1 = 0◦, α2 = 180◦, m = 1.19, P0 = 0.1 w; The phase discrepancy 0).

Figure 6 gives the variation curves of axial RF on chiral particle with different chirality
parameters induced by standing laser beams. The variables here are consistent with Figure 5
except that the chirality parameter is denoted as κ = 0,±0.3,±0.5,±0.7,±0.9. It can be
seen that the curve of the axial RF of chiral particle versus beam center is analogical with a
non-chiral sphere. Among the five cases, when the chiral sphere degenerates into that of
a non-chiral isotropic sphere (κ = 0), the maximum negative value of the axial RF can be
achieved, with a negative slope distribution of zero crossing points at multiple positions.
Additionally, the generated axial RF is the same when the chiral parameters are opposite
to each other (κ = ±0.3,±0.5,±0.7,±0.9) for linear polarization incidence. If the sphere
shows little chirality, such as when it is κ = ±0.3 or κ = ±0.5, the negative axial RF can
also be achieved at multiple axial positions with zero crossing points. This indicates that
for non-chiral isotropic medium spheres or chiral medium spheres with small chirality
parameters, the axial RF can reach stable trapping points at several positions on the beam
axis, where chiral spheres can be axially trapped by Gaussian standing waves. If the chiral
sphere carries more chirality, the minimum value of the axial RF will increase until the
negative force disappears. The increasing chiral parameters will destroy the rotational
symmetry of chiral spheres, resulting in non-stable mechanical equilibrium positions along
the axial direction of the standing wave field. As a result, the stability of the trapping force
will decrease. This indicates that for Gaussian standing waves with linear polarization, the
introduction of chirality parameters will weaken the axial trapping performance of chiral
spheres, making it more difficult to manipulate chiral particles with Gaussian standing
waves. Therefore, using dual Gaussian waves to achieve axial trapping of chiral spheres is
not easier than trapping non-chiral isotropic spheres in general.
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Figure 6. Effect of chirality parameters on axial RF exerted on chiral sphere by linearly polarized
Gaussian standing beams. (The parameters used are a = 800 nm, λ = 1064 nm, w01 = w02 = 0.8 µm,
n0 = 1.0, n = 2n0, x1 = y1 = 0, x2 = y2 = 0, α1 = β1 = 0◦, α2 = 180◦, β2 = 0◦, m = 1.19, P0 = 0.1 w.
The phase discrepancy 0).

In Figure 7, we give the effect of circular polarization states on axial RF exerted
on chiral particle by standing laser beams with varying chirality parameters. The dual
Gaussian beams are the same as RCP or LCP incidence, respectively. Other parameters
are consistent with Figure 5. It can be observed that the axial RF generated by the dual
beams of RCP wave incident on chiral particle with negative chirality are equivalent to
that of LCP wave incident with positive chirality. The following relations between the
wave numbers of the two polarized waves satisfied k1(κ) = k2(−κ), k1(−κ) = k2(κ). Based
on this symmetry, it can be envisaged that the scattering of chiral particles with opposite
chirality parameter κ by RCP or LCP beams is coincident. In both cases, the external
intensity distribution of the chiral medium sphere is consistent. Furthermore, we can find
that the capture ability of the axis RF will increase with the enhancement of chirality when
the RCP standing wave incident chirality is negative and the LCP standing wave incident
chirality is positive. Under the situation of the same RCP standing wave illuminate, the
chiral medium sphere with negative chirality undergoes a larger axial RF than that with
positive chirality, indicating that the axial RF produced by the RCP Gaussian standing
wave is larger for the chiral medium sphere with negative chiral parameters. In addition,
the distance between the stable capture points of negative chirality particles induced by
RCP standing wave on the optical axis is smaller, which means that RCP Gaussian standing
wave has greater probability of capturing chiral medium spheres with negative chiral
parameters. Therefore, it may be easier to achieve axial trapping of chiral spheres using
standing laser beams with suitable circular polarization.
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Figure 7. The variation curves of axial RF on chiral particle with different chirality parameters
induced by circularly polarized standing laser beams. (The parameters used are λ = 1064 nm,
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In Figure 8, the variation curves of axial RF exerted on chiral particle by Gaussian
standing beams with different beam waist width w01(w02) are presented. The dual beams
are both RCP waves with the same beam waist width, which are chosen ranges from 0.6 µm
to 20 µm. The chiral parameter is denoted as κ = −0.9. Other parameters are consistent
with Figure 5. As shown in Figure 8, we can observe that if the beam waist width increases,
the trapping force and optical well depth will enlarge accordingly, and reach their peak val-
ues around the origin when the waist width is in the range of 0.6 µm ≤ w01(w02) ≤ 0.8 µm.
At this point, the spherical size is greater than the beam waist width; with the increase of
beam waist width, the number of photons carried by the double beam will increase, and
the scattering effect will increase, which is represented by the increase of the magnitude
of the axial RF, and meanwhile the dual Gaussian beams can realize stronger trapping
ability for chiral sphere. However, when the waist width is increased to w01(w02) > 1 µm,
the axial RF begins to decrease and continues to decline. At this time, the beam waist
width increases to exceed the spherical size, the convergent degree of the double beams
in the z axis weakens and the gradient force becomes smaller, which is manifested as the
magnitude of the axial RF decreases continuously. Until the Gaussian standing beams
reduced to the plane standing waves when the beam waist width reach 20 µm, the gradient
force decreases and the axial RF amplitude is reduced, which means that the ability of
standing laser beams to trap chiral particles will be affected to some extent. In addition, the
computational results also show that when the waist width is compared with the particle
size, the position of the equilibrium point moves slightly overall with the change of the
waist width, which indicates that the influence of waist width on the location of the capture
points is negligible.
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Figure 8. The variation curves of axial RF Fz on chiral particle with different beam waist widths
induced by circularly polarized standing laser beams. (λ = 1064 nm, a = 800 nm, n0 = 1.0, n = 2n0,
x1 = y1 = 0, x2 = y2 = 0, α1 = β1 = 0◦, α2 = β2 = 0◦, m = 1.19, P0 = 0.1 w and the phase
discrepancy 0).

Figure 9 shows the variation curves of the RF on chiral particle with different ra-
dius a by Gaussian standing beams. The standing wave consists of dual laser beams
transmitting in the +z direction and −z direction, respectively, and the dual beams are
the same with RCP incident and the waist width is w01 = w02 = 0.8 µm. The rel-
evant parameters are consistent with Figure 8. We chose the chiral sphere radius as
0.4 µm, 0.6 µm, 0.8 µm, 1.0 µm, 1.2 µm, respectively, which includes the Rayleigh particles
suitable for targets smaller than induced wavelength (e.g., Figure 9a) and the radial optic
particles applicable for larger targets (e.g., Figure 9b). It can be observed from Figure 9a,b
that there is always a capture position near the center of the beam for the selected chiral
sphere of arbitrary radius. This is coincident with the phenomenon that dual relativistic
propagating laser beams can create a series of stable points trap. Moreover, it can be
seen from Figure 9a,b that the amplitude of the axial RF will gradually increase with the
increase of chiral particle size, the axial trapping gradient well will increase. In addition,
the equilibrium position clearly moves and the distance between the equilibrium points
decreases continuously with the increase of the particle radius. In addition, it can be seen
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from Figure 9b that the standing wave field can provide larger axial gradient and more
stable capture probability for large-size chiral spheres, which makes it easier to be captured
by standing laser beam.

Photonics 2023, 10, x FOR PEER REVIEW 15 of 20 
 

 

  

Figure 9. The variation curves of axial RF zF  on chiral particle with different radius by Gaussian 
standing beams: (a) small radius chiral particle, (b) large radius chiral particle. (The parameters used 
are 1064nmλ =  , 01 02 0.8μmw w= =  , 0 1.0n =  , 02n n=  , 1 1 0x y= =  , 2 2 0x y= =  , 0

1 1 0α β= =  , 
2

0
2 180α β= = , 1.19m = , 0 0.1P w= , and the phase discrepancy 0). 

In Figure 10, the variation curves of axial RF on chiral particle by Gaussian standing 
beams with the position of the beam center for different particle refractive index n  are 
presented. The dual beams are coincident with RCP incidence and the waist width is 

01 02 0.8μmw w= = . The spherical refractive indices are selected as 0 0 0 0 01.4 ,1.6 , 2.0 , 3.0 , 4.0n n n n n , re-
spectively. The rest of the parameters are consistent with Figure 8. It can be seen from 
Figure 10, as the particles refractive index increases, the axial RF on the chiral sphere by 
Gaussian standing beams will increase. Meanwhile, the distance between equilibrium 
points will increase, which indicates that the particle capture position becomes less. That 
is, chiral spheres with larger particle refractive indices become more likely to be stably 
captured by laser standing beams, while the smaller refractive index particles can achieve 
the sub-stable manipulation in more positions of the optical axis. In addition, it can be 
found that as the refractive index increases, the Gaussian standing beams have a larger 
capture negative slope in the range 0.8μm 0.3μmz− < < −  of the optical axis, which indi-
cates that the particles in this range are being trapped more tightly by standing laser 
beams. This may be due to the particle refractive index being much higher than the cir-
cumambient environment one, causing the force generated by the optical potential well 
to be much greater than the scattering force, and the chiral particle with high refractive 
indices can be better trapped when it is in the region close to the standing laser beam 
focus. 

 
Figure 10. The variation curves of axial RF on chiral particle with different refractive index by Gauss-
ian standing beams. (The parameters used are 800nma = , 1064nmλ = , 01 02 0.8μmw w= = , 0 1.0n = , 

1 1 0x y= =  , 2 2 0x y= =  , 0
1 1 0α β= =  , 2

0
2 180α β= =  , 1.19m =  , 0 0.1P w=  , and the phase dis-

crepancy 0). 

-3 -2 -1 0 1 2 3
-300

-200

-100

0

100

200

300

F Z
/p

N

-z1=-z2/μm

 a=0.8um
 a=0.6um
 a=0.4um

（a）

-3 -2 -1 0 1 2 3
-500

-400

-300

-200

-100

0

100

200

300

400

500

F Z/p
N

-z1=-z2/μm

 a=1.2um
 a=1.0um

（b）

-3.0-2.5-2.0-1.5-1.0-0.50.00.51.01.52.02.53.0
-700

-600

-500

-400

-300

-200

-100

0

100

200

300

400

-z1=-z2/μm

F Z
/p

N

 n=1.4n0
 n=1.6n0
 n=2.0n0
 n=3.0n0
 n=4.0n0

Figure 9. The variation curves of axial RF Fz on chiral particle with different radius by Gaussian
standing beams: (a) small radius chiral particle, (b) large radius chiral particle. (The parameters used
are λ = 1064 nm, w01 = w02 = 0.8 µm, n0 = 1.0, n = 2n0, x1 = y1 = 0, x2 = y2 = 0, α1 = β1 = 0◦,
α2 = β2 = 180◦, m = 1.19, P0 = 0.1 w, and the phase discrepancy 0).

In Figure 10, the variation curves of axial RF on chiral particle by Gaussian stand-
ing beams with the position of the beam center for different particle refractive index n
are presented. The dual beams are coincident with RCP incidence and the waist width is
w01 = w02 = 0.8 µm. The spherical refractive indices are selected as 1.4n0, 1.6n0, 2.0n0, 3.0n0,
4.0n0, respectively. The rest of the parameters are consistent with Figure 8. It can be seen
from Figure 10, as the particles refractive index increases, the axial RF on the chiral sphere
by Gaussian standing beams will increase. Meanwhile, the distance between equilibrium
points will increase, which indicates that the particle capture position becomes less. That is,
chiral spheres with larger particle refractive indices become more likely to be stably cap-
tured by laser standing beams, while the smaller refractive index particles can achieve the
sub-stable manipulation in more positions of the optical axis. In addition, it can be found
that as the refractive index increases, the Gaussian standing beams have a larger capture
negative slope in the range −0.8 µm < z < −0.3 µm of the optical axis, which indicates
that the particles in this range are being trapped more tightly by standing laser beams. This
may be due to the particle refractive index being much higher than the circumambient
environment one, causing the force generated by the optical potential well to be much
greater than the scattering force, and the chiral particle with high refractive indices can be
better trapped when it is in the region close to the standing laser beam focus.
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Figure 10. The variation curves of axial RF on chiral particle with different refractive index by Gaussian
standing beams. (The parameters used are a = 800 nm, λ = 1064 nm, w01 = w02 = 0.8 µm, n0 = 1.0,
x1 = y1 = 0, x2 = y2 = 0, α1 = β1 = 0◦, α2 = β2 = 180◦, m = 1.19, P0 = 0.1 w, and the phase discrepancy 0).
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In Figure 11, the variation curves of axial RF on chiral particle by dual Gaussian beams
with different particle losses (Im(n)) are presented. We take the range of refractive index
imaginary part Im(n) from 0 to 0.3, and keep other arguments consistent with Figure 8
except that waist width is w01 = w02 = 0.8 µm. It can be seen from Figure 11 with the
refractive index imaginary part Im(n) increases, the position of the trapping point does not
change significantly, which indicates that the probability of trapping chiral spheres is not
affected by the introduced particle losses. In addition, the magnitude of axial RF on the
chiral sphere by standing Gaussian beams will increase with the increase of the particle
loss. However, the modulus of the negative trapping force exerted on chiral particles starts
to decrease when the loss increases. This is because the number of photons absorbed by
the chiral particles will increase when the loss increases, which leads to the fact that the
scattering force gets bigger, resulting in a smaller trapping probability of particles by dual
beams. It can also be found that with the increase of the chiral particle loss, the capture
force on the particles far from the beam center begins to decrease until it disappears. At
this time, the single beam will lose its trapping ability on chiral particles. However, under
the same conditions, the standing wave trap formed by the dual Gaussian beams can still
achieve axial trapping of high loss chiral particles. This is also the advantage of the dual
Gaussian beams over the single beam in capturing chiral particles.
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Figure 11. The effect of refractive index imaginary loss Im(n) on the axial RF by Gaussian standing
beams. (The parameters used are a = 800 nm, λ = 1064 nm, w01 = w02 = 0.8 µm, n0 = 1.0,
x1 = y1 = 0, x2 = y2 = 0, α1 = β1 = 0◦, α2 = β2 = 180◦, m = 1.19, P0 = 0.1 w, and the phase
discrepancy 0).

In Figure 12, the variation curves of lateral RF Fx and Fy on chiral particle by Gaussian
standing beams with the different waist width w01(w02) are presented. Both beams are RCP
incidence. The waist widths of the two beams are chosen to be the same. The relevant waist
width here is selected as 0.6 µm, 0.7 µm, 0.8 µm, 1.0 µm, 2.0 µm, and 20 µm, respectively.
The rest of the parameters remain the same as Figure 9. As shown in Figure 12, the
transverse trapping phenomenon of chiral sphere is distinguished from that of achiral
particle. For the general non-chiral isotropic dielectric sphere located on the x-axis, the
lateral RF component Fy is always zero. However, we can observe from Figure 12b that the
lateral RF Fy of chiral sphere applied in the x direction is not zero, and its absolute value
will increase first and then decrease with the increase of the waist width. This is due to
the interaction of two polarized waves in the chiral sphere, which indicates that the chiral
sphere does not only move along the x-axis in the transverse (xoy plane), but deviates
from the x-axis due to transverse forces in the y direction due to the combined transverse
RF of the beam. In addition, it can be found that if the particle radius is comparable to
the laser width, the magnitude of transverse RF Fy of small beam waist width is usually
a few orders smaller than Fx, resulting in negligible influence of Fy compared with Fx.
Therefore, selecting the appropriate waist width of the standing beams can produce more
stable transverse capture of chiral particles.
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Figure 12. The variation curves of axial RF on chiral particle by Gaussian standing beams with
different waist width: (a) lateral radiation Fx; (b) lateral radiation Fy. (a = 800 nm, λ = 1064 nm,
n0 = 1.0, n = 2n0, x1 = y1 = 0, x2 = y2 = 0, α1 = β1 = 0◦, α2 = β2 = 180◦, m = 1.19, P0 = 0.1 w,
and the phase discrepancy 0).

5. Conclusions

The radiation characteristics of chiral spheres under the illumination of dual laser
beams are researched in this paper. The theory and procedure are validated by comparison
with the previous literature. The effects of a variety of parameters, for example, beam
polarization form, waist width, particle radius, chirality parameters, particle refractive
index, and material losses on RF, were discussed in detail. Numerical results indicate that
in some cases, the introduction of chiral parameters will weaken the axial trap performance
of chiral sphere. Thus, using dual Gaussian beams to achieve axial trap of chiral sphere may
be more challenging than isotropic spheres. Since standing laser fields produced by dual
relativistic propagating laser beams carry the same amplitude, the same frequency, and a
constant phase difference can provide more stable capture opportunities, the larger chiral
sphere can be better captured by Gaussian standing waves as a fine balance between effect
of the variety of parameters of the illuminate standing beams and of the chiral particle. It is
shown that the polarization form of the standing beams and the handedness of chiral sphere
can apparently affect the trap of chiral sphere, and the axial capture performance of the
target with contrary chiral parameter is consistent with the corresponding polarization state.
Thus, it is necessary to utilize appropriate circularly polarized Gaussian standing waves to
manipulate relevant chiral particles. Moreover, the results show that the standing beams
can produce more stable transverse and axial capture of chiral particles if the spherical
size is selected comparable to the laser waist width, and the negative trapping force shows
that the chiral spherical particle with high refractive index and low loss is more desirable
for stable capture. In addition, it is found that the stable capture point interval can be
adjusted by changing the geometry of the object and the parameters of the induced laser
beam. These results show that Gaussian standing beams with a smaller polarization angle
difference make it easier to achieve multiple captures, whereas the larger refractive indices
of chiral particles reduce it. The theoretical and numerical codes proposed in this article
can provide useful tools for experimental research on manipulating chiral particles with
dual or more laser beams, which may provide important insight into the optical controlling
of chiral biological cells.
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