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Abstract: Diesel fuel mixtures with high concentrations of biodiesel have been investigated to analyze
the technical feasibility of their use in diesel cycle engines regarding thermal and oxidative properties.
The results of combined techniques of oxidative stability, high Pressurized Differential Scanning
Calorimetry (P-DSC), Calculated Cetane Index (CCI), and calorific power were used to verify the
effect of the thermal-oxidative stability as a function of the percentage of biodiesel in the mixtures.
The obtained results evidenced that the thermal and oxidative stability decreased with the addition
of biodiesel from 50 to 5% v/v. Low stability fuels require rapid use as the oxidation compounds
degrade the product and impair vehicle performance, as well as lead to corrosion and clogging
problems in various mechanical systems.

Keywords: biodiesel/petrodiesel blends; thermal-oxidative stability; Calculated Cetane Index (CCI)

1. Introduction

Due to the environmental problems that have arisen in recent decades, such as air
pollution and greenhouse gas emissions, the use of fossil fuels by other renewable en-
ergy sources is increasingly being sought. In Brazil, road diesel is the most widely used
petroleum-derived fuel, and its annual consumption can be correlated with the economic
situation of the period analyzed since the transportation matrix of products produced in
the country is based on the road network. This petroleum derivative is defined as a liquid
fuel composed of hydrocarbons with 8 to 16 carbon chains and, to a lesser extent, nitrogen,
sulfur, and oxygen [1]. It is mainly used in diesel cycle engines (internal combustion and
compression ignition) in the road, rail, and marine vehicles, and electric power generators.

According to the National Agency of Petroleum, Natural Gas and Biofuels, Brazil
was the seventh country among the largest consumers of petroleum products, with a
forecast of 19% increase in national demand between 2016 and 2026. Thus, the use of
biofuels should be increased so that the country can meet the targets agreed upon at the
United Nations Conference on Climate Change (COP21), held in 2015 in Paris. In this
context, biodiesel presents itself as a clean energy source capable of replacing, in whole or
in part, diesel oil without any detriment to the performance of vehicles operating on the
diesel cycle, since no technical modifications to conventional engines are required for the
diesel engine.

Processes 2021, 9, 174. https://doi.org/10.3390/pr9010174 https://www.mdpi.com/journal/processes

https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://doi.org/10.3390/pr9010174
https://doi.org/10.3390/pr9010174
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pr9010174
https://www.mdpi.com/journal/processes
https://www.mdpi.com/2227-9717/9/1/174?type=check_update&version=2


Processes 2021, 9, 174 2 of 11

Biodiesel is defined as a fuel composed of long-chain alkyl carboxylic acid esters pro-
duced from the transesterification and/or esterification of fatty materials of plant or animal
origin. This biofuel has several advantages compared to diesel oil, of which one can cite the
low sulfur content, being practically exempt, has higher lubricity, higher cetane number
and flash point (which reduces the risk of accidents during the storage). However, regard-
ing the physicochemical parameters, biodiesel has low oxidation stability. The presence of
unsaturated bonds in the esters of biodiesel molecules favors the oxidative degradation of
biofuel when subjected to high temperatures, the presence of metals, and exposure to an
oxidizing atmosphere. The higher the concentration of these unsaturated bonds, the easier
the fuel will be to oxidize [2].

When undergoing the oxidative process, biodiesel decomposes and generates as its
main by-products organic acids. Metals, particularly copper, copper alloys, lead, zinc,
and tin, which are used in fuel and supply systems, easily corrode in the presence of
these compounds [3]. The effects of acids on a metallic fuel tank are particularly severe.
Even if only slight corrosion is formed, the oxidizing organic acids react and form metal
salts. These salts which precipitate in the fuel pass through the fuel filter and adhere to
some mechanical components, such as the injector pump and the nozzle surfaces, form-
ing deposits. Other immiscible substances formed include polymers, sludge, and oxidation
products, which at some point cause blockage of the filters [4]. Oxidation intermediates,
peroxides, deteriorate the plastic, and elastomers that are used in piston seal rings degrade
at high temperatures [5].

A lot of research has been carried out to understand the thermal properties and ox-
idative properties of biodiesel [6–10]. To increase the stability of biodiesel, the effects
of antioxidant additives have been investigated [11–13]. Biodiesel has also been pre-
pared using supercritical methanol, to increase its oxidative stability [14]. The addition
of biodiesel to mineral diesel has been carried out, aiming to increase the stability of
biodiesel-petrodiesel blends during storage [15,16]. It has been found that the factors that
affect oxidative stability can be determined by assessing the induction period and acidity.
Rancimat [17] and Pressurized Differential Scanning Calorimetry (P-DSC) [17,18] have been
used as analytical tools for thermal-oxidative properties of biodiesel. It was observed that
the induction period at different storage times was dependent on the degree of saturation
of fatty acid methyl esters [19]. Thermal-oxidation stability and cold flow property are the
main problems associated with the use of biodiesel. Different types of biodiesels, such as
palm, soybean, and rapeseed biodiesels had been blended with different weight ratios.
The oxidation stability and the cold point of the blended biodiesels presented a relationship
with the compositions of the major fatty acid components.

The Calculated Cetane Index (CCI) is a physicochemical parameter of diesel related to
the burning of fuel in the engine, which measures the ignition quality and its value directly
affects the ignition and the operation with charge [20]. The ignition quality is assessed by
measuring the period between injection and the start of fuel combustion. A fuel with a high
CCI has an ignition delay and starts to burn right after being injected into the engine [21].

The CCI represents a simple correlation with cetane number, serving in many cases
as a substitute due to its simplicity of obtaining. This parameter measures the ignition
quality of fuels to be used in diesel cycle engines. According to the literature [22], for heavy
fuel oils, the ignition properties are typically ranging from CN = 18.7 to above CN = 40.
Fuel ignition quality depends on Cetane Number (CN) for different heavy fuel oils or
marine fuel diesel, as given in Table 1.
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Table 1. Cetane Number (CN) and ignition quality of heavy fuel oil and marine diesel oil [22].

FIA Cetane Number (CN) Heavy Fuel Oil Marine Diesel Oil

<20 to 25 Very bad ignition properties Unfit for use
25 ≤ FIA CN < 28 Bad ignition properties Very bad ignition properties
28 ≤ FIA CN < 35 Acceptable ignition properties Bad ignition properties
35 ≤ FIA CN < 40 Good ignition properties Acceptable ignition properties
40 ≤ FIA CN < 45 Very good ignition properties Good ignition properties

FIA CN ≥ 45 Very good ignition properties Very good ignition properties

The Calculated Cetane Index (CCI) represents what the fuel ignition delay will be on
the diesel engine. The lower the CCI value, the greater the ignition delay. Low values of this
parameter result in a large amount of fuel, which remains in the cylinder without burning
at the right design time. Among several problems, the main one is reflected in the engine
malfunction because when the last fuel portion combustion occurs, the amount of energy
generated will be greater than that required for the end of the duty cycle, resulting in
abnormal efforts—over the piston, causing mechanical damage and loss of power.

In recent years, important studies have been published regarding the use of biodiesel
as a substitute for petroleum fuels. However, few studies discuss the effect of using diesel
blends with high concentrations of biodiesel as a way to decrease the dependence on this
fossil fuel. In this context, this work aims to evaluate the thermal and oxidative stability of
biodiesel/petrodiesel blends containing 5; 10; 15; 20; 30, and 50% v/v of biodiesel.

2. Materials and Methods
2.1. Preparation of the BX Blends

Biodiesel/Petrodiesel blends were prepared at volumetric concentrations of 5, 10, 15,
20, 30, and 50% vol. The samples were signed as BX, where “X” represents the volume
of biodiesel. Thus, we have B5, B10, B15, B20, B30, and B50. All samples were prepared
to start from a commercial S10 mineral diesel oil (biodiesel free, with 10ppm of S) and
biodiesel from soybean oil, both in accordance with the specifications of the Brazilian
National Agency of Petroleum, Natural Gas and Biofuels (ANP). First, the mixtures were
prepared with the calculated concentrations in grams per liter of the mixture corresponding
to the volumetric concentration of interest. For the conversion of g dm3 concentrations to
% v/v, the specific biodiesel mass of 883 kg m-3 was used as the conversion factor.

2.2. Calculated Cetane Index (CCI)

The CCI parameter was determined using Equation (1), according to ASTM D976 [23].
This equation takes into account the specific mass measured at 15 ◦C and 50% vol of
recovered fuel in this temperature. These pieces of information are obtained from the
distillation curve or the BX blends, according to ASTM D86. The CCI equation is

CCI = 454.74 − 1641.416 D + 774.74 D2 − 0.554 B + 97.803 (logB)2 (1)

where D = Density at 15 ◦C in g/cm3 and determined by methods D1298 [24] or D4052 [25];
B = Temperature measured for 50% volume of the recoverable fuel, as determined by the
ASTM D86 [26] method and corrected for barometric pressure.

2.3. Calorific Power

The calorific value is a property that represents the amount of thermal energy present
in the fuels, which is determined by the complete combustion of the specified amount
at constant pressure under normal conditions. The calorific power of the mixtures was
determined according to the methodology described in ASTM D4809 [27] by burning the
BX blends in an oxygen pump C5000 model, manufactured by IKA. The heat of combustion,
calculated from temperature observations before, during, and after combustion, was ob-
tained considering the thermochemical and heat transfer corrections. The adiabatic method
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was adopted for these tests, since this method minimizes heat loss, keeping the ambient
temperature equal to the sample temperature, making it more accurate to measure the
calorific power of solids or liquids.

2.4. Oxidation Stability

Oxidation is an exothermic process, being a thermodynamically irreversible reaction.
The oxidative stability is a parameter that predicts the useful life of a given material in
relation to its resistance to decomposition in an oxidizing atmosphere. The Oxidative
Induction Time (OIT) is defined as the time for the appearance of sample oxidation under
a certain temperature. The test determines the time interval between the beginning of the
test and the appearance of oxidation of the sample, being signaled by a rapid increase in
the heat or temperature of the sample. The OIT is determined by extrapolating the onset
temperature in the thermogram.

The oxidative stability was determined using a Rancimat equipment model 843 from
Metrohm according to the methodology described in the European standard EN 15751
method [28]. For all samples a mass of 7.50 g ± 0.01 g was used and submitted to a
constant temperature of 110 ◦C in a 25 mm long reaction vessel and at a moisture-free
air flowing at a rate of 10 dm3/h. As the oxidation products form, airflow transports the
compounds from the reactor to the measuring vessel, which contains ca. 50 cm3 of distilled
water, where their electrical conductivity is constantly monitored. The induction period,
defined as the time elapsed between the start of the analysis and the time when oxidation
product formation begins to increase rapidly, was determined to be the tipping point on
the electrical conductivity curve (µS cm−1) versus time (h) [29,30].

2.5. Pressure DSC

Differential Scanning Calorimetry (DSC) provides information about physical and
chemical changes that involve endothermic, exothermic processes, or changes in heat
capacity. The Pressurized DSC (P-DSC) analysis is used to evaluate the oxidative stability
of materials using differential heat flow between the sample and the reference thermocouple
under different conditions of temperature and pressure. The main advantages of P-DSC
are the use of a small amount of sample, less analysis time, as it operates under high
temperature and pressure, accelerating the oxidation reaction.

The P-DSC analysis for the BX blends were carried out in a Netzsch DSZ 204 HP
equipment, according to the methodology described in ASTM E2009 [31]. The experimental
conditions used by the dynamic method were: approximately 10 mg of sample mass; the
initial temperature of 40 ◦C; linear heating ramp of 20 ◦C min−1 to final temperature 500 ◦C;
the oxidizing atmosphere of O2 flowing at 35 mL min-1 pressure of 3.5 MPa. The peaks
related to the exothermic oxidation events of the blends were analyzed to establish the
initial oxidation temperatures and correlations between peak intensity, peak area, or initial
oxidation event temperature versus an increase in biodiesel concentration.

3. Results and Discussion
3.1. Calculated Cetane Index (CCI)

To calculate the Calculated Cetane Index (CCI), the BX blends were submitted to
atmospheric distillation and specific mass tests, and Equation (1) was applied for the
calculations. The distillation curves are shown in Figure 1. The data obtained from
distillation curves and specific mass for the blends are given in Tables 2 and 3, respectively.

The choice of a specific mass, as one of the variables of this equation, can be justified
by the analysis that this parameter is related to the total energy potential of the fuel.
The higher the density, the larger the mass of fuel being injected by the nozzle into the
cylinder per unit volume. Variations outside the technical specification in density make it
impossible for a balanced air/fuel mixture, resulting in energy losses. Regarding distillation
temperatures, it can be stated that the 50% v/v recovered is associated with the relationship
between the content of light and heavy fractions in the product. The characteristics of
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this fraction influence the engine warm-up time, allowing uniform operating conditions.
Controlling this distillation point contributes to good engine performance when the engine
is already in a steady-state and at speed pickups.Processes 2020, 8, x FOR PEER REVIEW 5 of 12 
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Figure 1. Distillation curves were obtained according to ASTM D86 for the biodiesel/petrodiesel blends, showing the
profiles for B5, B10, B15, B20, B30, and B50 samples.

Table 2. Recovered temperatures for BX biodiesel/petrodiesel blends, according to ASTM D86.

Blend Recovered Temperatures (◦C)

BX 10% v/v 50% v/v 90% v/v

B5 190.3 265.6 333.3
B10 192.2 271.6 335.6
B15 194.2 278.5 337.1
B20 196.9 284.5 337.2
B30 201.2 297.3 338.5
B50 217.9 319.0 339.8

Table 3. Specific mass at 15 ◦C for BX biodiesel-diesel blends according to ASTM D4052.

Blend Specific Mass

BX kg/dm3 (15 ◦C)

B5 834.3
B10 836.8
B15 839.2
B20 841.7
B30 846.6
B50 856.7

Although this calculation methodology does not take into account the 10% v/v and
90% v/v recovered temperatures, as is the case for calculating the cetane number according
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to ASTM D4737 [32], these two temperatures also have their importance. The control
of the 10% v/v recovered aims to ensure the minimum amount of light fractions that
vaporize and burn easily, ensuring the start of vehicle operation (cold start). For the 90%
v/v recovered, limiting this temperature aims to minimize the formation of deposits in the
combustion chamber and spark plugs. The specification limit must be required to prevent
heavy unburnt fractions from leaking into the engine crankcase and contaminating the
lubricating oil. With respect to pollutant emissions, heavier hydrocarbons require higher
firing temperatures.

From a chemical point of view, the cetane number refers to fuel performance when
compared to the performance of a mixture of n-hexadecane with α-methyl naphthalene. n-
hexadecane, paraffinic chemical formula C16H34, is assigned a cetane number of 100, and α-
methyl-naphthalene, aromatic chemical formula C10H7CH3, is assigned a cetane number
of zero. Fuels with a high content of paraffin compounds have a high cetane number while
compounds rich in aromatic hydrocarbons have a low cetane number. Low CCI values
lead to difficulty in cold starting, piston deposition, and engine malfunction, and increase
the emission of pollutants such as hydrocarbons, carbon monoxide, and particulates [33].

For the analyzed mixtures, a gradual increase in the calculated cetane index was
observed between the samples from B5 to B30, and thereafter a decrease was observed
for the sample B50, in which its CCI value returned approximately to that found in the
B20 sample, as given in Table 4.

Table 4. Calculated Cetane Index (CCI) values for BX blends.

Blend CCI

BX (Dimensionless)

B5 52.2
B10 52.6
B15 53.2
B20 53.4
B30 53.9
B50 53.5

This behavior can be attributed to the fact that the cetane number decreases with the
increasing of the unsaturated bonds that are present in biodiesel linoleic acid and/or esters,
and increases with the presence of saturated esters [34]. As the concentration of biodiesel
in the blends increased, the calculated cetane index gradually increased until the presence
of unsaturation bonds. However, the BX blends presented values in accordance with the
specification described in ASTM D7467 [35], which establishes the minimum value of 40.

3.2. Calorific Power

The calorific power values for the BX blends were determined after weighing approxi-
mately 0.5 g of each sample and then inserted into the calorimeter combustion vessel under
controlled conditions. With the aid of cotton yarn of known calorific value, the mixture
was ignited, and then the temperature variation was measured with the aid of a reading
instrument that gives the method accuracy. The heat produced by the combustion, the unit
quantity of the fuel, after burning at constant volume in the calorimetric pump, were deter-
mined. The combustion of the sample was considered complete when all material resulting
from the combustion became liquid water and gases.

This behavior can be attributed to the fact that the cetane number, which in this study
was correlated to the calculated cetane index, decreases with the increase in unsaturated
bonds that are present in biodiesel linoleic acid and/or esters and increases with the pres-
ence of saturated esters [10]. As the concentration of biodiesel in the blends increased,
the calculated cetane index gradually increased until at some point the presence of un-
saturation caused the value of this parameter to decrease. However, both blends have
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shown acceptable values in accordance with the specification described in ASTM D7467,
which establishes the minimum value of 40.

The calorific value of the BX samples, defined as the energy released during the
burning of a fuel per unit mass or volume, is one of the best energy efficiency indicators
to verify the technical applicability of its use in the conversion of thermal energy into
mechanical, as is the case for internal combustion engines. Hydrogen has the highest
energy per unit mass compared to any fuel as it is the lightest element and has no low
carbon calorific atoms from hydrocarbons. Therefore, it can be stated that the higher the
percentage of hydrogen and the lower the percentage of carbon in the fuel, the greater the
value of its calorific value. Quantitatively, the calorific value can range from 31.4 kJ/g for
premium quality coal to 141.8 kJ/g for hydrogen [36].

In calculating the calorific value, measured by the heat released during combustion,
the temperatures of the reactants shall be considered equal to the temperatures of the
combustion products. Water present in combustion products may be in both liquid and
gaseous forms. If present in the liquid state, the energy released in the process will refer
to the higher calorific value, and if present in the gaseous state, will refer to the lower
calorific value. The difference between the lower calorific value—PCI (steam) and the
higher calorific value—PCS (condensed water) will be the amount of energy relative to
the latent heat of water vaporization. The difference between these two values will be
greater the higher the percentage of hydrogen in the fuel 21. In all situations, the value of
PCS is higher than the value of PCI because it accounts for the condensation enthalpy of
water, except in cases where the fuel in question does not have hydrogen in its composition
because there will be no formation of water; In these cases, the PCS and PCI values are the
same. For the mixtures under study, the higher calorific value was analyzed.

In Table 5 is given the higher calorific power obtained for the BX samples. For the
blends analyzed, there was a decrease in calorific value with the increase in biodiesel
concentration. However, there was only a maximum decrease of only 3.8% between blend
B5 and blend B50, which in terms of energy availability will not cause major damage to the
use of blends with high concentrations of biodiesel in diesel oil.

Table 5. Higher Calorific Power (HCP) for the BX biodiesel-diesel samples.

Blend Higher Calorific Power

BX (kJ/g)

B5 45.56
B10 45.27
B15 44.98
B20 45.14
B30 44.89
B50 43.85

It is also noteworthy that the calorific value of biodiesel is very close to mineral diesel
oil, with diesel being only 5% v/v higher than biodiesel. However, as the combustion of
biodiesel is more complete and therefore more efficient, this biofuel will have a specific
consumption equivalent to petroleum derivatives. In addition, it is known that increasing
the ester chain may increase the calorific value of biodiesel.

3.3. Oxidation Stability

The oxidation stability analyzes of the BX samples showed that as the percentage
of biodiesel increases for the blends, the shorter the induction period for the mixture.
This observation is in agreement with the literature since although diesel oil is very stable
to oxidation; the presence of biodiesel even at moderate concentrations (B5 and B10,
for example) causes the oxidative stability of the mixture to decline significantly [37].
The Rancimat curves are shown in Figure 2.
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Figure 2. Rancimat oxidative stability curves for BX biodiesel-diesel blends.

The induction period, which is defined as the time elapsed between the start of the
analysis and the time when the formation of oxidation products begins to increase rapidly,
decreases with increasing biodiesel concentration, as in the blend there will be a higher
concentration of esters present. These organic compounds, when subjected to an elevated
temperature over a long period, will thermally degrade, forming as peroxide intermediate
oxidation products, which in turn will form low molecular weight volatile organic acids,
which are responsible for the oxidation of the mixture.

By observing the curves, it is clear that at a given moment there is a marked increase in
the electrical conductivity of the distilled water contained in the measuring vessel. This fact
indicates that there was initially the formation of peroxides, and later the formation of
organic acids, indicating that the oxidation of the analyzed samples occurred. Simultane-
ously, it can be verified that the blends B5 and B10 presented good oxidation stability since
the biodiesel present in these two mixtures is not yet in a considerable amount. However,
for blends B15, B20, B30, and B50, oxidation stability has declined more sharply compared
to previous blends, indicating that for blends above 10% v/v oxidation will occur faster.

In the results obtained from the P-DSC experiments, it was verified that the increase
of biodiesel concentration in the blends decreases the oxidation stability, as previously
stated from the Rancimat method. The Oxidation Onset Temperature (OOT), obtained by
intersecting the extrapolation of the DSC signal relative to the exothermic oxidation event
by the DSC signal baseline, decreased as the volume concentrations of biodiesel increased.
The P-DSC curves are shown in Figure 3, and the data relative to the oxidation temperatures
are given in Table 6.
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Figure 3. Pressurized Differential Scanning Calorimetry (P-DSC) curves for the BX biodiesel-diesel blends.

Table 6. P-DSC results relative to oxidation temperatures for BX blends.

Blend Oxidation Onset

(BX) Temperature (◦C)

B5 198.0
B10 196.5
B15 190.0
B20 182.0
B30 175.0
B50 173.0

Similar to the results presented for Rancimat, for the results obtained using the P-DSC
it was also verified that the blends B5 and B10 have a high initial oxidation temperature,
thus being more stable than the other blends. For blends B15, B20, B30, and B50, the initial
oxidation temperature decreased significantly compared to the previous blends, confirm-
ing that for blends above 10% v/v volume a lower temperature will be required for the
oxidation process starts under the same test conditions.

The results for the Rancimat and P-DSC tests showed that the higher the biodiesel
concentration in the mixture, the lower the oxidative stability. With the analysis of the data,
it is verified that there is an abrupt fall of this parameter when it exceeds the concentration
of 10% to 15% v/v of biodiesel. Thus, for the use of blends above 10% v/v by volume of
biodiesel to be viable, it is necessary to add oxidizing additives for long storage periods.
Regarding the thermal properties, it was found that both blends can be used in diesel
engines without any damage in terms of energy availability. Regarding the higher calorific
value, the difference between blends B5 and B50 does not imply any significant loss
of energy generated during combustion. Regarding the calculated cetane index, it was
observed that although between the B30 and B50 blends there was a decrease in the value
of this parameter, all blends have values corresponding to fuels with good ignition delay
times, which implies a good functioning of the engine.
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4. Conclusions

The obtained biodiesel/petrodiesel blends form a stable composition of the fuel.
The oxidation stability of pure biodiesel is low; however, its stability was improved by
the addition of petrodiesel. The mixture of biodiesel with petrodiesel would not need any
addition of antioxidants and can be stored for a long period of time. For a low amount
of petrodiesel in biodiesel, the blend probably would need the addition of antioxidants
to resist long periods of storage. Finally, it is concluded that both blends can be used in
diesel engines without further damage since no technical modifications to conventional
engines are required for their use. However, it is worth noting the need for additives with
oxidizing agents to mixtures above 10% v/v by volume of biodiesel, so that oxidation
stability is guaranteed. Regarding the ignition quality of the fuel, the obtained values
of the Calculated Cetane Index for all samples was higher than 45, indicating that the
obtained biodiesel/petrodiesel blends present very good ignition properties for both heavy
fuel oil or marine diesel oil. Analyzing the oxidation process, biodiesel decomposes to
undesired compounds and thus decreasing the fuel quality, which can form deposits in
various components of the engine. The addition of petrodiesel to biodiesel can solve these
problems. Thus, research on the thermal and stability of biodiesels containing petrodiesel
is important for a better understanding of the blends for application as fuel.

Author Contributions: Conceptualization, J.S.A. and J.B.S.; methodology, R.V.B. and J.B.S.; writing—
original draft preparation, G.J.T.F. and A.C.F.C.; writing—review and editing, V.J.F.J. and A.S.A.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Agency of Petroleum, Natural Gas, and Biofuels
(ANP-Brazil).

Acknowledgments: The authors acknowledge the support from the National Agency of Petroleum,
Natural Gas, and Biofuels (ANP-Brazil). One of us (J.S.A.) acknowledges the Coordination for the
Improvement of Higher Education Personnel (CAPES-master fellowship).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ferreira, S.L.; Santos, A.M.; Souza, G.R.; Polito, W.L.; Módolo, D.L. Análise por cromatografia gasosa de BTEX nas emissões de

motor de combustão interna alimentado com diesel e mistura diesel-biodiesel (B10). Quim. Nova 2008, 31, 539–545. [CrossRef]
2. Chuck, C.J.; Jenkins, R.W.; Bannister, C.D.; Han, L.; Lowe, J.P. Design and preliminary results of an NMR tube reactor to study the

oxidative degradation of fatty acid methyl ester. Biomass Bioenergy 2012, 47, 188–194. [CrossRef]
3. Ambrozin, A.R.P.; Kuri, S.E.; Monteiro, M.R. Corrosão metálica associada ao uso de combustíveis minerais e biocombustíveis.

Quim. Nova 2009, 32, 1910–1916. [CrossRef]
4. Pullen, J.; Saeed, K. An overview of biodiesel oxidation stability. Renew. Sustain. Energy Rev. 2012, 16, 5924–5950. [CrossRef]
5. Goto, S.; Oguma, M.; Chollacoop, N. Biodiesel Fuel Quality—Benchmarking of Biodiesel Fuel Standardization in East Asia

Working Group. In EAS-ERIA Biodiesel Fuel Trade Handbook; National Science and Technology Development Agency (NSTDA):
Tha Khlong, Thailand, 2010.

6. Park, J.Y.; Kim, D.K.; Lee, J.P.; Park, S.C.; Kim, Y.J.; Lee, J.S. Blending effects of biodiesels on oxidation stability and low
temperature flow properties. Bioresour. Technol. 2008, 99, 1196–1203. [CrossRef]

7. Saluja, R.K.; Kumar, V.; Sham, R. Stability of biodiesel—A review. Renew. Sustain. Energy Rev. 2016, 62, 866–881. [CrossRef]
8. Ashraful, A.M.; Masjuki, H.H.; Kalam, M.A.; Rahman, S.M.A.; Habibullah, M.; Syazwan, M. Study of the Effect of Storage Time

on the Oxidation and Thermal Stability of Various Biodiesels and Their Blends. Energy Fuels 2014, 28, 1081–1089. [CrossRef]
9. Fu, J.X.; Hue, B.T.B.; Turn, S.Q. Oxidation stability of biodiesel derived from waste catfish oil. Fuel 2017, 202, 455–463. [CrossRef]
10. Yang, Z.; Hollebone, B.P.; Wang, Z.; Yang, C.; Landriault, M. Factors affecting oxidation stability of commercially available

biodiesel products. Fuel Process. Technol. 2013, 106, 366–375. [CrossRef]
11. Dunn, R.O. Effect of antioxidants on the oxidative stability of methyl soyate (biodiesel). Fuel Process. Technol. 2005, 86, 1071–1085.

[CrossRef]
12. Focke, W.W.; van der Westhuizen, I.; Lofté Grobler, A.B.; Nshoane, K.T.; Reddy, J.K.; Luytc, A.S. The effect of synthetic antioxidants

on the oxidative stability of biodiesel. Fuel 2012, 94, 227–233. [CrossRef]
13. Serrano, M.; Bouaid, A.; Martínez, M.; Aracil, J. Oxidation stability of biodiesel from different feedstocks: Influence of commercial

additives and purification step. Fuel 2013, 113, 50–58. [CrossRef]
14. Xin, J.; kiImahara, H.; Saka, S. Oxidation stability of biodiesel fuel as prepared by supercritical methanol. Fuel 2008, 87, 1807–1813.

[CrossRef]

http://dx.doi.org/10.1590/S0100-40422008000300015
http://dx.doi.org/10.1016/j.biombioe.2012.09.043
http://dx.doi.org/10.1590/S0100-40422009000700037
http://dx.doi.org/10.1016/j.rser.2012.06.024
http://dx.doi.org/10.1016/j.biortech.2007.02.017
http://dx.doi.org/10.1016/j.rser.2016.05.001
http://dx.doi.org/10.1021/ef402411v
http://dx.doi.org/10.1016/j.fuel.2017.04.067
http://dx.doi.org/10.1016/j.fuproc.2012.09.001
http://dx.doi.org/10.1016/j.fuproc.2004.11.003
http://dx.doi.org/10.1016/j.fuel.2011.11.061
http://dx.doi.org/10.1016/j.fuel.2013.05.078
http://dx.doi.org/10.1016/j.fuel.2007.12.014


Processes 2021, 9, 174 11 of 11

15. Jain, S.; Sharma, M.P. Oxidation stability of blends of Jatropha biodiesel with diesel. Fuel 2011, 90, 3014–3020. [CrossRef]
16. Chakraborty, M.; Baruah, D.C. Investigation of oxidation stability of Terminalia belerica biodiesel and its blends with petrodiesel.

Fuel Process. Technol. 2012, 98, 51–58. [CrossRef]
17. Karavalakis, G.; Hilari, D.; Givalou, L.; Karonis, D.; Stournas, S. Storage stability and ageing effect of biodiesel blends treated

with different antioxidants. Energy 2011, 36, 369–374. [CrossRef]
18. Tamilalagan, A.; Singaram, J. Oxidation stability of yeast biodiesel using Rancimat analysis: Validation using infrared spectroscopy

and gas chromatography-mass spectrometry. Environ. Sci. Pollut. Res. 2019, 26, 3075–3090. [CrossRef]
19. Pinto, L.M.; de Souza, A.L.; Souza, A.G.; Santos, I.M.G.; Queiroz, N. Comparative evaluation of the effect of antioxidants added

into peanut (Arachis hypogae L.) oil biodiesel by P-DSC and rancimat. J. Therm. Anal. Calorim. 2015, 120, 277–282. [CrossRef]
20. Aleme, H.G.; Barbeira, P.J.S. Determination of flash point and cetane index in diesel using distillation curves and multivariate

calibration. Fuel 2012, 102, 129–134. [CrossRef]
21. Ghosh, P. Predicting the effect of cetane improvers on diesel fuels. Energy Fuel 2008, 22, 1073–1079. [CrossRef]
22. Chybowski, L.; Matuszak, Z. Marine Auxiliary Diesel Engine Turbocharger Damage (Explosion) Cause Analysis. J. Pol. CIMAC

2007, 2, 33–40.
23. ASTM D976. Standard Test Method for Calculated Cetane Index of Distillate Fuels; ASTM International: West Conshohocken, PA, USA, 2016.
24. ASTM D1298. Standard Test Method for Density, Relative Density, or API Gravity of Crude Petroleum and Liquid Petroleum Products by

Hydrometer Method; ASTM International: West Conshohocken, PA, USA, 2017.
25. ASTM D4052. Standard Test Method for Density, Relative Density, and API Gravity of Liquids by Digital Density Meter; ASTM

International: West Conshohocken, PA, USA, 2018.
26. ASTM D86. Standard Test Method for Distillation of Petroleum Products at Atmospheric Pressure; ASTM International: West Con-

shohocken, PA, USA, 2012.
27. ASTM D4809. Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter (Precision Method); ASTM

International: West Conshohocken, PA, USA, 2018.
28. EN 15751. Automotive Fuels. In Fatty Acid Methyl Ester (FAME) Fuel and Blends with Diesel Fuel. Determination of Oxidation Stability

by Accelerated Oxidation Method; European Standard: Brussels, Belgium, 2014.
29. Silva, F.A.M.; Borges, M.F.; Ferreira, M.A. Métodos para avaliação do grau de oxidação lipídica e da capacidade antioxidante.

Quim. Nova 1999, 22, 94–103. [CrossRef]
30. Kumar, S.; Yadav, K.; Dwivedi, G. Impact analysis of oxidation stability for biodiesel & its blends. Mater. Today Proc. 2018,

5, 19255–19261.
31. ASTM E2009. Standard Test Methods for Oxidation Onset Temperature of Hydrocarbons by Differential Scanning Calorimetry; ASTM

International: West Conshohocken, PA, USA, 2014.
32. ASTM D4737-10. Standard Test Method for Calculated Cetane Index by Four Variable Equation; ASTM International: West Con-

shohocken, PA, USA, 2016.
33. Ruschel, C.F.C.; Huang, C.T.; Samios, D.; Ferrão, M.F.; Yamamoto, C.I.; Plocharski, R.C.B. Determinacao do numero de cetano de

blendas de biodiesel/Diesel utilizando espectroscopia no infravermelho medio e regressao multivariada. Orbital: The Electronic.
J. Chem. 2014, 6, 39–46.

34. Knothe, G.; Matheaus, A.C.; Ryan, T.W. Cetane numbers of branched and straight-chain fatty esters determined in an ignition
quality tester. Fuel 2003, 82, 971–975. [CrossRef]

35. ASTM D7467. Standard Specification for Diesel Fuel Oil, Biodiesel Blend (B6 to B20); ASTM International: West Conshohocken, PA, USA, 2020.
36. Müller, A.L.H.; Picoloto, R.S.; Mello, P.A.; Ferrão, M.F.; Dos Santos, M.F.P.; Guimarães, R.C.L.; Müller, E.I.; Flores, E.M.M.

Total sulfur determination in residues of crude oil distillation using FT-IR/ATR and variable selection methods. Spectrochim.
Acta A 2012, 89, 82–87. [CrossRef]

37. Lapuerta, M.; Rodríguez-Fernández, J.; Mora, E.F. Correlation for the estimation of the cetane number of biodiesel fuels and
implications on the iodine number. Energy Policy 2009, 37, 4337–4344. [CrossRef]

http://dx.doi.org/10.1016/j.fuel.2011.05.003
http://dx.doi.org/10.1016/j.fuproc.2012.01.029
http://dx.doi.org/10.1016/j.energy.2010.10.029
http://dx.doi.org/10.1007/s11356-018-3619-1
http://dx.doi.org/10.1007/s10973-014-4181-9
http://dx.doi.org/10.1016/j.fuel.2012.06.015
http://dx.doi.org/10.1021/ef0701079
http://dx.doi.org/10.1590/S0100-40421999000100016
http://dx.doi.org/10.1016/S0016-2361(02)00382-4
http://dx.doi.org/10.1016/j.saa.2011.12.001
http://dx.doi.org/10.1016/j.enpol.2009.05.049

	Introduction 
	Materials and Methods 
	Preparation of the BX Blends 
	Calculated Cetane Index (CCI) 
	Calorific Power 
	Oxidation Stability 
	Pressure DSC 

	Results and Discussion 
	Calculated Cetane Index (CCI) 
	Calorific Power 
	Oxidation Stability 

	Conclusions 
	References

