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Abstract: Partial least squares (PLS) and linear regression methods are widely utilized for quality-related
fault detection in industrial processes. Standard PLS decomposes the process variables into principal and
residual parts. However, as the principal part still contains many components unrelated to quality, if these
components were not removed it could cause many false alarms. Besides, although these components
do not affect product quality, they have a great impact on process safety and information about other
faults. Removing and discarding these components will lead to a reduction in the detection rate of faults,
unrelated to quality. To overcome the drawbacks of Standard PLS, a novel method, MI-PLS (mutual
information PLS), is proposed in this paper. The proposed MI-PLS algorithm utilizes mutual information
to divide the process variables into selected and residual components, and then uses singular value
decomposition (SVD) to further decompose the selected part into quality-related and quality-unrelated
components, subsequently constructing quality-related monitoring statistics. To ensure that there is no
information loss and that the proposed MI-PLS can be used in quality-related and quality-unrelated fault
detection, a principal component analysis (PCA) model is performed on the residual component to obtain
its score matrix, which is combined with the quality-unrelated part to obtain the total quality-unrelated
monitoring statistics. Finally, the proposed method is applied on a numerical example and Tennessee
Eastman process. The proposed MI-PLS has a lower computational load and more robust performance
compared with T-PLS and PCR.

Keywords: quality-related fault detection; process monitoring; partial least squares; mutual information;
feature extraction

1. Introduction

Process quality monitoring methods can be divided into two types: Direct monitoring
and processed monitoring. Direct monitoring, the traditionally used quality monitoring
method, is based on the different characteristics of quality variables, chooses a suitable
method to model the quality variables directly, and monitors the changes in the quality
variables. Processed monitoring methods use quality variables to supervise and model
process variables, use orthogonal decomposition to extract quality-related features in the
process variables and project the process variable space into quality-related and quality-
unrelated feature spaces. If the number of quality variables is not large, univariate statistical
graph methods can be directly applied for monitoring, such as Shewhart plots, cumulative
sum (CUSUM) plots, and exponentially weighted moving average (EWMA) plots. [1].
This has good detection performance for short-term and severe fault conditions. When
the number of quality variables is large, multivariate statistical analysis methods can be
applied. Among these methods, principal component analysis (PCA) is a relatively basic
process monitoring method and has been extensively used in research [2–5].

In actual production operations, most quality variables are difficult to obtain by direct
online measurement. For example, in the petrochemical production process, the product
concentration or purity requires further offline analysis and inspection with the help of
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analytical testing instruments. If the energy consumption of the process operation is
considered, a variety of performance indicators need to be integrated before the calculation
can be performed. The online measurement and application of these quality variables are
often time-consuming and involve certain delays. Therefore, when implementing a direct
quality monitoring method, the steps of quality prediction need to be completed before
modeling and monitoring are performed.

The key to direct quality monitoring methods is quality prediction and obtaining accu-
rate prediction results is the core of subsequent quality monitoring steps. Extensive research
has focused on improving modeling accuracy, reducing prediction errors, and ensuring
prediction accuracy for online applications. Based on previous research, Chen et al. [6] di-
vided the prediction process into three main aspects: feature (variable) selection, predictive
modeling, and parameter optimization. Therefore, we can start from these three aspects
and study how to improve the prediction accuracy.

First, feature (variable) selection attempts to use only the most relevant quality vari-
ables of the process variable, eliminating weakly related and unrelated variables. Such
dimension reduction helps to reduce the computational complexity of the process, while
improving the prediction accuracy and modeling efficiency. Second, with regard to pre-
dictive modeling, the appropriate forecasting model is mainly selected based on different
forecasting requirements or different data characteristics, depending on the production
conditions [6]. For example, short- and long-term prediction models can be used according
to the prediction duration, single- and multiple-output models can be used according to
the number of quality variables, data-driven models and data-mechanism hybrids model
can be used depending on whether or not mechanism knowledge is combined, and single
and integrated models can be used according to the distribution of data [7,8] Finally, in
terms of parameter optimization, the basic idea is to use a regression model built based on
different objective functions to analyze the critical parameters that should be optimized
(regularization parameters, the number of hidden neurons in the neural network and
the corresponding weight values; Kernel function parameters in the kernel method, etc.),
which are mainly divided into offline and online optimization. Offline optimization aims to
minimize prediction error and variance or optimize the probability density function of the
prediction error, and uses gradient descent, conjugate gradient, and intelligent optimization
methods, among others [9], to obtain the optimal solution. Online optimization methods
are based on a comparison between the predicted value at each step and the real value, and
simulation models in the Simulink environment [10–12]. The extraction method is used to
predict the error compensation to make online corrections to the next predicted value and
continuously updates the model parameters to achieve a rolling optimization.

After obtaining accurate quality prediction results, modeling and direct monitoring
can be carried out. The direct quality monitoring method intuitively reflects the change
in the quality variable and has a good performance for the quality variable. The tradi-
tional PCA method only models and monitors variables. It belongs to an unsupervised
learning method and cannot reflect the relationship between process variables and quality
variables [13,14]. By contrast, the partial least squares (PLS) method supervises quality
variables, linearly decomposing the process variable to obtain a regression model that can
extract the correlation between the process variable and the quality variable [15]. It is often
used for quality prediction and quality monitoring. Based on the improved PLS algorithm,
Yin et al. [16] assumed that the industrial process can be described by a general linear
time-invariant system, and established a soft measurement strategy in the framework of a
diagnostic observer, and used generated residual signals for monitoring. Ding et al. [17]
extended the method in [16] to a dynamic form, using the left coprime factorization method,
combined with the above-mentioned soft measurement and residual monitoring frame-
work, to achieve the quality prediction of dynamic processes. Both methods in [16] and [17]
have been successfully applied in the process of the hot strip rolling industry, which has
improved quality prediction accuracy and quality monitoring performance. However, both
are based on linear conditions, and therefore are only applicable to linear processes.
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Focusing on the problem of quality monitoring of non-linear processes, Ju et al. [18]
combined wavelet variation and the kernel PLS (KPLS) method to propose a multi-scale
KPLS algorithm. They established a wastewater treatment process key performance
indicator—the COD concentration in the effluent—and monitored its change in real time.
The method introduced in [18] is suitable for steady-state processes. When the actual pro-
cess has time-varying conditions, its monitoring performance decreases. In order to solve
the problem of quality prediction and monitoring of nonlinear multi-period intermittent
processes, Yu et al. [19] proposed a multi-directional Gaussian mixed model for period di-
vision and identification. In each period, multiple local KPLS regression models are built to
perform quality prediction. The Bayesian inference strategy was used to adaptively select
a suitable local model for online prediction based on the maximum posterior probability.
This method combines the variable selection and the predictive modeling optimization
methods described above. The PLS method uses data for modeling and can effectively
solve the problem of variable collinearity, and is suitable for multi-output predictions and
quality monitoring of multi-variable processes [20,21]. PLS has been studied and applied
in quality monitoring and many other fields [22,23].

In this paper, we propose a novel mutual information partial least squares (MI-PLS)
approach for quality-related and quality-unrelated monitoring. The proposed method
considers quality-related and quality-unrelated faults to ensure there are no false alarms
and no missed alarms. We then apply it to a numerical example and Tennessee Eastman
(TE) process to verify its effectiveness.

2. Related Work

The principal component analysis (PCA) algorithm models process variables and can
be regarded as an unsupervised learning algorithm, ignoring quality variables and their
relationship with process variables. PLS utilizes quality variables to guide the modeling of
process variables, and the latent variables obtained by decomposing the process variables
can reflect the quality-related parts. Therefore, PLS is also called projection to latent
structure (PLS) [16]. Here, we assume that the normalized process variable can be expressed
as X, the quality variable as y, and that n is the number of samples, and p and q are the
number of process variables and quality variables, respectively. PLS linearly decomposes
X and Y to obtain the following regression model{

X = TPT + E
Y = UQT + F

(1)

where T = [t1, t2, · · · td] ∈ Rn×d and U = [u1, u2, · · · , ud] ∈ Rn×d denotes the score
matrices of the input X and the output Y, P and Q represents the loading matrices of the
input, X, and the output Y, E and F denotes the residual parts; ti and ui are the ith latent
variables extracted, and d is the number of latent variables retained. In the process of
applying PLS, the most commonly used method is nonlinear iterative partial least squares
(NIPALS) [16], which follows the steps in Algorithm 1. During an iteration, the goal of PLS
is to maximize the covariance of ti and ui.

Algorithm 1. The Description of NIPALS Algorithm, Nonlinear Iterative Partial Least Squares (NIPALS) Algorithm Description

Let i = 1, start.
(1) Take any column in Y and record as ui.
(2) Calculate the regression of each column in X on ui, and get the regression matrix as wi = XTui/uT

i ui.
(3) Normalize wi and calculate the score vector for X as ti = Xwi.
(4) Calculate the regression of each column in Y on ti, and get the load matrix of Y as qi = YTti/tT

i ti.
(5) Compute the new score vector for Y as ui = Yqi.
(6) If ui converges, go to step (7), otherwise return to step (2).
(7) Calculate the load matrix of X as pi = XTti/tT

i ti.
(8) Calculate the residual matrices for X and Y as E = X− tipT

i and F = Y− uiqT
i , respectively.

(9) Replace E and F with X and Y, respectively, and let i = i + 1 return to step (1); repeat the calculation until d latent variables are
extracted, that is, stop iteration at i > d.
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In order to achieve process monitoring, similar to PCA, a T2
i monitoring statistic can

be built in the score matrix T, as shown in the following equation

T2
i = xT

i R

(
TTT

n− 1

)−1

RTxi (2)

where R is the projection matrix, which can be calculated by

R = W
(
PTW

)−1 (3)

The matrices in Equation (3) satisfy the following relationship: PTR = RTP = WTW = Id,
where Id represents the identity matrix with dimension d. Similarly, the KDE method can
be used to estimate its control limit. During the online application, the value of the statistic
corresponding with the new sample is calculated and compared with the control limit to
determine whether the process is normal or not, and T2

i can reflect the changes related to Y
in X. By comparing the monitoring statistic and the control limit, it is possible to determine
whether the fault condition occurring in X affects the quality variable Y.

However, for standard PLS, the process variable x is decomposed into a quality-related
part x̂ and a quality-unrelated part x̃, but the quality-related part x̂ still contains some com-
ponents unrelated to the output Y, so these components should be removed to avoid false
alarms. Besides, in standard PLS, the variance in X is extracted by maximizing the covariance
between process variables (input) and quality variables (output), without necessarily being
in descending order [24]. As a result, the residual component may consist of some variables
responsible for predicting the output Y. Due to these drawbacks of standard PLS, a novel
method is proposed in this paper, namely, MI-PLS, which takes these problems into consider-
ation and further decomposes x̂ but does not “discard” the residual of x̃, to ensure that no
information is lost from either the quality-related or quality-unrelated parts.

3. Quality-Related and Quality-Unrelated Fault Detection Based on MI-PLS

In this section, our novel PLS based on the mutual information quality variable
selection method is presented. The proposed method is easy and effective for quality-
related and quality-unrelated faults. MI-PLS is applied to a numerical example and
compared with PCR and TPLS.

3.1. A Novel Quality Variables Selection Based on Mutual Information

Mutual information (MI) is an effective measure of information in probability theory
and information theory, and is a quantitative representation of the statistical dependence
between two sets of variables. It can be used to measure the amount of process variable
information contained in quality variables, that is, the correlation between the two. It is,
therefore, also a type of correlation coefficient. Over recent years, mutual information
has been used widely in the field of process monitoring for variable selection and process
decomposition. Mutual information can be defined as the degree of correlation between
the product of the joint distribution and the marginal distribution. Correspondingly, the
mathematical expression is

MIi,j =
x

Xi ,Yj

p
(
Xi, Yj

)
log

(
p
(
Xi, Yj

)
p(Xi)p

(
Yj
))dXidYj (4)

where i = (1, 2, · · · , p) and j = (1, 2, · · · , q). In addition, p
(
Xi, Yj

)
represents the joint

probability density function of the process variable, Xi, and quality variable, Yj, and p(Xi)
and p(Yi) represent the marginal probability density function of Xi and Yj, respectively.
When calculating mutual information, information entropy is mainly used and Equation (4)
can be rewritten as

MIi,j = H(Xi) + H
(
Yj
)
− H

(
Xi, Yj

)
(5)
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where H(Xi) and H
(
Yj
)

represent the marginal entropy of Xi and Yj, respectively, which
can be calculated as follows{

H(Xi) = −
∫

Xi
p(Xi) log p(Xi)dXi

H
(
Yj
)
= −

∫
Yj

p
(
Yj
)

log p
(
Yj
)
dYj

(6)

where H
(
Xi, Yj

)
represents the joint entropy, which can be calculated as

H
(
Xi, Yj

)
= −

s
Xi ,Yj

p
(
Xi, Yj

)
log
(

p
(
Xi, Yj

))
dXidYj (7)

According to the given process variable and quality variable, the mutual information
can be calculated and the correlation between the two can be quantitatively described. The
mutual information matrix is constructed as follows

MMI =


MI1,1 MI1,2 · · · MI1,q
MI2,1 MI2,2 · · · MI2,q

...
...

. . .
...

MIp,1 MIp,2 · · · MIp,q

 (8)

Sum up each row to obtain the total mutual information value of each process variable
for all quality variables to form a total mutual information vector

ToMMI =
[

MI1 MI2 · · · MIp
]T (9)

Finally, the variable selection strategy based on mutual information will be

MIi ≥ mean(ToMMI) (10)

The total mutual information value is greater than the mean value. Its corresponding
process variable is selected.

3.2. The Proposed MI-PLS

After all the process variables are assigned, the input matrix X is divided into two
parts: the quality-related part, Xsel , and quality-unrelated part, Xres

X = Xsel + Xres (11)

According to the preliminary part of PLS above, the regression coefficient between the
latent variable and the quality variable is

Q =
(
TTT

)−1TTY ∈ Rm×l (12)

where Q is the regression coefficient, T is the score matrix, and Y is the output. Then, we
perform singular value decomposition (SVD) on QQT

QQT =
[

Û Ũ
][ Λ 0

0 0

][
ÛT

ÛT

]
(13)

where Û ∈ Rm×l , Ũ ∈ Rm×(m−l), Λ ∈ Rl×l . The orthogonal projection matrices of quality-
related and quality-unrelated parts Π̂ and Π̃ subsequently should then be constructed
as follows

Π̂ = ÛÛT ∈ Rm×m (14)

Π̃ = ŨŨ
T ∈ Rm×m (15)

where Π̂ denotes the projection matrix of quality-related part, and Π̃ is the projection
matrix of the quality-unrelated part.
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By projecting the input variable X onto Π̂ and Π̃, two orthogonal subspaces, X̂ and X̃,
are obtained by

X̂ = XΠ̂ ∈ RN×m (16)

X̃ = XΠ̃ ∈ RN×m (17)

where X̂ represents the quality-related subspace and X̃ represents the quality-
unrelated subspace.

In the online monitoring, a new sample, x, can be divided into x̂ ∈ Rl×1 and x̃ ∈ R(m−l)×1.
We then take into consideration the quadratic forms of the new x̂ and x̃

x̂Tx̂ = xTÛÛTÛÛTx = tT
x̂ tx̂ (18)

x̃Tx̃ = xTŨŨ
T

ŨŨ
T

x = tT
x̃ tx̃ (19)

tx̂ = ÛTx (20)

tx̃ = Ũ
T

x (21)

where tx̂ and tx̃ are appropriate applicant for the monitoring statistic T2; tx̂ is directly used
for T2 statistics to monitor the quality-related part, tx̃ is combined with the score matrix of
the residual part, and used for T2 statistics to monitor the quality-unrelated part.

The monitoring statistic of quality-related part is built as follows

T2
re = tT

x̂

(
TT

reTre

N − 1

)−1

tx̂ = xTÛ

(
ÛTXTXÛ

N − 1

)
ÛTx (22)

where T2
re is the monitoring statistics of the quality-related component.

Then, PCA is performed on the residual, Xres, to obtain the latent variable matrix, Tres.
Therefore, the total latent variable of unrelated part is constructed by

Tt,un =
[

Tx̃ Tres
]

(23)

The quality-unrelated monitoring statistic is built as follows

T2
un = TT

t,un

(
TT

t,unTt,un

N − 1

)−1

Tt,un (24)

where T2
un is the monitoring statistics of quality-unrelated part.

Thresholds of the monitoring statistics can be determined by kernel density estimation
(KDE) and the control limit is presented as jre and jun for the quality-related part and
quality-unrelated parts, respectively. The monitoring logic is as follows:

T2
re > jre quality-related fault.

T2
re < jre no quality-related fault.

T2
un > jun quality-related or unrelated fault.

T2
un < jun no quality-unrelated fault.

Finally, the main steps of the proposed MI-PLS can be summarized as follows:

1. Construct the offline process variable and quality variable matrices X and Y;
2. Apply the proposed MI-based filtering method on the process variable matrix, X, and

quality variable matrix, Y, as summarized in Section 3.2. The filtered process variable
matrix is denoted as XMI . The loading and weight matrices are represented as P and
W, respectively;

3. Calculate the regression coefficient Q by performing standard PLS onto the filtered
process data, XMI , and quality data, Y, using the NIPALS in Algorithm 1;

4. Perform SVD on QQT to obtain Π̂ and Π̃ by (13);
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5. For each online test sample xt, correct it by xT
t = xT

t − xT
t W
(
PTW

)−1PT;
6. Perform PCA on Xres and combine Tres with Tx̂;
7. Calculate statistics T2

re and T2
un by (22) and (24), where x is xt and X is XMI ;

8. Calculate thresholds jre and jun by kernel density estimation (KDE);
9. Diagnosis logic:

• T2
re > jre quality-related fault has occurred;

• T2
re < jre no quality-related fault has occurred;

• T2
un > jun quality-related or unrelated fault has occurred;

• T2
un < jun no fault unrelated to quality has occurred.

The superiorities of the proposed MI-PLS algorithm can be summarized as follows:

1. MI-PLS requires few model latent variables; therefore, MI-PLS has a low computa-
tional load;

2. MI-PLS utilizes the MI-based filtering method to remove variables that are irrelevant
to quality before applying PLS. After this, it decomposes the selected part into quality-
related and quality-unrelated subspaces in the postprocessing process; therefore,
MI-PLS is more robust than other traditional methods;

3. MI-PLS does not discard the residual, Xres; it participates in modeling and combines
with unrelated parts from Xsel to ensure no information is lost.

The schematic diagram of the proposed fault detection method is shown in Figure 1.
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4. Case Study

We used two case studies to test the proposed MI-PLS. The first is a numerical example
and the second uses the TE process. In these experiments, PCR and T-PLS—two of the
most commonly used methods in quality relevant and irrelevant fault detection—are used
to provide a comparison among methods.

4.1. Numerical Example

We used this numerical example to test the effectiveness of the MI-PLS algorithm.
Performance evaluation uses two indicators, namely, false alarm rate (FAR) and fault
detection rate (FDR). FAR is the detection of faulty samples that are not related to quality,
Y, whereas FDR indicates the detection of faulty samples relevant to quality Y. The FDR
and FAR can be calculated as follows

FDR =
Nd
N f s
× 100% (25)

FAR =
Na

N f s
× 100% (26)

where N f s represents the number of faulty samples, Na is the number of false alarms, and
Nd is the number of alarms.

From an industrial process perspective, a quality monitoring algorithm should be able
to achieve the following

(1) With regard to quality-irrelevant faults, a low false-alarm rate in quality relevant monitor-
ing statistics, and high fault-detection rate in quality-irrelevant monitoring statistics;

(2) For quality-relevant faults, a high fault-detection rate in quality relevant monitoring
statistics, but no specific requirement in relation to quality-irrelevant monitoring statistics.

To determine whether the fault affects the quality variable y, a novel Q statistic is
proposed to directly monitor the output y residual, which can be obtained as follows

Qy = ‖y− ŷ‖2 ∼ gχ2
α,h (27)

It is worth noting that Qy is only used for quality-related and quality-unrelated fault
classification and not for process monitoring.

The numerical example is constructed as follows

x1 ∼ N
(
1, 0.12), x2 ∼ N

(
1, 0.12) (28)

x3 = sin(x1) + m1 (29)

x4 = x2
1 − 3x1 + 4 + m2 (30)

x5 = x2
2 + cos

(
x2

2

)
+ 1 + m3 (31)

y = x2
3 + x3x4 + x1 + e (32)

where mj ∼ N
(
1, 0.0012)(j = 1, 2, 3) and e ∼ N

(
1, 0.0052). When the fault occurs in x1, the

product quality, y, will be directly influenced. While the fault is added in x2, it will not
exert an effect on the product quality.

1. Fault No.1: x2 = x∗2 + x f , x f quality-irrelevant;
2. Fault No.2: x2 = x∗2 + (Nt− 100)x f , x f quality-irrelevant;
3. Fault No.3: x1 = x∗1 + x f , x f quality-relevant;
4. Fault No.4: x1 = x∗1 + (Nt− 100)x f , x f quality-relevant.

The selection of numbers can be based on the monitoring problem targeted by article.
Here, the training sample Nt is set as Nt = 200. The test sample number is set as 200,
in which the first 100 samples are normal data, and the other 100 samples are fault data.
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The models of MI-PLS and PCR were constructed from the training samples. In this work,
we first select the key process variables. Figure 2 shows the mutual information between
input variables and the output (quality) variable. Therefore, the first, third, and fourth
process variables were chosen as the key process variables, as shown in Figure 2. Fault
1 was selected as quality-unrelated and Fault 3 as quality-related; they were chosen to
demonstrate the performance of MI-PLS, T-PLS, and PCR.
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1. Case study on Fault 1: The fault x f is added to x2

x2 = x∗2 + x f (33)

As shown in Figure 3, when Fault 1 occurred, the output y was not affected; the
changing trend of the quality variable in this state was unchanged, meaning Fault 1 was
not related to quality.
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Figure 3. The quality variable y and the Qy statistic for Fault 1.

Figures 4–6 show the detection results of T-PLS, PCR, and the proposed MI-PLS,
respectively. As shown in Figure 4, the T2

un part exceeded the control limit, which means
that the quality-unrelated fault was successfully detected. However, T2

re exceeded the
control limit as well, while in this case the fluctuations and changes in process variables
should be regarded as normal disturbances or normal adjustments and responses of the
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process itself to external disturbances. The expectation for false alarms should be reduced,
and there is no need to issue an alarm for such a fault.
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The same situation can be observed in Figure 5. When the quality-unrelated fault
occurs, the quality-related monitoring statistic gives an alarm because the FAR in T-PLS
and PCR is so high, meaning that these methods cannot distinguish whether y is affected
or not under this fault. Therefore, T-PLS and PCR do not provide correct results, forcing
the process into unnecessary stops and reconditioning.

In Figure 6, T2
un exceeds the control limit, but the quality-related part T2

re does not; this
is the best result, as unnecessary alarms are avoided. Compared with the PCR and T-PLS
methods, the proposed method has better performance.

Figures 4 and 5 show that a large number of quality-related statistics in the PCR and
T-PLS methods exceed the control limit, which means they can effectively monitor the
fluctuations in the process data but cannot identify whether these “abnormalities” will
affect the quality. Thus, it can be concluded that the MI-PLS method gives satisfactory
detection results with regard to faults not related to quality.

2. Case study on Fault 3: The fault x f is added to x1

x1 = x∗1 + x f (34)

Figure 7 shows that the output, y, changes when Fault 3 occurs. The quality variable
was affected to a certain extent, producing abnormal fluctuations, and has deviated from
the original operating state, which means that Fault 3 is quality-related. Figures 8–10
demonstrate the monitoring results for this quality-related fault using the T-PLS, PCR, and
MI-PLS methods, respectively.

Figures 8 and 9 show the monitoring results under quality-related fault using the
T-PLS algorithm and PCR, respectively. It can be seen from the results that although the
fault is detected, both quality-related and quality-unrelated monitoring indices exceeded
the threshold. By contrast, the MI-PLS algorithm proposed in this paper successfully
detected the quality-related fault and the quality-unrelated indicator T2

un did not seriously
exceed the threshold, as can be seen in Figure 10.
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The false alarm rate (FAR) and fault detection rate (FDR) for TPLS, PCR, and MI-PLS
are shown in Tables 1–3. For faults related to quality, the false alarm rate (FAR) should be
as low as possible. The statistical indicators should not exceed the threshold in the case of
a fault not related to quality.

Table 1. False alarm rate (FAR) for faults not related to quality using quality-related statistical indicators.

Fault No. PCR T2
re T-PLS T2

re MI-PLS T2
re

1 40% 55% 0%

2 48% 46% 2%

Table 2. Fault detection rate (FDR) for faults not related to quality using quality-unrelated statistical
indicators (%).

Fault No. PCR T2
un T-PLS T2

un MI-PLS T2
un

1 100% 100% 100%

2 98% 100% 100%

Table 3. Fault detection rate (FDR) for quality-related faults using quality-related statistical indicators.

Fault No. PCR T2
re T-PLS T2

re MI-PLS T2
re

3 99% 100% 100%

4 82.5% 96% 100%

For both quality-related faults and faults unrelated to quality, the proposed MI-PLS ap-
proach achieved the best overall result. However, in order to closely follow the monitoring
performance of this method and verify that it can monitor the fault conditions of quality
variables in real time, we carried out the two simulations using the same high configuration
computer and recorded running times of 4.13 and 3.26 s for T-PLS and MI-PLS, respectively.
MI-PLS has a lower computational load requirement than T-PLS.

4.2. Tennessee Eastman Process Simulation

The Tennessee Eastman process (TEP) was originally a real chemical process built by
Eastman Chemical Company. Later, Downs et al. [25] developed the chemical test experi-
mental platform based on the actual reaction process, which has been successfully used
to test and evaluate the performance of process control strategies and various monitoring
algorithms. After years of research and application, it has become a standard test platform
in the field of quality monitoring. The flowchart for the process is shown in Figure 11 [25].

The TE process simulator contains five main units: the compressor, reactor, stripper,
condenser, and separator. The input reactants include five components—A, B, C, D, E—and
the quality variables G and H. In this industrial process, all 53 process variables are divided
into two parts: 41 measured variables and 12 manipulated variables. In this experiment,
the output variables are XMEAS 35 and 36, which are the measurement values of product
components H and G. The process variable X matrix contains two sections: 22 measured
variables (XMEAS 1–22) and 11 manipulated variables (XMV 1–11). These input variables
are listed in Table 4.

The sampling interval for measurement was set at 3 min. Then, Simulink codes were
used to produce fifteen datasets. One dataset was produced under normal operation, and the
other datasets corresponded to fourteen different faults. These faults are listed in Table 5.

According to the prior knowledge of these faults, there were ten quality-related faults
(IDV 1, 2, 5–8, 12, 13, 18, and 21) and eleven faults unrelated to quality (IDV 3, 4, 9–11,
14, 15, 16, 17, 19 and 20). The prediction result is a suitable way to illustrate the model’s
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accuracy. In this experiment, to verify the predictive ability of MI-PLS, the quality variable
XMEAS (35) was selected as the true value. For fair comparison, 16 latent variables for the
two methods were selected. The confidence level was 99% when computing the limit of
each monitoring index.
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Table 4. The description of process variables in the X matrix.

Variable No. Variable Name

XMV 1 D feed flow
XMV 2 E feed flow
XMV 3 A feed flow
XMV 4 A and C feed flow
XMV 5 Compressor recycle valve
XMV 6 Purge valve
XMV 7 Separator pot liquid flow
XMV 8 Stripper liquid product flow
XMV 9 Stripper steam valve
XMV 10 Reactor cooling water flow
XMV 11 Condenser cooling water flow

XMEAS 1 A feed
XMEAS 2 D feed
XMEAS 3 E feed
XMEAS 4 A and C feed
XMEAS 5 Recycle flow
XMEAS 6 Reactor feed rate
XMEAS 7 Reactor pressure
XMEAS 8 Reactor level
XMEAS 9 Reactor temperature

XMEAS 10 Purge rate
XMEAS 11 Product separator temperature
XMEAS 12 Product separator level
XMEAS 13 Product separator pressure
XMEAS 14 Product separator underflow
XMEAS 15 Stripper level
XMEAS 16 Stripper pressure
XMEAS 17 Stripper underflow
XMEAS 18 Stripper temperature
XMEAS 19 Stripper steam flow
XMEAS 20 Compressor work
XMEAS 21 Reactor cooling water outlet temperature
XMEAS 22 Separator cooling water outlet temperature
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Table 5. Description of fourteen fault types used in this study.

Fault No. Process Variable Type

IDV 1 A/C feed ratio, B composition constant Step

IDV 2 B composition, A/C ratio constant Step

IDV 3 D feed temperature Step

IDV 4 Reactor cooling water inlet temperature Step

IDV 5 Condenser cooling water inlet temperature Step

IDV 6 A feed loss Step

IDV 7 C header pressure loss-reduced availability Step

IDV 8 A, B, C feed composition Random variation

IDV 9 D feed temperature Random variation

IDV 10 C feed temperature Random variation

IDV 11 Reactor cooling water inlet temperature Random variation

IDV 12 Condenser cooling water inlet temperature Random variation

IDV 13 Reaction kinetics Slow drift

IDV 14 Reactor cooling water valve Sticking

IDV 15 Condenser cooling water valve Sticking

IDV 16 Unknown Unknown

IDV 17 Unknown Unknown

IDV 18 Unknown Unknown

IDV 19 Unknown Unknown

IDV 20 Unknown Unknown

IDV 21 The valve of stream 4 set in a constant position Constant Position

Figure 12 shows the predicted and true values using the MI-PLS algorithm under
normal (fault free) conditions. The prediction accuracy of MI-PLS is very high, for example,
comparing the mean and STD between the predicted series and the actual output series,
the means are 17.301 and 16.912, respectively, and STD are 5.91 and 5.72, respectively.
Afterwards, the MI-PLS algorithm was tested with quality-related Fault 8, and Fault 14,
which was not related to quality.
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3. Case study of Fault 14

Fault 14 consists of a sticking fault on the reactor cooling water valve. Figure 13 shows
that the output variable has not changed. It shows almost no change before and after the fault
occurs, and always remains within the normal range. Thus, Fault 14 is not related to quality.
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Figures 14–16 show the monitoring results for Fault 14 using T-PLS, PCR, and MI-PLS,
respectively. As shown in Figures 14 and 15, although T-PLS and PCR can detect this fault
successfully, the quality-related monitoring statistics exceed the control limit, which is not
in line with the actual situation. By contrast, the quality-related monitoring statistic of
MI-PLS does not exceed the threshold, as seen in Figure 16, which reflects the true situation.
The quality variable maintains a normal status, so no alarm should occur here. Thus, for
this fault condition, it is logical that the statistic relevant to quality is below the threshold.
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From these results, it can be concluded that the advantage of the method proposed
in this paper is in achieving the lowest false alarm rates in the case of faults unrelated to
quality. Due to the effective quality variable selection method we used in this algorithm,
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the false alarm rate (FAR) of MI-PLS is close to 0%. Using the PCR and T-PLS methods, the
false alarm rate (FAR) is higher, e.g., in T-PLS, it reached 62.5%, which leads to needless
stops and reconditioning.

4. Case Study of Fault 8

Fault 8 consists of a random variation in the feed composition. From Figure 17, it can
be seen that the quality variable was affected after the fault occurred; this means the fault is
quality-related. The monitoring results of T-PLS, PCR, and M-PLS under Fault 8 are shown
in Figures 18–20.
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Figures 18 and 19 are the monitoring results using T-PLS and PCR, respectively. As can
be seen, both the T-PLS and PCR algorithms lead to a low fault detection rate (FDR). Using
MI-PLS, the monitoring statistics exceed the control limit after the fault occurs and stays
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above the control limit, as shown in Figure 20. Besides, the quality-unrelated monitoring
statistics in both the T-PLS and PCR exceed the threshold, while in MI-PLS, it does not
seriously exceed it. The fault detection rate (FDR) in MI-PLS reaches 99%, while for PCR
and T-PLS the FDR is 82.75% and 97.5, respectively. Therefore, MI-PLS achieved the best
results in detecting Fault 8.

From these results, it can be concluded that the proposed MI-PLS outperforms the
other two methods in quality-related fault detection. The variable selection method we
used in the proposed MI-PLS has a better variable filtering and variable selection ability,
which means that if we use better variable selection methods with traditional methods,
such as PCR, PLS or ICR, we may obtain better monitoring results.

Finally, the fault detection rates (FDRs) of quality-related faults of the proposed
method and DPCA are listed in Table 6; the proposed approach keeps a high FDR in most
of the quality-related faults.

Table 6. Fault detection rate (FDR) of MI-PLS, PCR and T-PLS for faults related to quality in the
Tennessee Eastman (TE) process.

Fault Number PCR T-PLS MI-PLS

IDV 1 93.50% 89.35% 98.25%
IDV 2 67.65% 85.40% 96.25%
IDV 5 24.95% 95.20% 100%
IDV 6 97.50% 99.70% 99.40%
IDV 7 91.15% 90.30% 90.65%
IDV 8 82.75% 97.50% 99.00%

IDV 10 36.50% 26% 82.5%
IDV 12 97.50% 98.25% 98.25%
IDV 13 82.50% 93.20% 92.65%

Table 7 shows the false alarm rate (FAR) for faults unrelated to quality using the
proposed MI-PLS, PCR and T-PLS methods. Our results show that the proposed MI-PLS
algorithm has a lower FAR for most of the faults that were not related to quality.

Table 7. False alarm rate (FAR) for MI-PLS, PCR, and T-PLS with faults unrelated to quality in the
TE process.

Fault Number PCR T-PLS MI-PLS

3 9.75% 2.35% 0.75%
4 2.37% 8.18% 0.91%
9 1.25% 1.51% 2.90%
11 23.50% 7.01% 4.64%
14 60.74% 62.50% 0.00%
15 2.05% 2.50% 1.75%

5. Conclusions

In this article, a novel PLS based on the mutual information variable selection method
was proposed. This method first utilizes mutual information (MI) to divide process vari-
ables into selected and residual parts, and then uses PLS to model the selected part and
further decomposes this into quality-related and quality-unrelated parts, subsequently
constructing monitoring statistics. With regard to the quality residual part, the proposed
method does not ignore the residual, but performs PCA to obtain its score matrix and
combines it with the quality-unrelated component of the selected part. It finally builds
the total quality-unrelated statistical indicator. In this paper, a numerical example and the
TE process were presented to test the proposed method and compare it with T-PLS and
PCR. Numerical simulation experiments verify that the proposed MI-PLS model has a high
degree of fit and can obtain more accurate prediction results. Through the experimental
comparison of the numerical simulation and TE benchmark platform, it is concluded
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that the proposed MI-PLS method has an improved detection of fault conditions and can
effectively distinguish whether a fault affects product quality in real time, reducing the
rate of missed alarms and false alarms. The detection results obtained here are more in
line with the actual situation, verifying the effectiveness of MI-PLS in quality-related and
quality-unrelated fault detection.
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