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Abstract: A nonlinear reduced-order state observer is applied to estimate the degree of polymerization
in a series of polycondensation reactors. The finishing stage of polyethylene terephthalate synthesis
is considered in this work. This process has a special structure of lower block triangular form, which
is properly utilized to facilitate the calculation of the state-dependent gain in the observer design.
There are two possible on-line measurements in each reactor. One is continuous, and the other is
slow-sampled with dead time. For the slow-sampled titration measurement, inter-sample behavior
is estimated from an inter-sample output predictor, which is essential in providing continuous
corrections on the observer. Dead time compensation is carried out in the same spirit as the Smith
predictor to reduce the effect of delay in the measurement outputs. By integrating the continuous-time
reduced-order observer, the inter-sample predictor and the dead time compensator together,
the degree of polymerization is accurately estimated in all reactors. The observer performance
is demonstrated by numerical simulations. In addition, a pre-filtering technique is used in the
presence of sensor noise.

Keywords: nonlinear state observer; inter-sample output predictor; dead time compensation;
degree of polymerization; polycondensation

1. Introduction

Polymers are continuously substituting traditional materials (e.g., glass, woods and metals)
along with low cost and good processability. Polyethylene terephthalate (PET) is the most common
thermoplastic polymer resin, which is the primary raw material for synthetic fibers, dielectric films
and beverage bottles. PET has dominated the synthetic fibers industry over the years accounting
for nearly half of the global consumption [1]. Moreover, the global demand for PET is predicted
to grow in the next few years. Therefore, producing PET with the required properties is of major
industrial importance.

It is well known that the end-use properties of PET, such as drawing behavior, melting
point, tensile strength and thermal stability, strongly depend on its molecular weight and
byproduct concentrations [2–5]. There are several side reactions taking place along with the main
polycondensation reaction. The amount of side products (i.e., diethylene glycol (DEG), acetaldehyde,
water, carboxyl end groups, vinyl end groups) determines the quality and properties of the final PET
product. For example, every one percent of DEG in the polyester chain will cause a lower melting point
by 5 ◦C [6]. Additionally, even a small amount of DEG leads to reduced heat resistance, decreased
crystallinity and UV light stability. Vinyl end groups may also be polymerized with other polyester
chains to form polyvinyl ester, of which the pyrolysis products have been shown to be responsible
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for the coloration of PET [7]. A high initial concentration of carboxyl groups could induce a decrease
in the degree of polymerization (DP) due to hydrolytic degradation [8]. In order to ensure product
quality, the amount of byproducts needs to be well controlled within certain limits.

However, the monitoring and control of polymerization reactors is not an easy task, owing to a
lack of fast on-line measurements and the significant nonlinearity of the processes. Very often, critical
quantities related to safety, product quality and/or economic performance of a polymerization process
cannot be measured on line. Thus, state estimation plays an important role in providing frequent and
reliable information of the process, which can be integrated into model-based control, as well. Since the
early 1980s, there have been significant efforts in the design and application of state estimators to
polymerization reactions, especially in free radical polymerization. The extended Kalman filter (EKF),
as an industrially-popular estimator, has been widely used and achieved fairly good performance in
many cases [9–16]. In this approach, the design is based on an approximate local linearization
of the system along a reference trajectory. Even though EKF has found industrial applications,
there have been studies that established its serious difficulties in the presence of strong process
nonlinearities [17,18]. An alternative approach for estimation in polymerization processes is state
observer design [19–26]. It utilizes the dynamic process model, which captures the evolution of physical
and chemical phenomena, and then generates a soft sensor that is able to reconstruct the missing
state variables with additional appropriate feedback terms from all of the on-line measurements.
For example, Van Dootingh et al. [19] developed a nonlinear high-gain observer with adjustable speed
of convergence in a styrene polymerization reactor. Compared to EKF, this observer does not only
have a theoretical proof of convergence, but also greatly reduces computation time. Tatiraju and
Soroush [21,22] implemented a nonlinear reduced-order observer to a homopolymerization reactor.
Along with an open-loop observer for the unobservable states, accurate estimates for all states were
achieved. Astorga et al. [25] used a continuous-discrete observer to estimate monomer composition
in an emulsion copolymerization reactor. The proposed observer was validated by comparing the
outputs of the observer with off-line gas chromatography results.

Although a significant amount of work has been done in the monitoring and control of free radical
polymerization reactors, very few state estimation studies are available for polycondensation reactors.
Choi and Khan [27] applied the EKF algorithm to estimate nine state variables in the transesterification
stage of PET synthesis. When supplemented by five additional off-line measurements, the overall
performance of the state estimator was greatly improved. Appelhaus et al. [28] designed an extended
observer to estimate concentrations of ethylene glycol (EG) and hydroxyl end groups along with a
mass transfer parameter in a batch reactor. In their study, only the reversible polycondensation reaction
was considered.

A comprehensive understanding of PET synthesis is essential for effective quality control and
optimization of the process. Generally, there are three stages (i.e., transesterification/esterification,
pre-polymerization and polycondensation) involved in PET production. For injection or blow molding
applications, solid state polymerization needs to be carried out afterwards to obtain a product with DP
over 150. In each reactor, side reactions take place simultaneously and directly affect product quality.
On-line measurements for byproduct concentrations are usually not available or at relatively low
sampling rates [29]. Therefore, based on the fact that available on-line measurements are not always
of the same nature, it is necessary to develop estimation/monitoring algorithms that can use all of
these different kinds of on-line measurements in a synergistic way to provide valuable information of
the process.

In this study, the nonlinear observer design method of exact linearization with eigenvalue
assignment [30,31] is applied to a series of three continuous polycondensation reactors. A modified
reaction-mass transfer model [32] is used in our work. The objective is to estimate unmeasured
concentrations, as well as the degree of polymerization in the PET finishing stage from continuous
hydroxyl measurement and sampled acidimetric titration, where different sampling rates and time
delays are considered. The basis of the observer design methodology is a continuous-time nonlinear
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observer design. Subsequently, an inter-sample output predictor [33] is used to account for the
slow-sampled measurements and to provide continuous estimates during the time period in between
two consecutive measurements. At the same time, an estimate of the current output from the delayed
measurement is obtained in the same spirit as the Smith predictor, by initializing the process model
with the most recent delayed output and integrating it up to the present time. In the presence of
sensor noise, a pre-filtering technique is used to cut out the noise to avoid the breakdown of the
observer. The performance of the observer with inter-sample prediction and dead time compensation
is evaluated by numerical simulation.

This paper is organized as follows: In Section 2, a brief review of the reduced-order observer
and sampled-data observer design methods are presented. In particular, a block triangular observer
form is derived from the serial subsystem structure (e.g., multiple continuous stirred-tank reactors
(CSTRs) connected in series). In Section 3, the finishing stage of PET polycondensation, as well as its
mathematical model is described. In Section 4, the performance of the state observer is evaluated in two
different cases: (i) only continuous measurement is available; (ii) both continuous and slow-sampled
measurements are available. Furthermore, sensor noise is considered, and the results show that there
is a tradeoff between the convergence rate and noise sensitivity. Finally, in Section 5, conclusions are
drawn from the results of the previous sections.

2. Nonlinear Observer Design Method

This section briefly outlines the main results on nonlinear observer design [30,31], block triangular
observer design and sampled-data observer design [33]. All of the observer synthesis and simulations
in later sections are realized on the basis of reduced-order observer. Therefore, a brief necessary review
is presented below.

2.1. Reduced-Order Observer

In chemical processes, on-line measurements typically involve a part of the state vector. In contrast
to the full-order observer, which estimates the entire state vector, the reduced-order observer estimates
only the unmeasured states. In this sense, the reduced-order observer is free of redundancies and is
computationally more efficient than the full-order observer.

Consider a multi-output autonomous system whose outputs are a part of the state vector:

ẋR = fR(xR, xM)

ẋM = fM(xR, xM)

y = xM

(1)

where xR ∈ Rn−m is the state vector that needs to be estimated, xM ∈ Rm is the remaining state vector
that is directly measured and y ∈ Rm is the measurement vector; fR : Rn → Rn−m and fM : Rn → Rm

are real analytic functions with fR(0, 0) = 0, fM(0, 0) = 0. In the exact linearization method, the
objective is to build an observer so that the resulting error dynamics is linear in curvilinear coordinates
and with the pre-specified rate of decay of the error. A locally-analytic mapping z = T(xR, xM) from
Rn → Rn−m is sought that maps the system (1) to:

ż = Az + By (2)

where A is a (n−m)× (n−m) matrix and B is a (n−m)×m matrix. The reduced-order observer in
the original coordinates can be expressed as:

˙̂xR = fR(x̂R, y) + L(x̂R, y)
(

dy
dt
− fM(x̂R, y)

)
(3)

This leads to the following selection of the state-dependent observer gain [31]:
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L(x̂R, y) = −
[

∂T
∂xR

(x̂R, y)
]−1 ∂T

∂xM
(x̂R, y) (4)

where T(x) is a solution of the following system of PDEs:

∂T
∂xR

fR(x) +
∂T

∂xM
fM(x) = AT + BxM (5)

Under the above choice of observer gain, the error dynamics in transformed coordinates becomes
linear and is governed by the arbitrarily-selected A matrix:

d
dt
(T(xR, y)− T(x̂R, y)) = A(T(xR, y)− T(x̂R, y)) (6)

Thus, the matrix A is a design parameter that directly adjusts the speed of convergence of the error.

Remark 1. In order to implement the above nonlinear observer design methodology, an approximate solution
needs to be calculated for the system of PDEs of Equation (5). As discussed in [30,31], it is possible to approximate
T(xR, xM) by using a truncated multivariable Taylor series around the origin. This requires each state expressed
in deviation variable form. After expanding fR, fM and T in Taylor series up to a finite truncation order,
the approximate solution can be obtained by equating the coefficient of each side of the PDEs. This calculation
can be executed by using symbolic computation software (e.g., Maple) [31,34].

2.2. Reduced-Order Observer in Lower Block Triangular Form

The serial CSTR reactor configuration is used in many types of chemical processes [35,36], leading
to higher product yield and higher concentration. The serial CSTR reactor configuration usually
possesses a special structure in lower block triangular (LBT) form. Additionally, this special structure
can be utilized properly in state observer design to reduce the complexity of the state dependence of
observer gains. Consider a system in LBT form containing three subsystems:

ẋRI = f I
R(xRI, xMI) ẋMI = f I

M(xRI, xMI)

ẋRII = f II
R (xRI, xRII, xMI, xMII) ẋMII = f II

M(xRI, xRII, xMI, xMII)

ẋRIII = f III
R (xRI, xRII, xRIII, xMI, xMII, xMIII) ẋMIII = f III

M (xRI, xRII, xRIII, xMI, xMII, xMIII)

yI = xMI

yII = xMII

yIII = xMIII

(7)

where I, II, III denote each subsystem, respectively. The objective of observer design is to reconstruct
the missing state variables xRI, xRII and xRIII. Figure 1 depicts a general structure of the system in LBT
form, with three subsystems.

It is intuitive to design sequential observers by taking advantage of the particular LBT structure.
For example, the observer for Subsystem I is based on its unmeasured state dynamics and its
own measurements yI and is independent of the subsequent subsystems and their measurements.
The observer for Subsystem II does not only use its own dynamics and measurements, but also
depends on the measurements and state estimates from Subsystem I. Moreover, its state-dependent
gain depends on the gain in the first observer, as well. Thus, each observer needs to utilize the
information from all of the former stages, as well as its own dynamics and measurements. In this way,
it significantly reduces the computational effort of calculating the state-dependent gain symbolically.
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Figure 1. General structure of a system in lower block triangular (LBT) form with three subsystems.

After coordinate transformation, the observer in z-coordinates has linear dynamics: żI

żII

żIII

 =

A11 0 0
A21 A22 0
A31 A32 A33


 zI

zII

zIII

+

B11 0 0
B21 B22 0
B31 B32 B33


 yI

yII

yIII

 (8)

where both A and B matrix have a special LBT structure. Eigenvalues of the diagonal submatrices
can be assigned arbitrarily. Since each subsystem’s observer needs the estimates from the previous
subsystems, it would make intuitive sense to tune the observer for Subsystem I faster than the one
for Subsystem II, etc. Accordingly, the nonlinear reduced-order observer in original coordinates is of
the form:

 ˙̂xRI
˙̂xRII
˙̂xRIII

 =

 f I
R(x̂RI, yI)

f II
R (x̂RI, x̂RII, yI, yII)

f III
R (x̂RI, x̂RII, x̂RIII, yI, yII, yIII)

+

L11 0 0
L21 L22 0
L31 L32 L33




dyI

dt
− f I

M(x̂RI, yI)

dyII

dt
− f II

M(x̂RI, x̂RII, yI, yII)

dyIII

dt
− f III

M (x̂RI, x̂RII, x̂RIII, yI, yII, yIII)

 (9)

where the LBT state-dependent gain matrix L(x̂R, y) can be designed according to:

L11 = −
[

∂T1

∂xRI

]−1 ∂T1

∂xMI

L21 = −
[

∂T2

∂xRII

]−1 [ ∂T2

∂xRI
L11 +

∂T2

∂xMI

]
L22 = −

[
∂T2

∂xRII

]−1 ∂T2

∂xMII

L31 = −
[

∂T3

∂xRIII

]−1 [ ∂T3

∂xRI
L11 +

∂T3

∂xRII
L21 +

∂T3

∂xMI

]
L32 = −

[
∂T3

∂xRIII

]−1 [ ∂T3

∂xRII
L22 +

∂T3

∂xMII

]
L33 = −

[
∂T3

∂xRIII

]−1 ∂T3

∂xMIII

(10)

where T(x) =

 T1(xRI, xMI)

T2(xRI, xRII, xMI, xMII)

T3(xRI, xRII, xRIII, xMI, xMII, xMIII)

 is a solution of the following system of PDEs:



Processes 2016, 4, 1 6 of 16

∂T1

∂xRI
f I
R +

∂T1

∂xMI
f I
M = A11T1 + B11xMI

∂T2

∂xRI
f I
R +

∂T2

∂xRII
f II
R +

∂T2

∂xMI
f I
M +

∂T2

∂xMII
f II
M = A21T1 + A22T2 + B21xMI + B22xMII

∂T3

∂xRI
f I
R +

∂T3

∂xRII
f II
R +

∂T3

∂xRIII
f III
R +

∂T3

∂xMI
f I
M +

∂T3

∂xMII
f II
M +

∂T3

∂xMIII
f III
M

= A31T1 + A32T2 + A33T3 + B31xMI + B32xMII + B33xMIII

(11)

Under the above observer construction, the estimation error follows linear dynamics in
z-coordinates, which is governed by the A matrix. It is selected to be Hurwitz to guarantee
asymptotic stability.

2.3. Sampled-Data Observer

When sampling is performed at a slow rate, inter-sample behavior becomes important and needs
to be accurately estimated by the observer. For this purpose, the process model could be used to
predict the evolution of output during the time period in between two consecutive measurements.
The predictor is able to continuously apply a correction on the most recent sampled measurement
during the sampling interval.

The inter-sample output predictor can be combined with the reduced-order observer. The original
system can be appropriately expressed in partitioned form as:

ẋR = fR(xR, xMc, xMs) yc = xMc

ẋMc = fMc(xR, xMc, xMs) ys = xMs

ẋMs = fMs(xR, xMc, xMs)

(12)

where xMc ∈ Rm−1 is the state vector, which can be continuously measured, xMs ∈ R is the sampled
state variable, and yc and ys are the corresponding outputs. Here, the output vector is split into two
parts: (m− 1) continuous measurements and one sampled measurement.

It is possible to estimate the rate of change of the output
dys

dt
by utilizing the dynamic model of

slow-sampled state variable. This leads to the following inter-sample output predictor:

dψ

dt
= fMs(x̂R, yc, ψ), t ∈ [tk, tk+1)

ψ(tk) = ys(tk)
(13)

with ψ representing the output prediction, and tk, tk+1 denote two consecutive sampling instants.
The predictor is initialized at the most recent measurement ys(tk) and runs until the new measurement
is obtained. When the continuous-time observer of Equation (3) is driven by the output predictor
of Equation (13), this generates a sampled-data observer. Figure 2 depicts the construction of a
continuous-time reduced-order observer with an inter-sample output predictor.

In earlier work [33], it was shown that, as long as the sampling period does not exceed a certain
limit, the stability of the error dynamics and robustness with respect to measurement error for the
continuous-time observer of Equation (3) implies the stability of the error dynamics and robustness
with respect to measurement error for the sampled-data observer. In other words, the sampled-data
implementation inherits the key properties of the continuous-time design, and in fact, these properties
hold at all times, not just at the sampling instants.
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Figure 2. Structure of the reduced-order sampled-data observer.

3. A Series of Three Polycondensation Reactors

Modeling the finishing stage of PET synthesis is quite challenging due to the complexity of
reaction kinetics, coupled with mass transfer effects. For the finishing stage, plug flow reactors
(PFR) are commonly used because of their uniform residence time distribution, leading to a relatively
narrow molecular weight distribution. In some continuous processes, a series of CSTRs are used [37].
The dynamics of plug flow polycondensation reactors can also be accurately modeled as multiple
CSTRs in series [38].

For simplicity, a model of three CSTR in series, which is derived from Rafler’s reaction-mass
transfer model [32], will be used throughout this study. Figure 3 shows a three-CSTR in series
configuration. In each reactor, the main polycondensation reaction and the thermal decomposition
of ester groups are considered. Since the main reaction is reversible, EG as a byproduct has to be
vaporized continuously by applying a vacuum to increase the yield of the product. The viscosity of
the reaction mass also increases rapidly, which makes mass transfer a limiting factor. The dynamic
process model has the following form:

Dynamics in CSTR I:

dx1

dt
=

1
τ1
(x1,in − x1)− (βa)1(x1 − x1

∗) +
1
2

k1(x2
2 − 8x1x4)

dx2

dt
=

1
τ1
(x2,in − x2)− k1(x2

2 − 8x1x4)

dx3

dt
=

1
τ1
(x3,in − x3) + k2x4

dx4

dt
=

1
τ1
(x4,in − x4) +

1
2

k1(x2
2 − 8x1x4)− k2x4

(14)

Dynamics in CSTR II:

dx5

dt
=

1
τ2
(x1 − x5)− (βa)2(x5 − x5

∗) +
1
2

k1(x6
2 − 8x5x8)

dx6

dt
=

1
τ2
(x2 − x6)− k1(x6

2 − 8x5x8)

dx7

dt
=

1
τ2
(x3 − x7) + k2x8

dx8

dt
=

1
τ2
(x4 − x8) +

1
2

k1(x6
2 − 8x5x8)− k2x8

(15)
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Dynamics in CSTR III:

dx9

dt
=

1
τ3
(x5 − x9)− (βa)3(x9 − x9

∗) +
1
2

k1(x10
2 − 8x9x12)

dx10

dt
=

1
τ3
(x6 − x10)− k1(x10

2 − 8x9x12)

dx11

dt
=

1
τ3
(x7 − x11) + k2x12

dx12

dt
=

1
τ3
(x8 − x12) +

1
2

k1(x10
2 − 8x9x12)− k2x12

(16)

All three reactors are operated at constant temperature and pressure. There are four states in each
reactor: the concentration of EG (x1, x5 and x9), hydroxyl end groups (x2, x6 and x10), carboxyl end
groups (x3, x7 and x11) and ester groups (x4, x8 and x12). The concentration of EG on the melt surface
is denoted by the superscript *.

Figure 3. Schematic of three CSTRs in series in the polycondensation stage.

A two-film model is applied to describe mass transfer of volatiles in the finishing stage of melt
polycondensation under high conversion. It is postulated that there is a concentration gradient of the
volatile species throughout a liquid film near the gas-liquid interface. This is based on the existence
of mass transfer resistance at the interface due to the high viscosity of the reaction mixture. Kim [39]
verified the two-phase mass transfer model from experimental data in a polycondensation system
and showed that the mass transfer resistance model provided accurate prediction of molecular weight
and product composition over the entire stages. The interfacial equilibrium concentration of EG is
calculated by using the Flory-Huggins equation (see [39] for equations, [40,41] for physical property
parameters). The system parameters used in the simulations are given in Table 1.

Table 1. System parameters a,b.

Parameter Description Value

T reactor temperature 553.15 K
P reactor pressure 130 Pa
R gas constant 1.987 cal/(mol·K)
τ1,2,3 residence time of each CSTR 60 min
k1 rate constant of polycondensation reaction 1.36 × 106 exp(−18,500/(RT)) L/(mol·min)
k2 rate constant of thermal decomposition 7.20 × 109 exp(−37800/(RT)) min−1

(βa)1 mass transfer parameter in CSTR I 2.70 min−1

(βa)2 mass transfer parameter in CSTR II 2.03 min−1

(βa)3 mass transfer parameter in CSTR III 1.35 min−1

a k1, k2 are obtained from [41], and mass transfer parameter (βa)1 is obtained from [42]; b mass transfer parameters
in the last two reactors (βa)2, (βa)3 are assigned as follows: (βa)2 = 75%× (βa)1, (βa)3 = 50%× (βa)1.
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In the reactor simulation, the following assumptions are made: (i) only EG exists in the vapor
phase; (ii) mass transfer resistance on the gas side is negligible; (iii) the concentration of vinyl end
groups in the feed is equal to the concentration of carboxyl end groups; (iv) the mass transfer parameter
does not change over time in each reactor. The operating conditions of the reactors are given in Table 2,
where [OH], [COOH] are for hydroxyl and carboxyl end groups and [Z] is the concentration of
ester groups.

Table 2. Operating conditions and steady states a,b.

Concentration CSTR# [EG] [OH] [COOH] [Z]

Feed CSTR I 6.5 × 10−3 0.40 2.57 × 10−3 11.2
CSTR I 2.0 × 10−3 0.40 2.57 × 10−3 8.0

Initial Condition CSTR II 1.0 × 10−3 0.30 5.10 × 10−3 8.0
CSTR III 6.0 × 10−4 0.24 6.31 × 10−3 8.1
CSTR I 5.645 × 10−4 0.283 8.203 × 10−3 11.25

Steady State CSTR II 4.046 × 10−4 0.226 1.385 × 10−2 11.28
CSTR III 3.470 × 10−4 0.197 1.950 × 10−2 11.28

a All of the concentrations are in units of mol/L; b feed condition is obtained from [43],
which is the reactor outflow from the last stage (i.e., pre-polymerization).

As pointed out in Section 1, the number of on-line measurements in polycondensation reactors is
limited. Especially, measurements of various functional end groups are usually off-line, infrequent
and delayed. In our study, two possible measurements are involved: one is continuous and the other
is slowly sampled with dead time. The concentration of hydroxyl end groups can be obtained from a
correlation using continuously-measured torque, temperature and stirrer speed, which needs to be
calibrated for the specific reactor [28]. It can be considered as a continuous measurement without delay.
The carboxyl concentration can be obtained by using acidimetric titration [44], which has a lower
sampling rate and an approximately twenty-minute delay. DP is calculated from the state estimates
using the formula:

DP = 1 +
2[Z]

[OH] + [COOH] + [Ev]
(17)

where [Ev] denotes the concentration of vinyl end groups.

4. State Estimation via Reduced-Order Observer

Linear observability analysis was carried out in two different cases: (i) only hydroxyl end groups
(x2, x6 and x10) are continuously measured; (ii) in addition to hydroxyl end groups, carboxyl end groups
(x3, x7 and x11) are also measured by using on-line acidimetric titration. In Case (i), the conclusion
is that the system is not observable, because carboxyl end groups are “downstream” relative to the
hydroxyl end groups. It should be noticed that the interfacial concentration of EG does not depend
on the state variables in the reactor. In Case (ii), the system of CSTRs is observable. The results of
observability analysis suggest that the carboxyl measurement is necessary for accurate estimation of
the states and, therefore, of DP, and it should be utilized in the observer despite its low sampling rate.

From a physical point of view, the system of CSTRs clearly possesses a serial structure: the outflow
of the preceding reactor is the feed for the next reactor. Thus, it is straightforward to design sequential
observers by taking advantage of the particular LBT system structure (as described in Section 2.2).
The interconnection of these subsystems is shown in Figure 4, from which the unobservability in the
absence of carboxyl measurements is clearly visible.
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Figure 4. Subsystems representation of three CSTRs in series.

4.1. State Estimation with Continuous Measurement Exclusively

In Case (i), the output vector y =
[

x2 x6 x10

]T
represents the concentrations of hydroxyl

end groups in the reactors, which are continuously measured. Even though the entire system is
unobservable in the absence of carboxyl measurements, if only Subsystems Ia, IIa and IIIa are taken into
account, the new system becomes observable. In other words, the concentrations of EG and ester groups
can be estimated by using only hydroxyl measurement. For the specific system (i.e., Ia, IIa and IIIa),
we have implemented observer Equation (9) with state-dependent gain computed from Equation (10),
where the mapping function T(x) is a solution of the system of PDEs of Equation (11) with design
parameters A and B. Two different choices of the A-matrix, with different sets of eigenvalues, are
used in the simulations: “fast” (−2.0, −1.8, −1.6, −1.4, −1.2, −1.0) and “slow” (−0.2, −0.18, −0.16,
−0.14, −0.12, −0.1). Truncation order N = 3 is used considering the balance between the accuracy
of the approximate PDE solutions and computation time. The initial guess of the estimates is given
in Table 3.

Table 3. Initial estimated values for the observer.

CSTR# [EG] (mol/L) [COOH] (mol/L) [Z] (mol/L)

CSTR I 1.0 × 10−3 7.57 × 10−3 10.0
CSTR II 0 1.01 × 10−2 10.0
CSTR III 1.6 × 10−3 1.13 × 10−2 10.1

As a result of being “downstream” states, carboxyl dynamics are detached from Subsystems Ia,
IIa and IIIa. An open-loop observer is used to estimate the concentrations of carboxyl end groups,
because their dynamics are open-loop stable. The open-loop observer equations are given as follows:

dx̂3

dt
=

1
τ1
(x3,in − x̂3) + k2 x̂4

dx̂7

dt
=

1
τ2
(x̂3 − x̂7) + k2 x̂8

dx̂11

dt
=

1
τ3
(x̂7 − x̂11) + k2 x̂12

(18)

with x̂4, x̂8 and x̂12 obtained from the observer equations driven by the continuous measurements y1,
y2 and y3.

Figure 5 shows the performance of the reduced-order observer with “fast” eigenvalues by
comparing the actual and estimated states, as well as DP in the three CSTRs. As a result,
the concentrations of EG and ester groups converge to the actual states very fast. Since the unobservable
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states (i.e., concentrations of carboxyl end groups) are estimated from an open-loop observer, the speed
of convergence depends on the dynamics itself, which is not adjustable. Therefore, it takes much longer
to converge. This also explains the offset in the DP estimates in the beginning. However, this offset
will be eliminated eventually as x̂3, x̂7 and x̂11 converge.

Figure 5. Performance of the reduced-order observer with “fast” eigenvalues: (a) actual and estimated
states in CSTR I; (b) actual and estimated states in CSTR II; (c) actual and estimated states in CSTR III;
(d) actual and estimated degree of polymerization in all three CSTRs.

4.2. State Estimation with Both Measurements

In Case (ii), both continuous and slow-sampled measurements are utilized in the observer
design. Instead of using an open-loop observer, an inter-sample output predictor is used to estimate
the evolution of the slow-sampled output during the sampling interval. Meanwhile, dead time
compensation is carried out to account for the time delay between the present time and sensor dead
time. For acidimetric titration, it is assumed that there is a ten-minute sampling interval, and the dead
time of the sensor is twenty minutes. In this case study, it should be noticed that the output of the
predictor does not need to feed into the reduced-order observer because carboxyl concentrations do
not affect the other states and are not used in the estimation of concentrations of EG and ester groups.
However, they will affect the estimation of DP. In this case, the dead time compensator is actually
combined with the inter-sample output predictor, demonstrated as follows:
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dŷ4

dt
=

1
τ1
(x3,in − ŷ4) + k2 x̂4, t ∈ [tk − θ, tk + η)

dŷ5

dt
=

1
τ2
(ŷ4 − ŷ5) + k2 x̂8, t ∈ [tk − θ, tk + η)

dŷ6

dt
=

1
τ3
(ŷ5 − ŷ6) + k2 x̂12, t ∈ [tk − θ, tk + η)

ŷ4 = y4(tk), ŷ5 = y5(tk), ŷ6 = y6(tk)

(19)

where the state estimates x̂4, x̂8 and x̂12 are obtained from the continuous-time observer. y4, y5 and
y6 are the delayed outputs with dead time θ, while ŷ4, ŷ5 and ŷ6 are the estimates at the present time,
respectively. The three equations are initialized at the most recent measurement at tk and run from
tk − θ to tk + η, where η is the length of the sampling interval. It serves as a dead time compensator
between tk − θ and tk and also serves as an inter-sample output predictor between tk and tk + η. In the
first θ time units of each simulation, an open-loop observer is used for estimating carboxyl end groups,
because there is no measurement information available.

In Figure 6, the convergence speed of EG and ester groups is slow because “slow” eigenvalues are
chosen in this case. In the estimates of carboxyl concentrations, several steps are observed, because
the slowly-sampled measurement corrects the predictor output when the most recent measurement
becomes available each time. In addition, the observer together with the inter-sample predictor and
the dead time compensator is able to estimate DP accurately in all three CSTRs.

Figure 6. Performance of the reduced-order observer with “slow” eigenvalues when using both
measurements: (a) actual and estimated states in CSTR I; (b) actual and estimated states in CSTR II;
(c) actual and estimated states in CSTR III; (d) actual and estimated degree of polymerization in all
three CSTRs.
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4.3. Observer Performance under Sensor Noise

While the reduced-order observer is computationally more efficient by reconstructing only
unmeasured state variables, it suffers from sensitivity to sensor noise. Therefore, the performance of
the reduced-order observer needs to be tested under sensor noise. Pre-filtering of the measurement
signal may be necessary to cut out the noise, which inevitably introduces some lag.

Figure 7 shows that the same level of white noise is added to all of the hydroxyl measurements
with the standard deviation equal to 0.01. A first-order filter is used to cut out the high frequency noise.
Different filter factors, 0.005, 0.005 and 0.007, are used respectively according to the filtering needed.
As expected, we can see lags in the filtered signal by comparing it to the actual value. White noise
with standard deviation 3× 10−4 is also considered for the on-line sampled titration measurements.
Figure 7d shows both the estimated DP and the actual value when sensor noise is introduced. Fairly
accurate estimation is achieved after about 70 min, even though the estimates deviate from the actual
states quite significantly in the beginning. Relatively “slow” eigenvalues are used here because “fast”
eigenvalues lead to a more aggressive response and may adversely affect observer performance.

Figure 7. Measurement signals before (blue) and after (black) pre-filtering: (a) in CSTR I; (b) in
CSTR II; (c) in CSTR III. Observer performance: (d) actual and estimated degree of polymerization in
all three CSTRs.

5. Conclusions

This work presents an application of a nonlinear state observer for monitoring DP in a series
of PET polycondensation reactors. By exploiting the special LBT structure of the system, sequential
observers are designed, and as a result, the complexity of the state dependence of observer gains is
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reduced. The unmeasurable states of EG and ester groups’ concentrations are accurately estimated by
using a reduced-order observer when only the continuous measurement is considered. The rate of
convergence is adjustable by tuning the eigenvalues of design parameter A. When the slow-sampled
measurement of carboxyl end groups is also available, an inter-sample output predictor is used to
estimate the evolution of the sampled output during the sampling interval. Furthermore, dead time
compensation is used to reduce the effect of delay in the output. Simulation results show that the
degree of polymerization of PET is accurately estimated in all of the reactors when both continuous
and sampled measurements are utilized. Even in the presence of sensor noise, the observer is still able
to provide good estimates by applying pre-filtering.

Author Contributions: The conceptual framework was developed by Costas Kravaris. Chen Ling carried
out simulations under the supervision of Costas Kravaris. Both authors were involved in the preparation of
the manuscript.
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