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Abstract: This paper studies the use of varying threshold in the statistical process control (SPC) of
batch processes. The motivation is driven by how when multiple phases are implicated in each
repetition, the distributions of the features behind vary with phases or even the time; thus, it is
inconsistent to uniformly bound them by an invariant threshold. In this paper, we paved a new path
for learning and monitoring batch processes based on an efficient framework integrating a model
termed conditional dynamic variational auto-encoder (CDVAE). Phase indicators are first used to
split the data and are then separated, serving as an extra input for the model in order to alleviate
the learning complexity. Dissimilar to the routine using features across all timescales, only features
relevant to local timestamps are aggregated for threshold calculation, producing a varying threshold
that is more specific for the process variations occurring among the timeline. Leveraged upon this
idea, a fault detection panel is devised, and a deep reconstruction-based contribution diagram is
illustrated for locating the faulty variables. Finally, the comparative results from two case studies
highlight the superiority in both detection accuracy and diagnostic performance.

Keywords: batch process monitoring; conditional dynamic variational auto-encoder; fault detection
and diagnosis; deep reconstruction-based contribution

1. Introduction

In the modern industrial landscape, batch processing is now widely performed
in producing many high-value-added products, ranging from daily necessities to bio-
pharmaceuticals to the most advanced silicones [1–3]. A typical batch process is composed
of an ordered set of physio-chemical treatments, converting feedstock into a product with
an intended specification [4]. During repetitions, these treatments not only entail a high
precision in each single phase, a time window where a specific treatment is applied, but
also mandate stability from one batch to another to secure the consistency among repeated
products. However, such a pursuit can be substantially threatened by the occurrence of
uncertainties that cannot be foreseen and assuaged by in situ controllers. Therefore, to
detect abnormal deviations, process monitoring has now emerged as an integral part of
batch process control systems.

So far, there are two sought-after directions drawing efforts from the process monitor-
ing community. One is mainly prompted by sophisticated process knowledge, implicating
parameter identification and subsequent residual generation for anomaly analysis and de-
tection. The other branch is dominated by data, where the proliferation of statistical theory
and machine learning has significantly boosted progression in the past three decades. Both
pros and cons exist in these two directions. However, currently, data are extensively avail-
able, and the knowledge is no longer as convenient to acquire as before [5–7]. Consequently,
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the data-driven-based process monitoring, also known as SPC, has gained increasing favor
for facilitating the efficient control of normal multivariate process operations [8–13].

The central task of SPC is to ascertain whether the ongoing process is normal or not
according to the working statistics drawn from the query samples. Specifically, the statistic
is compared with a value, also referred to as the threshold, to signal a faulty sample if it is
falling beyond and a normal sample if otherwise. The SPC performance, including both the
rates of Type I and II errors, is directly influenced by the threshold determination. However,
the selection of the threshold heavily depends on the distribution underlying the statistics.
Thus, a statistic distribution that is invariant across different time and normal conditions
while being sensitive to the investigated abnormality is of paramount significance for the
success of a SPC routine.

To date, many state-of-the-art methods have been devised to formulate a statistic that
outperforms with respect to the aspects prescribed above. For instance, the PCA-based
control charts and associated modifications are all committed to transforming the raw
data into a reduced set of independent features, thus employing Hoteling’s T2 statistic,
under the presumed gaussianity. After that, other machine learning methods, such as CCA
and PLS [14–16] as well as some deep unsupervised architectures [17–21], also value this
idea and are devoted to the construction of the same statistic from the reduced space of
transformed features. It was until the inception of the variational auto-encoder (VAE) that
deep learners switched focus on using strong transformation to secure the distribution
premise before using them for threshold determination [22–27]. Methods akin to these
ideas can be easily found in the applications for both continuous and batch processes.
However, some unique characteristics have also been reported in terms of their negative
impacts on stabilizing the testing statistic, e.g., a series of studies can be cited in addressing
the coupled nonlinearity and dynamicity that impede the statistical application [28–31].
As for issues linked to batch processes, its significant kinetics along the time and batch
directions, known as 2D dynamics, has been the major slot for SPC professionals to fit
their work into [14,32,33]. To this extent, works relevant to variable selection, process, and
phase divisions have been intensively investigated to conclude a compact feature space for
monitoring [28,34]. However, with the many efforts made in enhancing the model for a
stable and fault-sensitive distribution, it is never an easy task to squeeze a process with
varying conditions into a unified-shaped feature manifold for monitoring.

On the other hand, the multiple phases inherent to batch processes also add to the
difficulties against feature extraction. To mitigate it, some composite frameworks have been
proposed to cluster or classify the data to each phase beforehand, and then a secondary
round of modeling is applied to each group of data to estimate the distribution [35,36].
However, these routes usually involve a hierarchy of complex procedures without a conve-
nient framework for general batch processes. In addition, the number of clusters for phase
division lacks criteria for determination, and it may also risk obfuscating some nuanced
variations within each phase or even at specific timestamps.

In a nutshell, the application of SPC mandates a stable feature distribution from the
time sequence, while in batch processes, being substantially challenged by unsteady states
and their heterogeneity is prompted by the multiple phases. This awkward situation
persists and tends to elevate the model towards the unexpendable level of complexity,
rendering the risk of overfitting; however, it has so far not been assuaged in the community.
Thus, it necessitates a monitoring scheme that is light in multiple-phase batch process
modeling and has a tenable path for generating the threshold for intra- and inter-batch
uncertainties detection. Motivated by this, research on time-specific thresholds is dissected
in this paper for batch process monitoring. In light of the end-to-end advantage shown by
the VAE approach, a conditional learning mechanism is first designed and interfaced with
the input and latent layer of the backbone of conventional VAE to alleviate the burden of
accommodating features from the multiple phases. Prior to the model, a sliding window
spanning across both the time and batch directions, termed a 2D regular feature aggregator,
is used to collect the samples for the model to learn from the relevant history. Once the
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model is trained and fine-tuned, assuming that the skeleton of process data is well boiled
down to the features inside the model, only features tied to the current timeframe are
lumped for the estimation and threshold determination, making a time-specific varying
threshold for the 2D monitoring of batch processes. Together, the proposed framework
can align with the real-world notion that batch-wise variation is easier for finding a stable
pattern than only along the flattened time direction, which enables the process knowledge
to be efficiently integrated into the data-driven-based method design.

The remainder of this paper is organized as follows. Section 2 performs a brief
theoretical review of the variational auto-encoder. The derivation of the CDVAE, with
detailed steps of process monitoring, is elaborated in Section 3. Section 4 verifies the
merits of the proposed CDVAE through a penicillin fermentation and a practical fed-batch
fermentation process of L. plantarum. Finally, the conclusion is summarized in Section 5.

2. Preliminaries

VAE is proposed for dealing with the probability inference problem of the generative
probability model p(x) = Ez ∼p(z)[p(x|z)], where x is a sample of X and z denotes the latent
variables of the generative model [37]. The VAE model can be derived by approximating the
intractable distribution p(z|x) = p(x|z)p(z)/p(x) with the variational distribution q(z|x) .
A derivation can be derived by maximizing the likelihood log p(x):

log p(x) = logEz∼q(z|x)[p(x)] = logEz∼q(z|x)

[
p(x|z)p(z)

p(z|x)

]
(1)

Furthermore, log p(x) satisfies the following equation according to Jensen’s inequality:

log p(x) ≥ Ez∼p(z) log
[

p(x|z)p(z)
p(z|x)

]
= Ez∼p(z) log

[
p(x|z)p(z)

q(z|x)
q(z|x)
p(z|x)

]
= Ez∼p(z) log

[
p(x|z)p(z)

q(z|x)

]
+Ez∼p(z) log

[
q(z|x)
p(z|x)

] (2)

where the second term of Equation (2) is equal to DKL[q(z|x)||p(z|x)], which is used to
measure the discrepancy of q(z|x) and p(z|x) . The DKL is the Kullback–Leibler (KL)
divergence [26]. This term reasonably serves as the evidence of the lower bound when
maximizing log p(x), which is:

Ez∼q(z|x) log
[

p(x, z)
q(z|x)

]
= −DKL[q(z|x)||p(z)] +Ez∼q(z|x) log[p(x|z)] (3)

Generally, p(z) is assumed to conform to the standard normal distribution N (0, 1). The
“reparameterization trick” is applied to VAE networks to implement loss backpropagation.

3. Methodology
3.1. Batch Data Description

The batch process history data are stored as a three-dimensional matrix X ∈ RI×J×K,
where I, J, and K represent the batches, variables, and samples number. Before modeling,
we first unfold the three-dimensional batch process data X into the two-dimensional
matrix X ∈ RI×JK. Xk,α(Xk,α ∈ X) is the kth time slice in the α(α = 1, 2, . . . A)th phase,
where A is defined as the number of phases according to historical experience. Then, the
two-dimensional matrix X(I × JK) is standardized by the “Z-score”.

Two-dimensional dynamic characteristics refer to the correlation of batch process
data in the time-wise and batch-wise directions. Extracting two-dimensional features
from batch process data can improve the model’s fault detection capabilities. For this
purpose, a two-dimensional sliding window is designed in this paper. As illustrated in
Figure 1, a sample xi

k may be affected by the previous batches
{

xi−1
k , xi−2

k , . . . , xi−w
k

}
and

the previous sample
{

xi
k−1, xi

k−2, . . . , xi
k−l

}
, where w, l are the batch-wise and time-wise

lagged length. The values of the w, l are crucial for improving the fault detection accuracy
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of the proposed model. The 2D moving window of the current sample xi
k is reorganized to

xi
k =

[
xi

k, xi
k−1, . . . , xi

k−w, xi−1
k , . . . , xi−l

k , . . . , xi−l
k−w

]
. Meanwhile, the phase information α is

transferred to the phase label cα ∈ RA by a “One-to-Hot” function.
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3.2. Structure of CDVAE Model

The conditional variational auto-encoder (CVAE) generates content corresponding
to the input label type [38]. In the data preprocessing stage, batch process multi-phases
information was transformed into the phase label cα. In view of this, CVAE was selected as
the basic model to generate data for different periods. Meanwhile, LSTM has the ability to
save previously useful information and pass it to the current input. Therefore, in order to
further improve the model’s two-dimensional dynamic feature extraction capability, the
LSTM network is added to the CVAE model. The combination of the LSTM network and
CVAE model is named the CDVAE model. The structure of the CDVAE model is displayed
in Figure 2. The input sequence xi

k and label cα are combined as the input data of the
CDVAE model. The encoder of CDVAE includes two parts, the mean encoder zi

k,mean and
variance encoder zi

k,var. Then, the labels cα and latent variables zi
k are inputted into the

decoder to generate the reconstruction x̂i
k. The loss function of the CDVAE model is defined

as follows:

lossCDVAE = Ezi
k∼q(zi

k |x
i
k ,cα)

log
[

p(xi
k

∣∣∣zi
k, cα)

]
− DKL

[
q(xi

k, cα)
∣∣∣∣∣∣p(zi

k, cα)
]
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The first part of Equation (4) is the reconstruction loss in residual space, and the right
part is the KL divergence loss in latent space. The reconstruction loss can be considered
a mean squared error between the input sequence and reconstruction sequence, and its
purpose is to penalize the reconstruction sequence x̂i

k as approximate to the input sequence
xi

k. The KL loss term encourages the latent variable zi
k distribution to a standardized normal

distribution N (0, 1).



Processes 2024, 12, 682 5 of 16

3.3. Fault Detection and Diagnosis with CDVAE
3.3.1. Fault Detection

Fault detection can construct two statistics to evaluate the status of the current batch
process. Two statistics are constructed from the latent and residual spaces. In the latent
space, KL loss is defined as a fault detection statistic. It can be defined as follows:

losskld = DKL

[
q(zk

∣∣∣xi
k, cα)

∣∣∣∣∣∣N (0, 1)
]

(5)

where losskld evaluates the variation of the latent variable distribution. The statistic lossres
measures the deviation between the input sequence xi

k and its reconstruction x̂i
k, which can

be expressed as follows:
lossres =

∣∣∣∣∣∣xi
k − x̂i

k

∣∣∣∣∣∣22 (6)

The batch process is a typical multi-period process. This paper establishes a threshold
at a specific time, and the calculation steps are as follows. First, the statistics si

k of the
training data sequence xi

k are calculated based on the trained CDVAE model. Secondly,

the statistics
{

s1
k , s2

k , . . . , sI−w
k

}
corresponding to the input sequences of different batches at

the kth sample
{

x1
k , x2

k , . . . , xI−w
k

}
are collected. Finally, kernel density estimation (KDE)

is used to calculate the kth threshold based on the statistics
{

s1
k , s2

k , . . . , sI−w
k

}
. The control

limit at the kth sample time T(k) is represented as follows:

T(k) =
1

(I − w)h

I−w

∑
i=1

K(
(s − si

k)

h
) (7)

where h is the bandwidth and K is the kernel function. The time-varying control limit
calculation method at a specific moment forms a change threshold.

3.3.2. Fault Diagnosis

This paper proposes a novel fault diagnosis method named the DRBC diagram. This
diagnosis method is inspired by the PCA-based reconstruction contribution method [39].
The DRBC structure is shown in Figure 3. Assume that the fault xk occurs at the kth sample.
The fault diagnosis method based on DRBC designs two vectors, namely the fault direction
vector δk and the fault amplitude vector gk, where an element of “1” in the fault direction
vector δk represents a variation in the corresponding variable. The amplitude vector gk is
used to represent the degree of deviation in the current fault variable. The backpropagation
mechanism is used here to optimize the product of the fault direction vector and the fault
amplitude vector x̃k, which means that during the diagnosis process, the model parameters
are frozen and the feedback optimization parameter is x̃k. The loss of backpropagation
is the statistic data of the CDVAE. The fault diagnosis process is similar to an iterative
optimization process during the model training stage. The diagnostic process repeats as
indicated by the red dotted line until the statistic is below the control limit. The purpose of
this is that the statistic measures the degree of agreement between the current input data
and the model. Therefore, when the fault detection statistic is lower than the control limit, it
means that the current data are consistent with the normal trajectory. Another advantage of
DRBC is that the fault treats the trained CDVAE model as a black box and does not impose
other restrictions on the model, such as differentiability. A multi-threaded diagnostic
strategy can be applied to DRBC to improve the efficiency of the diagnostic process.
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Offline modeling stage:

(a) Collect normal historical data;
(b) Batch process data are unfolded and normalized along the batch-wise direction;
(c) Establish a two-dimensional sliding window to obtain an input sequence;
(d) Construct and train the CDVAE model;
(e) Collect statistics corresponding to each sampling moment and use KDE to calculate

the control limits of each sampling moment;
(f) Establish the DRBC diagnosis approach based on CDVAE.

Online monitoring stage:

(i) Collect real-time production data;
(ii) Standardize sampled data using historical mean and variance;
(iii) Obtain the current sampled input sequence;
(iv) Use the trained CDVAE model to calculate statistics in latent and residual space;
(v) Judge whether the statistics exceed the control limits;
(vi) If the control limit is exceeded, DRBC is used for locating the root cause of the fault.
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4. Case Study
4.1. The Penicillin Fermentation Simulation Process
4.1.1. Process Description and Modeling

In this paper, a state-of-the-art penicillin fermentation simulation platform, Pensim V
2.0 [40,41], is employed to emphasize the advantages of CDVAE.

The 120 batches are generated under normal operation conditions. A total of 100 batches
are applied to train the CDVAE model, and 10 batches are used to validate the trained
CDVAE model. Each batch lasts 600 h, and the interval is 0.5 h. The 2D dynamics are
introduced to the batch process by assuming the substrate feed rate change in the form of
Equation (8):

d(i, k) = ϕd(i − 1, k) + ε(i, k) (8)

where i and k are the number of batches and sample time, ε denotes the random noise, and
ϕ defines the dynamic factor. We define ϕ = 0.998 in normal batches. The 11 variables are
displayed in Table 1. Changes in bacterial concentration were used as the basis for dividing
periods. In this study, the batch process data are divided into three periods in the time
dimension: phase 1: 0–150; phase 2: 150–1100; and phase 3: 1100–1200. The three phase
labels are transferred as c1 = [1, 0, 0]T , c2 = [0, 1, 0]T , c3 = [0, 0, 1]T .

Table 1. The variables of the penicillin fermentation process.

No. Variables Unit

1 Aeration rate L/h
2 Agitator power W
3 Substrate feed rate L/h
4 Substrate feed temperature K
5 Substrate concentration g/L
6 Dissolved oxygen concentration g/L
7 Biomass concentration g/L
8 Culture volume L
9 Carbon dioxide concentration g/L
10 pH /
11 Fermenter temperature K

The network structure and training parameters of the CDVAE model are shown in
Table 2. The first layer of the encoder of CDVAE is LSTM, the input dimension is 10, and
the output dimension is 800. Then, the input dimension of the fully connected (FC) layer
is 803, which is the sum of the output dimension of LSTM (800) and the dimension of the
period label (3). Finally, the fully connected layer compresses the input sequence xi

k to
three dimensions. In the decoder of CDVAE, the latent representation zi

k is filled with zero
and decoded by LSTM. Then, the input dimension of the fully connected layer is the sum
of the output dimension of LSTM (400) and the period label dimension (3). Finally, the
latent features use fully connected layers to reconstruct the input sequence. In addition,
the learning rate in the training model stage and DRBC-based diagnosis stage is set to
0.001. The lag lengths in the time-wise and batch-wise are set to 10 and 3, respectively. We
also selected the VAE [25], CVAE [38], and LSTM-AE [28] methods for comparing the fault
detection performance.

Table 2. Parameters of the CDVAE model for penicillin simulation data.

Description Value

CDVAE

Encoder network: (xi
k , cα) → zi

k LSTM (10)→FC (800 + 3)→FC (400)→FC (3)
Decoder network: (zi

k , cα) → x̂i
k LSTM (3)→FC (400 + 3)→FC (800)→FC (300)

Learning rate 0.001
Activate function “Leaky_Relu”
Training epochs 500
Batch size of training samples 128
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The control limits of the two statistics are calculated by the KDE function. The
confidence interval was set to 99%. Fault detection rate (FDR) and false alarm rate (FAR)
were selected to compare the process monitoring the performance [28].

4.1.2. Detection of the Faults

In addition, we consider 14 faults, and the specific types and fault magnitudes of
different fault batches can be found in Table 3. The 14 faults consist of single-variable
faults and multivariable faults. To prove that the proposed CDVAE model performs better
fault detection, other popular models, such as traditional VAE, CVAE, and LSTM-AE, were
selected for comparison.

Table 3. Description of different types of faults.

No. Fault Variables Magnitude Fault Type Start
Sampling Time

End
Sampling Time

1 Agitator power 2% Step 400 1200
2 Agitator power 3% Step 400 1200
3 Agitator power 5% Step 400 1200
4 pH −2% Step 400 1200
5 pH −3% Step 400 1200
6 Substrate feed rate +0.005 L/h Ramp 400 1200
7 Substrate feed rate −0.01 L/h Ramp 400 1200
8 Aeration rate −1% Step 400 1200
9 Aeration rate +2% Step 400 1200
10 Aeration rate −3% Step 400 1200

11 Aeration rate +0.02 L/h Ramp
(saturate at 5 L/h) 400 700

12 Aeration rate −0.02 L/h Ramp
(saturate at 5 L/h) 400 700

13
Agitator power/pH/

Substrate feed
temperature

+5%/+5%/+3% Step 600 1000

14
Agitator

power/pH/Substrate
feed temperature

+5%/−5%/−3% Step 600 1000

The detection results of the 14 faults under different models are summarized in Table 4.
The optimal monitoring results for each fault are bolded in Table 4. It can be directly
seen that the FDR of the fault detection statistic of CDVAE is significantly better than that
of other models. Secondly, for minor faults, such as fault 8, the FDR of CDVAE in the
residual space detection index reached 89.6% and the detection index in shallow space
reached 67.2, which achieved better detection results than other models. Obviously, after
considering the two-dimensional dynamic characteristics of the model, the fault detection
ability of the model has been significantly improved. For faults with large fault amplitudes,
such as fault 3, the detection results of the four models in the residual space can reach
100%. This phenomenon shows that faults with larger fault amplitudes are easier to detect.
Considering the dynamic characteristics of the batch dimension and ignoring the dynamic
characteristics of the time dimension, the average detection rate of 14 faults of LSTM-AE is
inferior to that of CDVAE. Furthermore, the average detection results of VAE and CVAE
show that the introduction of phase information increases the ability of the deep model in
shallow space as well as its sensitivity to anomalies. Finally, CDVAE has the lowest FAR in
penicillin simulations.

To further elaborate on the fault detection results, the fault detection plots of fault 3
under the four models are shown in Figure 5. The red dotted line is the control limit of
each detection statistic, and the blue solid line is the statistics trajectory. The two detection
indicators of CDVAE can quickly exceed the control limit and provide a fault alarm after
the fault occurs (after the 400th sample time). LSTM-AE performs well in residual space,
but its detection ability for statistics in shallow space decreases. From the fault detection
diagram of the VAE and CVAE models, it can be seen that ignoring the two-dimensional
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dynamic characteristics greatly reduces the performance of the model in shallow space.
The CDVAE model shows excellent fault detection capabilities on the penicillin simulation
fermentation platform compared with other models.

Table 4. Fault detection results of different faults under VAE, CVAE, LSTM-AE, and CDVAE (%).

No.
VAE CVAE LSTM-AE CDVAE

losskld lossres FAR losskld lossres FAR H2 SPE FAR losskld lossres FAR

1 14.0 87.3 1.5 38.5 79.2 1.1 25.6 87.8 0.42 94.3 94.7 0.12
2 20.3 98.5 1.7 46.5 96.3 1.2 42.3 98.3 0.35 100 100 0.13
3 41.3 100 1.6 61.4 100 0.87 83.1 100 0.25 100 100 0.07
4 7.0 9.6 0.9 11.8 12.1 0.75 14.5 24.8 0.12 9.3 54.4 0.15
5 9.3 48.8 1.5 7.8 46.3 0.75 23.1 73.3 0.02 16.4 90.1 0.25
6 6.1 4.4 1.7 27.1 11.0 0.85 3.7 49.6 0.24 55.8 59.1 0.00
7 13.4 17.6 2.1 9.0 16.5 0.75 49.6 18.4 0.48 52.6 17.5 0.00
8 28.5 31.1 2.0 48.1 40.7 0.72 53.6 66.5 0.25 67.2 89.6 0.70
9 78.6 89.7 1.7 32.9 96.6 0.85 84.6 97.5 1.12 87.4 100 0.51

10 93.5 97.3 2.1 72.4 100 1.35 96.4 100 0.89 100 100 0.30
11 88.7 97.67 1.8 87.3 96.3 1.23 96.3 96.6 0.25 91.7 98.7 0.00
12 84.1 98.34 1.7 95.7 95.7 1.24 95.0 98 0.12 99.0 100 0.00
13 95.5 100 2.3 100 100 1.34 95.3 100 1.12 100 100 0.80
14 100.0 100 1.8 100 100 1.76 95.3 100 0.85 100 100 0.30

Average 48.6 70.7 1.7 52.7 70.8 1.0 61.0 79.2 0.46 73.84 86.01 0.23
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4.1.3. Diagnosis of the Faults

In this section, we use DRBC to locate the root cause of the fault and take fault 3 and
fault 14 as examples. Figure 6 is the ground truth and diagnosis results of faults 3 and
14. The horizontal axis of the subgraphs denotes the sampling time, and the vertical axis
indicates the variable number. The colors in the subfigure represent the offset amplitude of
the fault variable.
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Fault 3 is the agitator power (fault number 2) failing at the time of 400 samples
to 1200 samples. Comparing the ground truth of fault 3 with the diagnosis results of
DRBC in the residual space and latent space, it can be seen that the fault root cause is
not accurately located in the shallow space due to the small weight of the shallow space
setting; however, the diagnosis results of the residual space obtain ideal diagnostic results.
Firstly, the diagnostic results in the residual space show that the variable of fault variable
number 2 is faulty, i.e., the stirring power; at the same time, the fault diagnosis results
show that the fault fails from the 400th to the 1200th sampling time. Similarly, fault 14 is a
multivariable fault with fault variables numbered 2, 4, and 8, corresponding to the agitation
power, pH, and substrate feed temperature, respectively. The detection results of fault 14 in
the residual space accurately locate the root cause of the fault, and the brightness of the
color corresponding to each fault variable corresponds to the degree of fault deviation of
each variable.

4.2. The Fed-Batch Fermentation Process of L. plantarum
4.2.1. Process Description

As a kind of lactic acid bacteria that can be used, L. plantarum has the advantages of
regulating the human intestine, enhancing immunity, promoting digestion, and regulating
antioxidants. The fermentation process of L. plantarum, considered in this work, occupies
a significant ratio in the light industrial center. The fermentation equipment is the T&J
A-type bioreactor of TJX Bioengineering, and the structure is shown in Figure 7.
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The bulk volume of this equipment amounts to 5 L, and sterilization is adopted in an
off-site mode. Each fermentation cycle comprises multiple steps. First, the liquid medium
needs to be configured. Next, the tank containing liquid medium and three vials filled
with supplemental medium, hydrochloric acid, and ammonia are sterilized at 393.15 K for
20 min. After the fermenter is cooled, pre-prepared L. plantarum is added to the fermenter,
which marks the beginning of the whole process. Then, the liquid medium is charged into
the fermenter after 2 h. The final step is to collect the fermentation product and clean the
fermentation tank.

4.2.2. Data Collection and Modeling

In the experiment, we choose the L. plantarum HuNHHMY71L1 as the fermentation
strain and refer to the L. plantarum fermentation process in reference [42]. Each batch lasts
8 h, and the sampling interval is set as 1 min. The supplementary medium was added to
the medium at 100 mL/min after 2 h. The key variables listed in Table 5 include fermenter
temperature, pH, dissolved oxygen, agitation rate, acid supplements, base supplements,
and feed supplements.

Table 5. The key variables of the batch fermentation process.

No. Variable Unit

1 Fermenter temperature K
2 pH /
3 Dissolved oxygen /
4 Agitation rate r/min
5 Acid supplements mL
6 Base supplements mL
7 Feed supplements mL

The 24 batches of data were collected, which included data for 22 batch processes
under normal conditions and 2 for typical faults. Under the influence of the cold water flow
rate, the temperature will deviate from the normal range, which leads to quality instability.
Fault 1: a temperature fault occurred during fermentation, and the temperature was raised
by 3 K; and fault 2: the temperature was raised by 0.5 K. The pH was raised by 0.3, and
the feeding substrate was delayed by 50 min. The two typical faults are listed in Table 6.
The whole fermentation can be divided into three periods according to the turbidity of the
fermentation liquid: stage 1: 0–120; stage 2: 120–360; and stage 3: 360–480. The batch-wise
and time-wise lag lengths are set to 4 and 8. The weight ratio between the latent and the
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residual space is set to 1:20. The network structure and training parameters of the CDVAE
model for the fermentation process are shown in Table 7.

Table 6. Faults description of the fermentation process.

No. Fault Variables Magnitude Fault
Type

Start
Sampling Time

End
Sampling Time

1 Fermentation
temperature +3 K Step 120 480

2

Fermentation
temperature/

pH/Feed
supplement

+0.5 K/
+0.3/50 min Delay Step 120 480

Table 7. Parameters of the CDVAE model for fermentation process data.

Description Value

CDVAE

Encoder network: (xi
k , cα) → zi

k LSTM (6)→FC (400 + 3)→FC (200)→FC (3)
Decoder network: (zi

k , cα) → x̂i
k LSTM (3)→FC (200 + 3)→FC (400)→FC (192)

Learning rate 0.001
Activate function “Leaky_Relu”
Training epochs 1000
Batch size of training samples 128

4.2.3. Fault Detection and Diagnosis of Fault 1 and 2

Figure 8 displays the detection plot of fault 2. Obviously, the statistics of the CDVAE
model can quickly exceed the control limits and trigger the fault alarm at about the 120th
sampling time in both latent and residual spaces, while the statistics of VAE and CVAE
exceed the control limit until about the 170th sampling time. Obviously, the detection
results of the above two models are not ideal. The LSTM-AE curves in latent space are
below the control limit, but the SPE statistic exceeds the control limit at about the 120th
sampling time. This also verifies that the fault detection capability of the model has been
significantly improved after considering dynamic characteristics.

To further evaluate the overall comparative results of the models for fault detection,
the detailed FDR and FAR of each statistic for faults 1 and 2 are shown in Table 8. The
proposed model has the highest FDR and lowest FAR compared with other models. The
above results fully demonstrate that the proposed model also has good fault detection
capabilities in the actual production process.

The fault diagnosis of fault 1 and fault 2 is shown in Figure 9. Because the previous
diagnostic results in the latent space of the penicillin process were not satisfied, this section
only shows the diagnosis results of fermentation process faults in the residual space. The
number of iterations for fault diagnosis is set to 5000. Fault 1 is a fermentation temperature
fault, and the variable number corresponding to the fault variable is 1. Comparing the
diagnosis result of fault 1 in the residual space with the ground truth of fault 1, the diagnosis
results of fault 1 can accurately locate the fault variable and time of fault occurrence
(120 sampling time). Analyzing the diagnosis results of fault 2 on the residuals, the DRBC-
based diagnosis method also located the main variables causing the fault. Therefore, the
proposed fault diagnosis algorithm is also effective for multivariable faults in the complex
L. plantarum fermentation process.

Table 8. Fault detection results under VAE, CVAE, LSTM-AE, and CDVAE (%).

No.
VAE CVAE LSTM-AE CDVAE

losskld lossres FAR losskld lossres FAR H2 SPE FAR losskld lossres FAR

1 99.1 97.2 3.8 97.5 98.8 3.0 26.3 98.3 0.6 99.7 99.7 0.0
2 84.1 87.5 5.1 83.6 91.6 3.5 51.1 97.5 0.5 100 100 0.0
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5. Conclusions

This paper showcased a novel framework integrating a derived model named CVAE
and enabling a flexible time-specified threshold for whole-batch process monitoring. The
process data are divided into several phases based on batch process historical experience,
and then the monitoring is realized by two statistics. The varying control limits can more
accurately detect variations in each phase, and a novel method named the DRBC diagram
is applied to find and locate the root cause. Applications on the penicillin simulation
platform, a real-world fed-batch fermentation process of L. plantarum, indicate that the
CDVAE approach performs better than other models. At the same time, the fault diagnosis
results on the two data sets show that the DRBC-based diagnosis method can accurately
locate the faulty variable and evaluate the fault magnitude.
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Abbreviations

Statistical process control SPC
Conditional dynamic variational auto-encoder CDVAE
Principle component analysis PCA
Canonical correlation analysis CCA
Partial least square PLS
Variational auto-encoder VAE
Two-dimensional 2D
Kullback–Leibler divergence KLD
Conditional variational auto-encoder CVAE
Long short-term memory LSTM
Kernel density estimation KDE
Deep reconstruction based on contribution DRBC
Fault detection rate FDR
False alarm rate FAR
Long short-term memory auto-encoderFully connected layer LSTM-AEFC
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