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Abstract: In this work, four hundred and forty experimental solubility data points of 14 systems
composed of methane and ionic liquids are considered to train a multilayer perceptron model. The
main objective is to propose a simple procedure for the prediction of methane solubility in ionic
liquids. Eight machine learning algorithms are tested to determine the appropriate model, and
architectures composed of one input layer, two hidden layers, and one output layer are analyzed. The
input variables of an artificial neural network are the experimental temperature (T) and pressure (P),
the critical properties of temperature (Tc) and pressure (Pc), and the acentric (ω) and compressibility
(Zc) factors. The findings show that a (4,4,4,1) architecture with the combination of T-P-Tc-Pc variables
results in a simple 45-parameter model with an absolute prediction deviation of less than 12%.

Keywords: CO2; solubility; methane; ionic liquids; artificial neural network; multilayer perceptron;
algorithm learning

1. Introduction

Knowledge of the solubility of gases in ionic liquids (ILs) is essential for the design and
development of separation processes and the evaluation of their environmental impact [1–3].
The present need for more and better data and correlations to estimate the properties of
different types of mixtures, including ILs, has inspired our interest in studying, analyzing,
and proposing sound methods to determine the solubility of gases in ionic liquids, which
are of interest in environmental industrial applications. Knowledge of the mixing behavior
of gases and ILs is highly relevant for their potential use in several chemical processes [4].

Gases such as CO2, CH4, NH3, H2S, SO2, and N2O, among others, are frequently
present as contaminants in process streams while producing, processing, and refining
petroleum fractions [1,2,5–9] The selective and efficient removal of contaminants such as
those mentioned above and other impurities from synthesis gases is of special importance
to make them suitable for downstream processes. Thus, the solubility of the gases in
low-volatility or nonvolatile solvents is highly relevant for many technological applica-
tions [10,11]. Due to their extraordinary solvent qualities, ILs seem to be good alternative
solvents to be explored.

Accurate data, correlations, and models of the solubility of gases in ILs are required
for the design and operation of removal processes. However, there are no experimental
data in the literature and no general methods for correlating and predicting solubility in a
general form [12,13].

Thus, the development of accurate models for correlating and predicting the phase
behavior of such systems is of current interest. Certainly, there are no predicted data that
can replace good experimental values, but sometimes such good experimental data are not
readily available, especially for systems containing ILs.
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Some of the reasons that have motivated interest in ILs are (i) their very low vapor
pressure, (ii) their highly polar nature, (iii) the selective solubility of some ILs for certain
components in fluid mixtures, and (iv) the fact that their physical and chemical properties
depend directly on the particular combination of anions and cations that form the ILs [14,15].
During the last ten years, research on different aspects and applications of ILs has notably
increased. Studies including the synthesis of new ILs, evaluation of their environmental,
impact and toxicity, and technical and economic analyses, as well as experimental and
theoretical research to obtain physical and physicochemical properties, appear every day in
the scientific literature [16]. The phase behavior of mixtures involving ILs is also receiving
increasing attention, and several studies on aspects such as liquid-liquid equilibrium,
liquid-gas equilibrium, the thermodynamic consistency of data, solubility parameters,
experimental difficulties, miscibility, and the effects of impurities have appeared in the
literature [17–25].

In recent years, our research group has explored different approaches to correlate
and predict several properties of pure ILs and mixtures containing ILs. Modeling and
predicting mixture properties, including ILs, represent new and different challenges that are
now possible to explore due to the availability of the necessary critical properties to apply
current phase equilibrium and liquid-liquid methods. We have proposed new models to
correlate and predict the solubility of gases in ILs [23–28]. The natural next step in this line
of research is the study of the properties of mixtures involving ILs, such as the solubility of
methane in the ILs that are analyzed in this work.

Methane (CH4) is one of the main components of natural gas and plays a major role in
supplementing the energy required in each society. While high-purity CH4 is sold to the
commodity natural gas market or converted to other chemicals, such as methanol or carbon
black, medium-purity methane is used for generating electricity or significant heat for
various processes [3]. Methane is one of the main greenhouse gases. Therefore, whether as a
priceless energy resource or a strong destructive gas, CH4 absorption in chemical processes
is highly relevant [3,29]. The solubility of CH4 in low-volatility or nonvolatile solvents is
thus highly relevant for many technological applications. However, experimental data on
the solubility of CH4 in ILs available in the literature are scarce [8].

Until now, there have been no general methods to correlate, estimate, and predict
the solubility of CH4 in ILs. There are, however, several studies showing vapor–liquid
equilibrium data for gases and ILs mixtures, data that are used in this study. Additionally,
chemical engineers have been able to use powerful simulation programs to estimate how a
given process behaves under certain operating conditions. This type of software allows
us to correlate and predict the phase behavior of gases in ILs, but at present, it does not
include the necessary basic data (pure component properties, solubility parameters, and
Henry’s law constants) that allow us to simulate processes involving ILs. The lack of
this information will certainly delay further development of industrial processes and the
transfer to the industry of technologies that use IL mixtures.

Some studies related to the vapor–liquid equilibria (VLE) of CH4 and IL mixtures
that will be useful in the development of new proposals have been presented in the
literature. Loreno et al. (2019) studied the solubility of CH4 in four imidazolium-based ILs
in the temperature range from 293 K to 363 K. The experimental results were correlated
using the group contribution–simplified perturbed chain–statistical associating fluid theory
(GC-sPC-SAFT) [30]. Hamedi et al. (2020) correlated the solubility of CH4 in 19 different
ILs in the temperature range from 293 K to 449 K. The CH4 solubility values were predicted
using two statistical equations of state models [3]. Kurnia et al. (2020b) determined the
solubility of methane in four alkylpyridinium-based ILs in the temperature range from
298 K to 343 K and pressures up to 4 MPa [8]. Huang (2022) reported an experimental
study and a simulation study on the capture and separation of methane by alkali metal
ILs. The range of temperatures considered in the study was from 303 to 323 K, and the
pressures were from 500 to 3000 kPa [31].
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In recent years, artificial neural networks (ANNs) have become a new tool for the
study of thermodynamic properties. These networks, inspired by how biological neurons
function, have proven to be as efficient as traditional thermodynamic models. Safamirzaei
and Modarress (2012) correlated and predicted the solubility of CH4 and six other gases
in [bmim][BF4], using the molecular weight, acentric factor, and experimental tempera-
ture and pressure as input variables [32]. Behera et al. (2015) predicted a performance
parameter, namely methane percentage (%), using a multilayer perceptron model. The
landfill gas (LFG) extraction rate (m3/h) and landfill leachate/food waste leachate (FWL)
ratio parameters, which were obtained from a field-scale investigation, were input into the
network [33]. Nair et al. (2016) investigated the performance of a laboratory-scale anaerobic
bioreactor to determine the CH4 content in biogas yield from the digestion of an organic
fraction of municipal solid waste by applying an ANN model, using free forward backprop-
agation [34]. Dashti et al. (2018) determined the solubility values of natural gas composed
of CH4 and carbon dioxide for 11 different ILs, using hybrid ANN models, namely cou-
pled simulated annealing–least square support vector machine (CSA-LSSVM) and particle
swarm optimization–adaptive neuro-fuzzy inference system model (PSO-ANFIS) [35].

Conventional thermodynamic methods require a considerable number of adjustable
parameters. For example, the Peng–Robinson cubic equation of state with Kwak–Mansoori
mixing rule requires three adjustable parameters for each temperature. On the other hand,
works reported in the literature on gas solubilities in ILs using ANN show similar results
to those obtained with conventional methods, but with the characteristic of being simple
models with a reduced number of parameters [7,25].

In the present work, 440 experimental vapor–liquid equilibrium data points of 14 systems
composed of CH4 and ILs are employed to train a multilayer perceptron model. To ensure
efficient training of the neural network without sacrificing the model’s generalization capa-
bility, the temperature and pressure ranges considered in this work are 293.15–449.30 K and
0.400–16.105 MPa, respectively. An ANN is trained with eight learning algorithms, and four
combinations of inputs are studied during the training process. In this study, only systems
whose critical properties have been reported by Valderrama et al. (2015) were selected [36]. To
select the optimal architecture, in addition to the usual statistical criteria, simple models with
respect to the number of parameters are considered. As a result, a simple model is found that
allows us to predict the solubility of systems composed of CH4 and ILs with high accuracy.

2. Multilayer Perceptron

A multilayer perceptron (MLP) is a structure composed of processing units named
neurons. Each neuron is assigned a weight (w) and a bias (b), which are parameters of the
network. Neurons are organized into three layers: input layer, hidden layer, and output
layer. Figure 1 shows the diagram of the MLP used in this work. The data are processed by
means of connections between all the neurons in one layer and all the neurons in the next
layer. In this work, the output of the l-neuron in the hidden layer (k + 1) of a network with
M layers is given by Equation (1) [37,38].

al
k+1 = f k+1

(
Nk

∑
j=1

wl j
k+1al

k + bl
k+1

)
; k = 1, 2, 3. . . . .(M − 1) (1)
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Figure 1. Convergence of the 8 algorithms used in the training of the (4,2,2,1) architecture and T, P, Tc,
and Pc input combination.

For complicated, high-dimensional, nonlinear datasets, an activation function is em-
ployed. In this work, the activation function for the hidden layers is the tansig function
given by Equation (2), and that for the output layer is the linear purelin function given by
Equation (3):

f (x)tansing =
ex − e−x

ex + e−x (2)

f (x)purelin = n (3)

The weights (w) and the bias (b) must be adjusted to minimize the error of the output
(Yi). In this work, the objective function is the mean square error (MSE), which is given by
Equation (4),

MSE =
1
N

n

∑
i=1

(Xi − Yi)
2 (4)

The individual absolute deviation, average absolute deviation, and average relative
deviation of each solubility calculated with respect to the experimental data are determined
using Equations (5)–(7), respectively.

|∆x%| = 100
N

N

∑
i=1

(
xcal

i − xexp
i

xexp
i

)
(5)

|∆x1%| = 100
N

N

∑
i=1

∣∣∣∣∣ xcal
i − xexp

i

xexp
i

∣∣∣∣∣ (6)

∆x1% =
100
N

N

∑
i=1

(
xcal

i − xexp
i

xexp
i

)
(7)

3. Results and Discussion

In the present work, we study 14 binary systems composed of CH4 in different ILs.
Table 1 shows the temperature, pressure, and solubility ranges for each system considered
in this work, indicating the literature sources from which the experimental data were
selected. The temperatures vary between 293.15 K and 449.12 K, the pressure varies
between 0.400 MPa and 16.105 MPa, and the solubility varies between 0.001 and 0.496. The
study includes 440 experimental data points (P–T-x data).
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Table 1. All the data considered in this work.

System N T(K) P(MPa) x1 Reference

[C4mim][Tf2N] 8 300.31–314.31 1.510–16.105 0.030–0.225

[39]

5 332.58–342.31 1.618–10.503 0.030–0.163
4 352.00–352.08 3.237–10.982 0.056–0.163
5 371.33–371.38 1.736–11.352 0.030–0.163
5 390.69–400.47 1.836–11.652 0.030–0.163
5 410.09–410.22 3.583–8.440 0.056–0.122
5 429.56–429.80 3.659–11.978 0.056–0.122
5 448.96–449.12 1.938–12.054 0.030–0.163

[C4py][BF4] 6 298.15 1.670–3.910 0.012–0.026

[8]
5 313.15 1.770–3.910 0.011–0.023
5 328.15 2.140–4.120 0.012–0.022
4 343.15 2.370–3.890 0.012–0.020

[C4py][Tf2N] 7 298.15 0.900–4.120 0.011–0.049
6 313.15 1.360–4.030 0.014–0.047
7 328.15 1.030–4.150 0.011–0.042
6 343.15 1.310–3.990 0.012–0.036

[C6py][Tf2N] 7 298.15 0.700–3.990 0.013–0.074
7 313.15 0.720–3.940 0.012–0.066
7 328.15 0.930–3.990 0.014–0.060
6 343.15 1.270–3.920 0.019–0.054

[C2mim][dep] 5 303.17–303.44 1.685–8.310 0.020–0.076

[40]

5 313.13–313.24 1.755–8.565 0.020–0.076
5 323.06–323.25 1.820–8.800 0.020–0.076
5 333.02–333.25 1.880–9.020 0.020–0.076
5 343.02–343.25 1.930–9.176 0.020–0.076
5 353.05–353.25 1.975–9.316 0.020–0.076
5 362.92–363.29 2.025–9.441 0.020–0.076

[C2mim][FAP] 3 293.30–293.58 2.076–5.831 0.052–0.129

[29]

4 303.29–303.57 2.151–7.728 0.052–0.155
4 313.42–313.54 2.185–7.951 0.052–0.155
4 323.36–323.52 2.234–8.123 0.052–0.155
4 333.27–333.47 2.299–8.321 0.052–0.155
4 343.32–343.45 2.368–8.484 0.052–0.155
4 353.24–353.44 2.392–8.583 0.052–0.155
4 363.13–363.42 2.421–8.692 0.052–0.155

[C6mim][NO3] 5 293.15 0.874–2.580 0.020–0.087

[41]

5 303.15 0.905–2.680 0.021–0.089
5 313.15 0.935–2.778 0.022–0.091
5 323.15 0.966–2.876 0.022–0.093
5 333.15 0.996–2.972 0.023–0.095
5 343.15 1.025–3.055 0.024–0.099

[C6mim][Tf2N] 8 298.15 0.400–0.999 0.012–0.028
[42]7 313.15 0.501–0.998 0.012–0.027

8 333.15 0.400–1.000 0.010–0.024

[C6mpy][Tf2N] 8 298.15 0.400–0.999 0.012–0.028
7 313.15 0.501–0.998 0.012–0.027
8 333.15 0.400–1.000 0.010–0.024

[tes][Tf2N] 5 303.10–303.43 1.246–7.039 0.024–0.111

[40]

5 312.87–313.25 1.301–7.314 0.024–0.111
5 322.85–323.25 1.351–7.534 0.024–0.111
5 333.11–333.28 1.391–7.749 0.024–0.111
5 342.96–343.34 1.426–7.925 0.024–0.111
5 353.16–353.36 1.467–8.090 0.024–0.111
5 362.94–363.46 1.507–8.230 0.024–0.111

[thtdp][dca] 7 302.13–303.38 1.428–9.638 0.079–0.343
7 312.14–313.39 1.503–10.049 0.079–0.343
7 322.25–323.47 1.576–10.433 0.079–0.343
7 332.29–333.52 1.651–10.759 0.079–0.343
7 342.31–343.53 1.697–11.059 0.079–0.343
7 352.36–353.46 1.752–11.329 0.079–0.343
7 362.34–363.48 1.792–11.569 0.079–0.343
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Table 1. Cont.

System N T(K) P(MPa) x1 Reference

[thtdp][phos] 6 302.00–303.25 1.015–9.708 0.107–0.496
6 311.98–313.25 1.066–10.173 0.107–0.496
6 322.05–323.19 1.131–10.628 0.107–0.496
6 332.02–333.22 1.171–11.023 0.107–0.496
6 342.05–343.25 1.216–11.404 0.107–0.496
6 352.11–353.26 1.261–11.734 0.107–0.496
6 362.15–363.27 1.301–12.049 0.107–0.496

[toa][Tf2N] 5 302.96–303.55 1.725–6.067 0.076–0.290
5 312.94–313.28 1.815–6.332 0.076–0.290
5 322.92–323.33 1.905–6.588 0.076–0.290
5 332.96–333.53 1.336–6.848 0.076–0.290
5 343.21–343.65 1.386–7.103 0.076–0.290
5 353.22–353.75 1.436–7.328 0.076–0.290
5 363.25–363.72 1.481–7.543 0.076–0.290

TMGL 8 308.00 2.560–9.660 0.012–0.043
[43]7 318.00 3.510–9.990 0.013–0.039

7 328.00 3.690–10.340 0.010–0.031

The method for predicting solubility is a multilayer perceptron (MLP) model composed
of one input layer, two hidden layers, and one output layer. In the optimization of the ANN,
the following stages are considered: the study of different learning algorithms, optimization
of each hidden layer, and analysis of different input combinations. For the learning process
of the MLP, the original available data are divided into three sets: 396 data points for
training, 22 data points for testing, and 22 data points for prediction (each datasets can be
found in the Supplementary Materials). To minimize overfitting in the prediction process,
the datasets for the training, testing, and prediction stages were randomly selected.

In this study, the parameters statistic, average absolute deviation (|∆x1%|), and maxi-
mum average absolute deviation (|∆x1%|max) are used as criteria for the selection of the
best model, ensuring that the artificial neural network does not predict individual solubil-
ities that are negative or greater than 1. Another criterion is to select ANN architectures
with a reduced number of parameters.

Learning Process

In an MLP model, the most appropriate variables for solubility prediction have not
been previously determined. However, different input combinations have been studied for
solubility prediction [7,24,25,44–46]. For the choice of the algorithm, a simple architecture
model is used with four input variables: the experimental temperature (T) and pressure (P);
and the critical temperature (Tc) and pressure (Pc).

Table 2 shows the values of all critical properties used in this work. The ANN toolbox
available in MATLAB 2023a is used to build an MLP with an (l,m,n,1) architecture, with
one input layer (l = 4 and 5), two hidden layers (n = 2, 3, . . ., 10 and m = 2, 3, . . ., 10), and
one output layer [47]. Table 3 shows the code used.

Table 2. Critical properties, acentric factors, and compressibility factors of all the substances used in
this study [36].

System IUPAC Name Tc Pc Zc ω

[C4mim][Tf2N] 1-Butyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide 1258.9 27.64 0.2592 0.3370

[C4py][BF4] 1-Butylpyridinium tetrafluoroborato 597.6 20.33 0.2652 0.8207
[C4py][Tf2N] 1-Butylpyridinium bis(trifluorometanosulfonyl)imide 1229.1 27.71 0.2666 0.2505
[C6py][Tf2N] 1-Hexylpyridinium bis(trifluorometanosulfonyl)imide 1252.3 23.93 0.2522 0.3383
[C2mim][dep] 1-ethyl-3-methylimidazolium diethylphosphate 877.2 21.47 0.2349 0.7219

[C2mim][FAP] 1-ethyl-3-methylimidazolium
tris(perfluoroethyl)trifluorophosphate 740.6 10.05 0.1944 1.3993
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Table 2. Cont.

System IUPAC Name Tc Pc Zc ω

[C6mim][NO3] 1-Hexyl-3-methylimidazolium nitrate 991.8 23.16 0.2135 0.7242

[C6mim][Tf2N] 1-Hexyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide 1293.3 23.89 0.2454 0.3874

[hmpy][Tf2N] 1-Hexyl-1-methylpyrrolidinium
bis(trifluorometanosulfonyl)imide 1265.2 22.25 0.2439 0.4060

[tes][Tf2N] triethylsulfonium bis(trifluoromethylsulfonyl)imide 1189.9 21.90 0.2317 0.1603
[thtdp][dca] trihexyltetradecylphosphonium dicyanamide 1505.8 7.65 0.1388 1.0319

[thtdp][phos] trihexyltetradecylphosphonium
bis(2,4,4-trimethylpentyl)phosphinate 1819.5 5.51 0.1157 0.0924

[toa][Tf2N] methyltrioctylammonium bis(trifluoromethylsulfonyl)imide 1347.6 10.64 0.1988 1.6063
TMGL 1,1,3,3-tetramethylguanidium lactate 816.9 27.18 0.2557 1.1188

Table 3. The MATLAB code used in this work.

1% TRAINING SECTION%
2% Reading independent variables for training
3p = xlsread(‘variables_X1_training’);p = p’;
4%Reading the dependent variable for training;
5t = xlsread(‘X1_for_training’);t = t’;
6% Normalization of all data (values between −1 and y +1)
7[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t);
8% Definition of ANN:(topology, activation functions, training algorithm)
9net = newff(minmax(pn),[6,6,1],{‘tansig’,’tansig’,’purelin’},’trainlm’);
10% Definition of frequency of visualization of errors during training
11net.trainParam.show = 10;
12% Definition of number of maximum iterations and global error between iterations
13net.trainParam.epochs = 1000; net.trainParam.goal = 1 × 10−4;
14% Network starts: reference random weights and gains
15w1 = net.IW{1,1}; w2 = net.LW{2,1}; w3 = net.LW{3,2};
16b1 = net.b{1}; b2 = net.b{2}; b3 = net.b{3};
17% First iteration with reference values and correlation coefficient
18before_training = sim(net,pn);
19corrbefore_training= corrcoef(before_training,tn);
20% Training process and results
21[net,tr] = train(net,pn,tn); after_training = sim(net,pn);
22% Back-Normalization of results, from values between −1 y and +1 to real values
23after_training = postmnmx(after_training,mint,maxt); after_training = after_training’;
24Res = sim(net,pn);
25% Saving results, correlated solubility in an Excel file
26dmwrite(‘X1_correlated.xls’,after_training,char(9));
27save w
28%TESTING SECTION
29%Reading weight and other characteristics of the trained ANN saved in the file W
30load w
31% Reading of Excel file with new independent variables to predict
32pnew = xlsread(‘variables_sol_ prediction’); pnew = pnew’;
33% Normalization of all variables (values between −1 y and +1)
34pnewn = tramnmx(pnew,minp,maxp);
35% Testing the ANN obtaining the properties for the variables provided
36anewn = sim(net,pnewn);
37% Transformation of the normalized exits (between −1 y and +1) determined by the ANN to real values
38anew = postmnmx(anewn,mint,maxt); anew = anew’;
39% Saving the testing properties in an Excel file
40dlmwrite(‘solub_ testing.xls’,anew,char(9));
41%PREDICTION SECTION
42%Reading weight and other characteristics of the trained ANN saved in the file W
43load w
44% Reading of Excel file with new independent variables to predict
45pnew = xlsread(‘variables_sol_ prediction’); pnew = pnew’;
46% Normalization of all variables (values between −1 y and +1)
47pnewn = tramnmx(pnew,minp,maxp);
48% Testing the ANN obtaining the properties for the variables provided
49anewn = sim(net,pnewn);
50% Transformation of the normalized exits (between −1 y and +1) determined by the ANN to real values
51anew = postmnmx(anewn,mint,maxt); anew = anew’;
52% Saving the predicted properties in an Excel file
53dlmwrite(‘solub_ predicted.xls’,anew,char(9));

To avoid overfitting, a limit of up to 10 neurons per hidden layer is considered.
The number of epochs for training the algorithms is set to 900. For each architecture,
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50 executions are run. In addition, all selected architectures were evaluated on the testing
and prediction datasets to ensure their performance.

In this study, for the selection of the learning algorithm, eight different functions are
employed: the BFGS quasi-Newton, resilient backpropagation, scaled conjugate gradient,
conjugate gradient with P/B, Polak–Ribière conjugate gradient, one-step secant, variable
learning rate backpropagation, and Levenberg–Marquardt. The criteria used are perfor-
mance, convergence, and statistical parameters. In this stage, a simple architecture of
(4,2,2,1) is used. The best algorithms are as follows: BFGS quasi-Newton, with a perfor-
mance of 0.027 and average absolute deviations of 17.40% for training and 18.24% for testing;
Levenberg–Marquardt, with a performance of 0.007 and average absolute deviations of
17.88% for training and 18.77% for testing; and Polak–Ribière conjugate gradient, with a
performance of 0.0031 and average absolute deviations of 18.78% for training and 19.55%
for testing. In Figure 1, we can see that the BFGS quasi-Newton, Levenberg–Marquardt, and
Polak–Ribière conjugate gradient functions have acceptable convergence speeds. Table 4
shows the results obtained by all the algorithms used in this work.

Table 4. Best performance and results in training and testing with different algorithms used in
this work.

Algorithm Training Function Run Best
Performance |∆x1%|Training |∆x1%|Testing

Levenberg–Marquardt trainlm 14 0.007 17.88 18.77
BFGS quasi-Newton trainbfg 37 0.027 17.40 18.24

One-step secant trainoss 10 0.0038 19.16 22.29
Resilient backpropagation trainrp 13 0.0042 18.46 20.05
Scaled conjugate gradient trainscg 16 0.0031 18.22 19.32

Fletch–Powell conjugate gradient traincgf 5 0.0032 19.16 20.17
Polak–Ribière conjugate gradient traincgp 26 0.0031 18.78 19.55

Variable learning rate traingdx 21 0.0076 23.44 22.76

For the optimization process of the hidden layers, architectures of the form (4,m,n,1) are
considered. The 1rs hidden layer is optimized separately, using the three previously selected
algorithms: BFGS quasi-Newton, Levenberg–Marquardt, and Polak–Ribière conjugate
gradient. In addition, a fixed value of n = 2 is considered, and (4,m,2,1)-type architectures
are studied. In Figure 2, the results obtained for the average absolute deviation in training
for each m are shown. The figure shows that the Levenberg–Marquardt algorithm performs
well for all the architectures studied. In comparison with the performance of the BFGS quasi-
Newton and scaled conjugate gradient algorithms, the Levenberg–Marquardt algorithm
in the architectures with m < 7 gives a considerably better performance. However, the
results of the BFGS quasi-Newton algorithm, with m = 7, 8, and 10, match the results of the
Levenberg–Marquardt algorithm. The findings show that, for m = 4, 5, and 6, an acceptable
average absolute deviation is achieved in training with the Levenberg–Marquardt algorithm
(5.68%, 4.61%, and 4.33% in the training dataset, respectively). Therefore, using the criterion
of selecting architectures with a reduced number of parameters, the Levenberg–Marquardt
function is selected for the (4,4,n,1), (4,5,n,1), and (4,6,n,1) architectures.

For the optimization of the second hidden layer, we study combinations of neurons in
the hidden layers, considering m = 4, 5, and 6; and n = 2, 3, . . ., 10. Table 5 presents the run
with the lowest average absolute deviation during training, testing, and prediction for each
architecture. A considerable number of architectures achieve an average absolute deviation
of less than 5% (85% of architectures in training, 74% of architectures in testing, and 96% of
architectures in prediction).
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Table 5. Results of the (4,6,n,1), (4,5,n,1), and (4,4,n,1) architectures using T, P, Tc, and Pc training
variables (Np: number of parameters).

Architecture Np Run

Training
(396 Data Point)

Testing
(22 Data Point)

Prediction
(22 Data Point)

|∆x1%| |∆x1%|max |∆x1%| |∆x1%|max |∆x1%| |∆x1%|max

4,6,2,1 47 50 4.33 57.43 3.49 14.87 3.78 16.81
4,6,3,1 55 1 4.83 59 3.89 23.16 4.37 16.79
4,6,4,1 63 21 4.2 41.23 4.48 19.57 3.55 15
4,6,5,1 71 5 3.31 30.33 4.16 26.33 2.77 13.28
4,6,6,1 79 27 4.76 56.52 3.64 13.14 3.86 18.59
4,6,7,1 87 13 4.28 63.36 4.85 13.08 3.1 9.8
4,6,8,1 95 6 4.5 54.71 5 14.51 3.78 15.68
4,6,9,1 103 48 4.61 47.92 4.42 13.69 3.22 15.16
4,6,10,1 111 26 3.63 37.64 5.78 20 1.99 10.17

4,5,2,1 40 42 4.61 32.29 5.86 29.86 3.58 15.76
4,5,3,1 47 33 5.06 37.2 4.76 22.9 3.87 14.89
4,5,4,1 54 28 3.81 27.07 3.81 17.31 3.68 13.33
4,5,5,1 61 31 5.17 49.05 4.62 16.53 3.38 15.18
4,5,6,1 68 9 4.32 51.52 4.71 35.03 3.34 10.67
4,5,7,1 75 44 4.44 37.39 4.9 18.89 3.54 12.82
4,5,8,2 82 1 4.56 30.84 3.41 11.93 3.49 12.95
4,5,9,2 89 14 4.25 36.35 5.86 27.55 2.93 9.97
4,5,10,2 96 18 3.44 33.84 4.44 12.74 2.24 7.19

4,4,2,1 33 5 5.68 55.22 6.2 23.08 5.86 21.88
4,4,3,1 39 38 7.52 57.43 6.92 40.37 4.63 16.96
4,4,4,1 45 15 3.59 25.12 3.57 13.12 2.2 11.92
4,4,5,1 51 33 4.26 33.38 4.62 23.7 3.42 13.36
4,4,6,1 57 21 3.82 34.47 3.96 25.12 3.22 11.01
4,4,7,1 63 3 3.4 31.75 5.02 25 2.48 9.71
4,4,8,1 69 31 4.64 41.64 4.65 18.91 3.04 17.44
4,4,9,1 75 48 3.62 23.49 4.12 17.49 3.09 10.51
4,4,10,1 81 28 2.87 24.72 3.44 17.71 2.49 11.79

In general, the results show that, for n = 10, low average absolute deviations are
obtained. However, for the case of architectures of type (4,4,n,1), the lowest average
absolute deviation, with a prediction value of 2.2%, is reached for n = 4, which also presents
acceptable values in training and testing (3.59% and 3.57%, respectively). On the other hand,
for architectures of type (4,5,n,1), the lowest average absolute deviations in training and
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prediction are obtained for n = 10 (3.44% and 2.24%, respectively). Additionally, acceptable
results are obtained for architectures with fewer parameters, such as architectures with
n = 4 and 8. Finally, for architectures of type (4,6,n,1), for n = 10, a value of less than
2.0% in the average absolute deviation in prediction is achieved. However, other simpler
architectures show a better performance in regard to training and testing. In particular, for
the architecture with n = 5, we obtain 3.31% and 4.16% in training and testing, respectively.

The results show that, by increasing the number of neurons in the hidden layers
and, thus, the number of network parameters, the average absolute deviations are not
significantly reduced. In particular, simple architectures such as (4,4,4,1), (4,5,4,1), and
(4,6,5,1) employ a low number of parameters (45, 54, and 71 parameters, respectively) and
obtain acceptable results. Therefore, based on the above criteria, the (4,4,4,1) architecture is
selected as the best model. Figure 3 shows the correlation between the experimental and
calculated solubilities for architecture (4,4,4,1).
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To complement this study, three other combinations of inputs are considered: T-P-Tc-
Pc-ω, T-P-Tc-Pc-Zc, and T-P-Tc-Pc-ω-Zc. When we add the acentric factor, ω, as a training
variable (49 parameters), an increase in the average absolute deviations in all datasets
(4.46%, 5.25%, and 3.21% in training, testing, and prediction, respectively) is observed with
the (4,4,4,1) architecture. By adding the critical compressibility factor, Zc (49 parameters),
an increase in the average absolute deviations in all datasets (4.77%, 6.03%, and 3.72%
in training, testing, and prediction, respectively) is observed. Finally, when we add ω

and Zc (59 parameters), we do not observe a better performance of the neural network
(4.01%, 4.69%, and 2.89% in training, testing, and prediction, respectively). In Figures 4–6,
the correlation between the experimental and calculated solubilities for the T-P-Tc-Pc- ω,
T-P-Tc-Pc-Zc, and T-P-Tc-Pc-ω-Zc combinations is presented. In addition, Figure 7 shows
that the largest relative deviation is found in the low-solubility region in four cases in
the training set in four input combinations. This is reasonable due to the experimental
uncertainty inherent in these measurements.
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With these results, we can consider the variables T, P, Tc, and Pc to be the best choice
of input combination with the best training, testing, and prediction results. If the critical
properties (Tc and Pc) are known for an IL not considered in the training process, it is
possible to incorporate them to predict the solubility of new systems with the model
proposed in this work [7,24,25]. Moreover, it is a simple model with 45 parameters that
predicts solubility with absolute deviations less than 12%.

Conventional methods for modeling the experimental solubility data of CH4 + LI
systems are presented in the literature. Althuluth et al. (2017) modeled the solubility of
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methane in [C6mim][TCM], using the PR-EoS, with only one temperature-independent
binary interaction parameter obtaining an average absolute deviation of less than 2% [48].
Alcantara et al. (2018) reported the correlation of systems composed of methane and
[BHEA][Bu], using the three-parametric Redlich–Kwong/Peng–Robinson [49]. The model
adjustment resulted in average deviations from data below 10% for molar fraction. Unfor-
tunately, these studies report the overall results as the average absolute deviation, making
it difficult to generate a direct comparison. However, the results obtained in this study
with artificial neural networks are acceptable in terms of the average absolute deviations.
Table 6 shows the results presented by other authors for the modeling of methane solubility
in ionic liquids.

Table 6. Results reported in the literature for modeling experimental data for mixtures composed of
CH4 and ionic liquids.

Ionic liquid Trange (K) Prange (Mpa) Model Comments Ref.

[C6mim][TCM] 293–363 Up to 10

Peng–Robinson EoS with
only one
temperature-independent
binary
interaction parameter.

The calculated results are in a
good agreement with the
experimental data, with an
average absolute deviation of
less than 2%.

[48]

[m2HEA][Pr] 331–363 4–16

Redlich–Kwong/Peng–
Robinson EoS coupled to
cubic van der Waals
mixing rules.

The average error for the mole
fraction of methane was around
9.7%.

[49]

[m-2HEA][Pr]
[BHEA][Bu] 313.1–353.1 Up to 20

Redlich–Kwong/Peng–
Robinson equation of state
(RKPR-EoS).

The model adjustment resulted
in average deviations from data
below 10% for molar fraction.

[50]

[C6mim][NO3] 293.1–342.15 Up to 4 Extended Henry’s
law model.

Data were correlated with a
reasonable accuracy. The
average absolute relative
deviation in fugacity was
0.257%.

[41]

[C2mim][dep]
[thtdp][phos]
[thtdp][dca]
[amim][dca]
[bmpyrr][dca]
[cprop][dca]
[cprop][Tf2N]
[bmpip][Tf2N]
[tes][Tf2N]
[toa][Tf2N]

303.15–363.15 Up 14

Peng–Robinson equation
of state in combination
with van der Waals
mixing rules.

They compared the
experimental results with those
of the model by means of
graphical representations.
However, they did not present
the deviations obtained for
these systems.

[40]

[C2mim][EtSO4 293 K 0.2–10 Group contribution
equation of state.

Average deviation between
experimental and calculated
equilibrium pressures of 2.3%.

[51]

4. Conclusions

In this work, the experimental solubility data of 14 binary mixtures composed of CH4
and different ionic liquids were used to train a multilayer perceptron model. The tempera-
tures ranged from 293.15 K to 449.12 K, the pressure ranged from 0.400 MPa to 16.105 MPa,
and the solubility ranged from 0.001 to 0.496. The study included 440 experimental data
points (P–T-x data). To determine the parameters of the artificial neural network model,
eight learning algorithms were studied, and (l,m,n,1)-type architectures were tested. This
allowed for the following main conclusions to be drawn. (1) The resulting statistical values
indicate that the Levenberg–Marquardt algorithm provided a more accurate nonlinear
predictive model. (2) For m = 4 and n = 4, an acceptable mean absolute deviation was
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achieved (3.59% in the training dataset, 3.57% in the test dataset, and 2.20% in the prediction
dataset). (3) The combination of T, P, Tc, and Pc was a reasonable choice of input with
45 parameters.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pr12030539/s1, Database used in this work and calculated weights
and bias matrices.
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