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Abstract: In this study, circulating fluidized bed fly ash (CFBFA) non-sintered ceramsite was innova-
tively developed. The CFBFA was addressed by adding ternary activator (including cement, hydrated
lime, and gypsum) to prepare ceramsite. In the curing process, the use of power plant flue gas for
curing not only captured greenhouse gas CO2, but also enhanced the compressive strength of the
ceramsite. The compressive strength of the composite gravels prepared by the CFBFA was modeled
using a novel approach that employed the response surface methodology (RSM) and artificial neural
network (ANN) coupled with genetic algorithm (GA). Box–Behnken design (BBD)-RSM method was
used for the independent variables of cement content, hydrated lime content, and gypsum content.
The resulting quadratic polynomial model had an R2 value of 0.9820 and RMSE of 0.21. The BP-ANN
with a structure of 3-10-1 performed the best and showed better prediction of the response than
the BBD-RSM model, with an R2 value of 0.9932 and RMSE of 0.19. The process parameters were
optimized using RSM optimization tools and GA. Validation experiments showed that the GA-ANN
prediction results were more accurate than the BBD-RSM results.

Keywords: ternary activator; Box–Behnken design; response surface methodology; artificial neural
network; genetic algorithm

1. Introduction

Circulating fluidized bed (CFB) combustion technology has received significant at-
tention in the thermal power sector due to its high efficiency [1,2], low pollution, clean
production, and widespread availability [3]. CFB fly ash (CFBFA) is a by-product of CFB.
The large-scale utilization of CFBFA has been inadequate. Stacking CFBFA is still the main
disposal method at present. However, stacking CFBFA causes a series environment issue.
The preparation of CFBFA recycled concrete aggregate is an effective method.

CFBFA has active volcanic ash properties and self-hardening characteristics [4–6]. It
contains various elements such as Al2O3, SiO2, CaO, Fe2O3, and MgO. These properties
make CFBFA suitable for various construction materials. For example, it can be used in
the production of clay bricks [7], recycled concrete aggregate, ceramic membrane [8], and
concrete. Ceramsite can be used as recycled concrete aggregate. The high temperature
sintering method and the non-sintering method are two methods to produce ceramsite
using fly ash. Qin et al. [9] utilized ceramsite from coal fly ash to produce lightweight
concrete instead of natural sand and gravel aggregates. Jia et al. [10] utilized a high-
temperature sintering method to produce CFB fly ash ceramsite, resulting in enhanced
stability of the ceramsite. The high-temperature sintering method typically necessitates
temperatures exceeding 1000 ◦C to effectively solidify ceramsites. Sulfur release and high
energy consumption are the problems of ceramsite prepared by high temperature sintering.
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CFBFA ceramsite has been prepared by sintering method, but no low energy consumption
method has been proposed. In comparison to sintered ceramsite, non-sintered ceramsite
offers several advantages including low cost, a simple production method, lightweight
construction, high strength, and environmental friendliness [11]. While most of the current
research focuses on the high-temperature preparation of sintered ceramsites, there is
relatively less emphasis on studying the production and performance of non-sintered
ceramsites. This study aims to develop a novel type of non-sintered CFBFA ceramsites.
In this study, the novel ceramsite is called composite gravels. The no-sintered ceramsite
is to use the gelling property of the fly ash for bonding. The stronger the activity of fly
ash, the stronger its cementitious ability. The activity of CFBFA is cruel to the compressive
strength of composite gravels. CFBFA exhibits self-cementitious activity, resulting in the
hardened paste acquiring a certain level of compressive strength [12]. Research has shown
that the activity of fly ash can be enhanced by incorporating additives such as cement [13],
hydrated lime [14], and gypsum [15]. Illikainen et al. [16] observed that minerals like C3A
and C2S present in cement react with fly ash to form ettringite and C-S-H gels. However,
cement-activated fly ash is susceptible to degradation by sulfate found in fly ash [17].
Iribarne et al. [18] introduced hydrated lime to fly ash to enhance the activity of volcanic
ash within it. Additionally, Moghal [19] et al. incorporated gypsum into fly ash, which
further increased the pozzolanic activity of the fly ash.

The properties of composite gravels are primarily determined by the activator contents.
Given the intricate nature of the combined influences of multiple factors, it is essential
to establish a suitable data analysis model to achieve effective performance optimization.
Response surface methodology (RSM) and artificial neural network (ANN) have been
extensively utilized to enhance the efficiency of data optimization [20,21]. RSM has found
wide application in various fields, including process optimization and control. In the
context of building materials, researchers have employed RSM to optimize the mechanical
strength [22]. On the other hand, the ANN approach serves as a robust mathematical tool
capable of modeling diverse behaviors, including complex non-linear relationships [23].
The application of ANN has been extensively conducted in various fields of construction
engineering, including non-destructive testing technology [24], predicting the compres-
sive strength of concrete technology [24], time series forecasting the production activity
technique [25], etc.

The utilization of carbonization curing emerges as a pivotal strategy in enhancing the
performance of cementitious materials, concurrently contributing to carbon neutrality by
sequestering CO2 [26]. Carbonization curing can improve the early compressive strength
of the cementitious material rapidly [27]. The application of CO2 curing technology demon-
strates superior early compressive strength and heightened impermeability [28]. This
transformative process is often accompanied by the precipitation of calcium carbonate
(CaCO3) within the pores of cementitious materials, culminating in amplified refinement
of microstructure and mechanical strength [29]. Monkman et al. [30] also found that
during carbonization curing, CaCO3 forms within the cementitious material, filling the
pore structure and augmenting the solid volume. This phenomenon not only optimizes
microstructure but also contributes to increased mechanical strength. In addition, Zhan
et al. [31] discovered that the effectiveness of carbonization curing is intricately linked to
various factors such as water content, gas pressure, and curing time of the cementitious ma-
terial. The interplay of these parameters significantly influences the progress and outcomes
of the carbonization curing process.

Previous studies have not clearly explained the coupling activation mechanism of the
three activators. The action mechanism of these three activators involves many chemical
reactions, and the action mechanism is complex. At present, there are few studies on the
combined effects of these three activators. The understanding of this coupling activation
remains limited in the existing literature.

In this study, power plant flue gas curing was innovatively used. High temperature
and high pressure carbonization curing process has high energy consumption and complex
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process. In this paper, the coal flue gas of the power plant is used, which has 15% CO2.
The use of flue gas in the curing process can not only capture greenhouse gas CO2, but
also enhance the compressive strength of the composite gravels. In addition, f-CaO in
CFBFA will expand when the composite gravel meets water in actual use, resulting in
volume instability. The carbonization curing can consume f-CaO in CFBFA and prevent the
composite gravels from volume expansion and cracking. In this paper, cement, hydrated
lime, and gypsum were used to prepare composite gravels. The Box–Behnken design
(BBD)-RSM and the genetic algorithm (GA)-ANN were used to model and optimize the
compressive strength of composite gravel. By considering cement, hydrated lime, and
gypsum as independent variables and compressive strength of composite gravels as the
dependent variable, the RSM test estimates the effects of the independent variables on
the response. The interaction effects can be visually illustrated through response surface
plots of the variables. Finally, the predictive ability and modeling efficiency of the two
models are compared and validated. To further understand the intrinsic mechanism of
carbonated cementitious materials prepared from CFBFA, X-ray diffraction (XRD) and
Fourier transform infrared spectroscopy (FTIR) are utilized to analyze reaction products.
High-temperature weight loss is analyzed through thermogravimetric analysis (TG-DTG),
and microstructure is observed via scanning electron microscopy (SEM).

2. Experiment
2.1. Materials

The CFBFA used in this study was provided by Shanxi Jinneng Datuhe Thermal
Power Co., Ltd., Lvliang, China. The gypsum and hydrated lime used in this study were
purchased from Shanghai Aladdin Biochemical Technology Co., Ltd., Shanghai, China.
Portland cement (P.O. 42.5) was manufactured by Jiuqi Building Materials Co., Ltd., Zibo,
China. The chemical compositions of the mineral admixtures utilized in this study are
provided in Table 1. Particle size distributions of CFBFA, cement, and hydrated lime
were measured by a laser particle size tester (BT-9300HT, Bettersize was purchased from
Dandong Baxter Instrument Co., Ltd., Dandong, China). Figure 1 shows the particle size
distribution curves of CFBFA, cement, gypsum, and hydrated lime. According to the results,
the specific surface area of gypsum, CFBFA, cement, and hydrated lime were 84.95 m2/kg,
333.6 m2/kg, 213.0 m2/kg, 974.5 m2/kg and the median diameter of gypsum, CFBFA,
cement, and hydrated lime were 49.66 µm, 16.98 µm, 21.89 µm, and 9.663 µm, respectively.

Table 1. Chemical composition of CFBFA, cement, hydrated lime, and gypsum./Wt%.

Material SO3 CaO SiO2 Al2O3 Fe2O3 MgO

CFBFA 3.967 5.762 40.886 34.704 8.053 2.567
Cement 4.029 53.678 21.245 7.298 4.591 6.037

Hydrated Lime 0.647 93.886 0.928 0.956 - 2.511
Gypsum 51.549 43.205 - 0.794 - 3.925

The raw materials, including CFBFA, Portland cement (P.O. 42.5), hydrated lime, and
gypsum, were precisely weighed and proportioned before being introduced into a mixer.
The materials were blended for five minutes and then transferred to a ball mill where
they were subjected to ten minutes of milling. Subsequently, the mixture was processed
in a rolling granulator for granulation. Throughout the process, the water-solid ratio
was controlled to maintain a value of 0.33. All samples were cured at 80 ◦C, 0.4 MPa of
simulated flue gas curing in a high-pressure reactor for one hour. The simulated flue gas
consists of 15% carbon dioxide and 85% nitrogen. At last, the CFBFA composite gravels
were put into the curing room for 28 days. The temperature control value of the curing
room was 20.0 ◦C ± 1.0 ◦C, and the humidity control value was 95% ± 1.5%. The prepared
CFBFA composite gravels have a diameter of about 10 mm.
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2.2. Design of Experiments
2.2.1. Single Factor Variable Experiment

Cement can be used as a binder to assist the preparation of composite gravels. Cement
can also be used as an alkaline activator to stimulate the activity of CFBFA. Adding
hydrated lime to the reaction can further improve the activation of CFBFA by facilitating
the availability of Ca2+. In combination with a high concentration of OH− ions, it can
accelerate the dissolution of CFBFA grains, accelerating the hydration reaction. Gypsum not
only acts as a catalyst in the hydration process of CFBFA, but also forms ettringite. Calcite
is produced when ettringite is exposed to CO2 in simulated flue gas. However, excessive
use of gypsum may decrease the compressive strength of composite gravels as CFBFA is
the primary reactant for both hydration and carbonation reactions, and increased gypsum
content results in less CFBFA available for these reactions. In addition, excessive addition of
gypsum will produce delayed ettringite, resulting in cracking of CFBFA composite gravels.

To investigate the effect of varying amounts of cement, hydrated lime, and gypsum
on the mechanical properties of carbonated CFBFA composite gravels, we conducted
compressive strength tests using different activator dosages.

2.2.2. Multi-Factor Variable Experiment

The purpose of this study was to determine the optimal conditions for enhancing the
compressive strength of carbonated composite materials using BBD experiments while
minimizing the number of required experiments. A total of 17 randomized experiments
were conducted to investigate the effects of multiple factors acting simultaneously. The use
of RSM allowed us to evaluate the interaction of factors and determine the optimal ratio
for achieving the experimental goals. Statistical analysis, including analysis of variance
(ANOVA), was performed on the model to ensure the validity of the results.

The study utilized Design-Expert 13.0 software (StatEase Inc., Minneapolis, MN, USA)
to calculate the coefficients of the quadratic polynomial model and the optimization. To
establish low, middle, and high levels for each variable, values of −1, 0, and 1 were,
respectively, designated. The experimental domains, presented in Table 1 with their BBD
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encoded responses, included 12 factorial points with five replicates around the center point
for error estimation purposes [15].

The experimental variables were transformed into coded values according to Equation (1):

Xi = (xi − x0)/∆xi (i = 1, 2, · · · , k) (1)

Xi denotes the coded value of an independent variable, while xi represents its actual value.
The value of the independent variable at the central point is denoted by x0, and ∆xi is the
magnitude of the step change. The BBD-RSM approach was employed to determine the
connection between input variables and compressive strength by fitting experimental data
with a quadratic multivariate mathematical equation, as expressed in Equation (2):

Y = β0 + ∑ βiXi + ∑ βiiX2
i + ∑ βijXiXj (i, j = 1, 2, · · · , k) (2)

The predicted response, denoted as Y, which can be the compressive strength, was
modeled using several terms, including the offset term β0, linear effect βi, squared effect βii,
and interaction effect βij. Xi and Xj are the coded independent variables used in the model.

Based on the same dataset, ANN methods have been utilized for modeling the com-
pressive strength of composite gravels. The prediction accuracy and performance of the
ANN model are notably influenced by the number of hidden neurons; the optimal number
is determined through trial and error. For this purpose, the number of hidden neurons
varies from a minimum of 1 to a maximum of 20, and the optimal value is selected based on
mean squared error (MSE) and coefficient of determination (R2). The experimental design
employed in the ANN model corresponds to the one used in the BBD-RSM model. To
ensure unbiased results, the dataset is divided into three groups in a randomized manner,
comprising training (75%), validation (15%), and test (15%) data sets. The predictive accu-
racy of the BBD-RSM and ANN models was assessed by root mean squared error (RMSE)
and R2 statistics. The GA approach was employed for the optimization of the ANN model.
Finally, the results of composite gravel formulation optimization based on BBD-RSM and
GA-ANN methods were compared with experiments to evaluate the accuracy of the results.

2.2.3. Mechanism Analysis

In order to examine the impact of various factors on the chemical and physical charac-
teristics of the specimens, XRD, TGA, FTIR, and SEM analyses were conducted. For the
X-ray diffraction analysis, a Rigaku Ultima IV (Instruments was purchased from Rigaku
Electric Instruments (Beijing) Co., Ltd. in Beijing, China) with a CuKα source was used, and
the scan was performed from 5◦ to 70◦ (2θ) with a sampling width of 0.02◦ and a scanning
speed of 3◦/min, while the generator was set at 40 kV/40 mA. The thermogravimetric
results were obtained utilizing NETZSCH STA 449F5(Instruments was purchased from
Brooke (Beijing) Technology Co., Ltd. in Beijing, China), and the heating rate was set
at 10 ◦C/min over a temperature range of room temperature to 900 ◦C. To identify the
functional group characteristics of the samples, a Bruker TENSOR II (Instruments was
purchased from NETZSCH Scientific Instruments Trading (Shanghai) Ltd. in Shanghai,
China) was utilized with a wavenumber range from 400 cm−1 to 4000 cm−1. The SEM
analysis was conducted using JEOL JSM-IT200(Instruments was purchased from JEOL
(BEIJING) Co., Ltd. in Beijing, China).

3. Analyses
3.1. Single-Factor Analyses

In this study, cement, hydrated lime, and gypsum were investigated as influencing
factors, and Figure 2. demonstrates their impact on compressive strength of 28 days. As
the activator admixture increased for each individual factor, i.e., cement, hydrated lime,
and gypsum, the compressive strength showed a steady increase. The highest compressive
strength was achieved when the cement content was 20%, resulting in up to 4.06 MPa.
The activity of CFBFA can be enhanced by calcium tricalcium silicate (C3S) and calcium
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dicalcium silicate (C2S) present in cement. This is due to the hydration of C2S or C3S
in cement, which produces C-S-H and Ca(OH)2 [32]. C3S has a fast reaction rate, and it
hydrates rapidly in water, releasing a large amount of heat, thus promoting the formation of
early mechanical strength. C2S hydration rate is relatively slow, and its hydration reaction
is relatively mild, resulting in slower early mechanical strength formation. C3S contributes
to the rapid formation of early mechanical strength, due to its faster hydration rate, which
is essential for the rapid curing of some cementitious materials. C2S can not show a rapid
increase in strength like C3S in the early stage, but it has a certain contribution to the
long-term mechanical strength development of cementitious materials. The hydration
products of C3S and C2S mainly include C-S-H gels and calcium hydroxide (CH). But the
hydration products of C2S form relatively slowly. Moreover, when tricalcium aluminate
(C3A) in cement reacts with hydrating anhydrite in CFBFA, it forms ettringite. When the
hydrated lime content is 10%, the compressive strength can reach 4.01MPa. Hydrated
lime can break Si-O and Al-O bonds inside CFBFA, generate more C-(A)S-H gel, fill the
pore structure inside the concrete, and increase the compressive strength of composite
gravels. The highest compressive strength of only up to 1.51 MPa was achieved when the
gypsum content was 20%. Gypsum has the ability to promote the hydration of volcanic
ash-like materials. However, it is a neutral material. As a result, the volcanic ash activity of
CFBFA may not be fully released. This can lead to a relatively small increase in intensity. In
this system, CO2 reacts with the hydration products, including Ca(OH)2, C-(A)S-H and
ettringite, to form calcite through carbonation.
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3.2. Modeling by BBD-RSM

The BBD method was utilized in this study, as outlined in Table 2, to acquire data
and assist in process modeling. BBD is a response surface methodology that is based on
the outcomes of a single-factor impact analysis. Each factor, including cement, hydrated
lime, and gypsum, was allocated three different levels (−1, 0, and 1), and the actual
variable levels were then established. This resulted in the formation of 17 experimental test
formulations to examine the impact of each factor at the three different levels. Compressive
strength models were employed to forecast the results, which were then compared to the
actual values. Residual analysis was conducted to validate any discrepancies between the
predicted and actual values. Table 2 presents the predicted and actual results for all the
response variables analyzed in this investigation.
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Table 2. Comparison of predicted and experimental results for RSM and ANN models.

Run
Real Variable Level Compressive Strength/MPa

Cement/% Hydrated Lime/% Gypsum/% Actual RSM Error ANN Error

1 15 5 10 12.11 12.34 0.0186 12.11 0
2 15 7.5 15 13.98 13.54 0.0315 13.71 0.2677
3 15 7.5 15 13.86 13.54 0.0231 13.71 0.1477
4 20 7.5 20 12.2 12.21 0.0006 12.20 0
5 15 7.5 15 13.26 13.54 0.0211 13.71 0.4523
6 15 10 20 10.58 10.36 0.0213 10.58 0
7 10 7.5 20 9.32 9.44 0.0126 9.32 0
8 10 5 15 11.32 11.10 0.0192 11.40 0.0768
9 15 5 20 11.28 11.38 0.0089 11.28 0
10 20 7.5 10 14.66 14.54 0.0080 14.66 0
11 20 5 15 14.46 14.35 0.0074 14.46 0
12 10 10 15 10.46 10.57 0.0103 10.46 0
13 20 10 15 14.01 14.23 0.0155 14.01 0
14 15 10 10 12.8 12.70 0.0078 12.80 0
15 15 7.5 15 13.29 13.54 0.0188 13.71 0.4223
16 15 7.5 15 13.31 13.54 0.0173 13.71 0.4023
17 10 7.5 10 10.41 10.40 0.0007 10.41 0

Figure 3 showcases both the predicted and actual compressive strength values. The
color of the color point is determined by the compressive strength value. The warmer the
color is, the larger the value is, and the cooler the color is, the smaller the value is. Based on
the outcomes presented in Table 2, there is a high level of consistency between the predicted
and actual compressive strength values within the designated range. These results serve
as evidence of the BBD method’s capacity to capture the influence of different factors on
compressive strength. Additionally, a regression analysis was conducted, resulting in the
creation of a second-order polynomial equation model for predicting compressive strength,
represented by Equation (3).

Y = −15.18875 + 1.103X1 + 1.347X2 + 1.9065X3 + 0.0082X1X2

−0.0137X1X3 − 0.0278X2X3 − 0.02045X2
1 − 0.0746X2

2 − 0.05525X2
3

(3)
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In the equation, Y represents the predicted compressive strength, while X1, X2, and
X3 denote the coded values for cement, hydrated lime, and gypsum, respectively. Figure 3
shows both the predicted and actual compressive strength values. Figure 3a indicates that
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linear relationship between actual and predicted response variables. The computed values
from the predictive model closely resembled the actual test values, indicating that the
compressive strength prediction models accurately predicted the actual value. Figure 3b
showcases the corresponding residual plots, revealing the even distribution of residuals
and predicted values within a specific range for the compressive strength prediction models,
which further supports the precision of the models.

3.3. Analysising

To assess the fitness of the compressive strength equation, an ANOVA was conducted,
and the results are presented in Table 3. The model’s F-value was determined to be
42.55 (p < 0.0001), indicating that the model is dependable and a good fit throughout
the regression zone. The p-value verifies the significance of the variables, reflecting the
strength of the interplay among independent variables. A smaller p-value indicates greater
significance of the corresponding variable. In this study, the p-values of X1 and X3 were
less than 0.05 (Table 3), indicating that cement and gypsum have a significant impact on
compressive strength. ANOVA (Table 3) revealed that the coding parameters X12, X22, and
X32 were significant parameters, i.e., (p > F) < 0.05. The coefficient determination of R2 was
determined to be 0.9820, and the adjusted coefficient determination (R2

adj) was calculated
as 0.96. These values signify the high significance of the model.

Table 3. ANOVA analysis of the quadratic response surface model for compressive strength.

Variable
Statistical Analysis

Sum of Squares df Mean Square F-Value p-Value

Model 41.39 9 4.60 42.55 <0.0001

X1 (Cement) 23.87 1 23.87 220.91 <0.0001

X2 (Hydrated Lime) 0.22 1 0.22 2.02 0.1987

X3 (Gypsum) 5.45 1 5.45 50.38 0.0002

X1 X2 0.04 1 0.04 0.39 0.5527

X1 X3 0.47 1 0.47 4.34 0.0757

X2 X3 0.48 1 0.48 4.47 0.0723

X1
2 1.10 1 1.10 10.18 0.0153

X2
2 0.92 1 0.92 8.47 0.0227

X3
2 8.03 1 8.03 74.33 <0.0001

Residual 0.76 7 0.11

Lack of fit 0.27 3 0.09 0.73 0.5874

Pure error 0.49 4 0.12

Cor Total 42.14 16

R2 = 0.98; R2
adj = 0.96; R2

pred = 0.88.

The ADEQ accuracy, which represents the ratio of effective signal to noise, was found
to be 20.2472, indicating that the model is dependable and has an adequate signal response
design. Furthermore, R2

adj − R2
pred = 0.0784 < 0.2, while C.V. was 2.64% < 10%, demonstrat-

ing high reliability and accuracy in this experiment. Referring to the predictive model for
compressive strength, the predicted maximum attained was 14.992 MPa, achieved through
the optimal composition of cement: hydrated lime: gypsum = 19.94%: 7.748%: 13.118%.

The response surface analysis method employs contour plots to provide valuable
insight into the significance of the interaction between different factors. In particular, an
elliptical contour shape indicates a significant interaction between factors, while a circular
shape implies an insignificant interaction. Based on the contour plot, it is evident that the
interaction between cement content and hydrated lime content is significant, while the
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interaction between cement content and gypsum content, as well as between hydrated lime
and gypsum content, is less significant. The color of the area in response surface analysis
and contour plots of Figures 4–6 is determined by the compressive strength value, and the
warmer the color, the larger the value.

Figure 4 shows response surface and contour plots that demonstrate the influence of
cement and hydrated lime contents on compressive strength, with 15% gypsum content.
The plots reveal that the addition of hydrated lime initially enhances the compressive
strength of the composite gravels, up to a peak value at around 7.5%. However, further
increases in hydrated lime content leads to a decline in compressive strength. On the other
hand, cement content has a linear effect on the response, with an increase in cement content
resulting in a sharp rise in compressive strength.

The Ca(OH)2 produced by the hydration of cement will react with CFBFA in a volcanic
ash reaction, called the second hydration [14]. Sufficient Ca(OH)2 is crucial for this reaction
to occur, and adding hydrated lime helps address the issue of insufficient Ca(OH)2 in the
cementitious system. However, a competitive relationship emerges between the volcanic
ash reaction and cement hydration, with the presence of hydrated lime inhibiting cement
hydration. Consequently, there exists an optimal dosage of additional hydrated lime. Under
this optimal dosage, a balance is achieved between the pozzolanic reaction and cement
hydration, leading to a higher content of hydration products. As a result, the composite
gravels exhibit a denser microstructure and improved mechanical properties. The main
component of cement C2S,C3S hydration product is Ca(OH)2; it is the raw material of
carbonization reaction. C-S-H gel produced by pozzolanic reaction between hydrated lime
and CFBFA is carbonized material. The sulfur contained in CFBFA will form ettringite
with the Al-containing substance, which is also carbonized raw material. Ca(OH)2, C-S-H
gel, and ettringite can carbonize with CO2 to produce carbonizing products such as calcite.
Moreover, the addition of gypsum can promote the carbonation depth and increase the
adsorption rate of CO2. Carbonation can refine the pore structure and increase mechanical
strength through the precipitation of calcite in the pores of the cementitious material.
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Upon examination of the contour plot in Figure 5, it can be observed that there is
a distinct area where the optimal compressive strength can be achieved. This area is
characterized by a hydrated lime content between 7% and 8% and a gypsum content
between 12% and 16%, where the maximum compressive strength is attained.

CFBFA, when activated solely by Ca(OH)2, primarily produces hydration products
such as C-(A)-S-H gels. However, when CFBFA is co-activated by hydrated lime and
gypsum, it can generate ettringite in the cementitious material. The presence of ettringite
further contributes to the improvement of the mechanical properties of the composite
gravels. However, excessive hydrated lime addition can result in an counter alkali reaction.
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Excessive amounts of gypsum can lead to the formation of delay ettringite, causing volume
expansion and composite gravels cracking. Thus, there exists an optimal addition ratio of
gypsum and hydrated lime to avoid these issues.
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hydrated lime at 15% cement level on compressive strength.

The response surface and contour plots presented in Figure 6 provide insights into the
influence of cement and gypsum contents on compressive strength, with a fixed hydrated
lime content of 7.5%. The results indicate that an increase in cement content initially
enhanced the compressive strength, while a decrease in gypsum content had a similar
effect. Nevertheless, as the cement content continued to rise and gypsum content continued
to decrease, the rate of improvement in compressive strength gradually diminished.

Gypsum has a catalytic effect on the hydration of cement and can also play a role
in retarding the setting of C3A in cement. Gypsum also reacts with Ca(OH)2 and the
aluminum-containing phase produced by cement hydration to produce ettringite [33]. By
growing inside the cementitious material, ettringite continuously fill the pores, improve
the material compactness and improve the mechanical properties of the composite gravels.
However, excess gypsum can lead to the production of excess ettringite, resulting in
swelling and cracking. Therefore, cement and gypsum have an optimal ratio to ensure that
the gypsum has the best activation effect.
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Figure 6. Response surface analysis plot and contour plot revealing the impact of cement and gypsum
at 7.5% hydrated lime level on compressive strength.
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The above analysis can conclude that pairwise activators have synergistic effects.
However, activation by only two activators is not enough. CFBFA activated only by
cement and hydrated lime produced less ettringite. CFBFA activated only by cement and
gypsum cannot be fully activated. CFBFA activated only by lime and gypsum lacks binders.
Cement is not only an activator, but also a binder. Therefore, triple activator is better than
double activator.

3.4. Modeling by GA-ANN

In this study, an intelligent algorithmic model was developed to optimize the propor-
tioning of strength and achieve precise predictions. The data set presented in Table 2 was
modeled using the ANN method. Topology is a crucial hyperparameter in neural networks,
and it plays a significant role in network performance [34]. Determining the optimal num-
ber of hidden layer neurons is one of the critical challenges in building an artificial neural
network topology [35]. To address this challenge, the number of hidden neurons was varied
from 1 to 20 to identify the optimal number of neurons that yield the lowest Mean Squared
Error (MSE) value and R-squared (R2) value closest to 1. These findings indicate that the
model with 10 hidden neurons accurately represents the nonlinear relationship between
each influencing factor and the compressive strength and has an outstanding predictive
effect on the composite gravel strength.

The most appropriate neural network model architecture was determined to be the 3-
10-1 topology, as illustrated in Figure 7. The accuracy of the model was evaluated using R2

values in Figure 8. The results demonstrated excellent accuracy with values of 0.9932. These
results suggest a strong correlation between the predicted and experimental compressive
strength, indicating the high accuracy of the model in predicting experimental data.
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Figure 7. Visualization of Artificial Neural Network (ANN) topology.

GA is a widely used computational model for finding optimal solutions. It is based on
the principles of biological evolution and simulates natural selection and inheritance. In this
study, the output of the trained artificial neural network, which represents the compressive
strength of the composite gravel, is utilized as the fitness function of the genetic algorithm.
The genetic algorithm optimizes the addition conditions of cement, hydrated lime, and
gypsum by converging towards the individual with the highest fitness value, i.e., the
individual with the highest compressive strength (refer to Figure 9). Through optimization
of the addition conditions of cement, hydrated lime, and gypsum, the compressive strength
of the composite gravel was increased to 14.9 MPa.
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3.5. Comparative Analysis of BBD-RSM and GA-ANN Techniques

The coefficient of determination (R2) is a widely used statistical measure to assess
the quality of predictions. It quantifies how well a linear model fits the observed data.
As can be seen from Table 4, the R2 between the predicted and experimental values of
the RSM model and ANN model are 0.9820 and 0.9932, respectively. The ANN model



Processes 2024, 12, 289 13 of 20

gives lower predicted RMSE values compared to the RSM model [36]. It is confirmed
that the error bias of ANN prediction is smaller. The results demonstrate that the ANN
model yields predicted values that exhibit a higher degree of proximity to the experimental
values. The GA-ANN and BBD-RSM models exhibit relative errors of 1.22% and 2.76%,
respectively, in predicting the compressive strength of composite gravels. These results
indicate that GA-ANN has higher accuracy and reliability in modeling and optimizing
the parameter interactions associated with the compressive strength of composite gravels.
Furthermore, each model possesses its unique advantages. The RSM illustrates how factors
interact to influence the compressive strength of composite gravels and offers graphical
visualizations to interpret the relationship between the independent variables and the
response values. Moreover, the method presents the advantage of requiring a limited
number of experiments to yield substantial information, resulting in time and cost savings.
However, it is constrained by its ability to provide solely first- or second-order polynomial
models. In contrast, artificial neural networks have the capability to model nonlinear
relationships of any form. As a black-box model, they do not rely on experimental design
to establish explicit relationships. Consequently, artificial neural networks overcome the
challenges associated with experimental design and offer a more flexible approach.

Table 4. Comparative analysis of experimental validation and predicted results between BBD-RSM
and GA-ANN techniques.

Variables
BBD-RSM GA-ANN

Predicted Contents Experimental Contents Predicted Contents Experimental Contents

Cement 19.94 20 20 20
Hydrated Lime 7.748 7.7 5.648 5.6

Gypsum 13.118 13 12.817 12.8
Compressive Strength 14.992 14.59 14.9 14.72

Relative Error (%) 2.76% 1.22%
R2 0.9820 0.9932

RMSE 0.21 0.19

3.6. Internal Mechanism Analysis

In order to gain a more comprehensive understanding of the factors that affect the
compressive strength of composite gravels, analyses were conducted on the chemical and
physical characteristics of the control group (pure CFBFA), single-factor groups, as well as
the optimization group. The results of the analysis showed that the optimization group
exhibited the most significant enhancements in compressive strength.

3.6.1. XRD Analysis

Figure 10 shows the results of XRD analysis. The X-ray diffraction (XRD) spectrum
indicates that the pure CFBFA group produced few hydration products due to the weak
alkalinity. Since the C-S-H gel structure is amorphous, no diffraction peak was observed in
the XRD pattern. The characteristic peaks of quartz and anhydrite in CFBFA are observed.
The XRD analysis of the 20% gypsum group closely resembles that of the control group,
with a distinct gypsum peak observed. This suggests that the majority of gypsum does not
actively participate in the hydration reaction. This can be attributed to the neutral nature of
gypsum as an activator, resulting in limited excitation effects. The presence of calcite peaks
in both groups is attributed to the carbonation reaction of CaO in the CFBFA, as indicated
in Formulas (4) and (12).

In the 20% cement group, the alkaline activator can promote anhydrite hydration to
generate gypsum, as shown in Formula (5). The reaction between C3A in cement and gypsum
led to the formation of ettringite, as shown in the Formula (6) [37]. C2S and C3S in cement
produce C-S-H gel and Ca(OH)2 through hydration, as shown in Formulas (7) and (8). The
Ca(OH)2 reacts with Al2O3(active) and gypsum to form ettringite, as shown in Formula (9).
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The 10% hydrated lime group will also produce the reaction in Formula (9) [38]. In the
optimization group, cement, hydrated lime, and gypsum showed synergistic effects. The
disappearance of the anhydrite peak suggests that the addition of composite activators
facilitated the hydration of anhydrite, as indicated in Formula (5). Cement undergoes
hydration reaction with CFBFA. Hydrated lime is introduced to increase the alkalinity,
effectively supplementing the required Ca(OH)2 for pozzolanic reactions. Gypsum con-
tributes to the stimulation of reactions. Gypsum also provides SO4

2− to form ettringite.
The figure shows that the peak value of ettringite increased significantly. The combination
of these constituents synergistically influences the hydration and carbonation reaction in
the cementitious system, contributing to its improved performance and properties. Calcite
can be generated from C2S and C3S in cement, as shown in Formulas (10) and (11). Calcite
is mainly generated from the hydration products Ca(OH)2, C-S-H gel and ettringite(AFt),
as shown in Formulas (12)–(14) [39]. The peak of calcite increased significantly since a large
amount of hydration products can be produced in the optimization group.

CaO + H2O → Ca(OH)2 (4)

CaSO4 + 2H2O → CaSO4 · 2H2O (5)

3CaO · Al2O3(C3A) + 3CaSO4·H2O + 26H2O → 3CaO · Al2O3 · 3CaSO4·32H2O(AFt) (6)

C3S + H2O → C − S − H + Ca(OH)2 (7)

C2S + H2O → C − S − H + Ca(OH)2 (8)

3Ca(OH)2 + Al2O3(active) + 3CaSO4 · 2H2O + 23H2O → 3CaO · Al2O3 · 3CaSO4·32H2O(AFt) (9)

3CaO · SiO2 + 3CO2 + H2O → 3CaCO3 + SiO2 · nH2O (10)

2CaO · SiO2 + 2CO2 + H2O → 2CaCO3 + SiO2 · nH2O (11)

Ca
(

OH)2 + CO2−
3 + 2H+ → CaCO3 + 2H2O (12)

3CaO · 2SiO2 · 3H2O(C − S − H) + CO2−
3 + H+ → 3CaCO3 · 2SiO2 · 3H2O (13)

3CaO · Al2O3 · 3CaSO4·32H2O(AFt) + 3CO2 + H2O → 3CaCO3 + 3CaSO4 + Al2O3 · nH2O (14)
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3.6.2. TG-DTG Analysis

The evaporation of interlayer water occurs at temperatures below 240 ◦C. Hydroxyl
groups within the structure undergo a loss between 240 ◦C and 500 ◦C. Mass loss between
500 ◦C and 800 ◦C is mainly attributed to decarburization of CaCO3, while the losses above
800 ◦C are primarily caused by the loss of SO3 in gypsum [40].

Figure 11 presents the TG-DTG analysis results of the specimen after 28 days of curing.
Hydration products were formed in the cement, hydrated lime, and optimization groups,
while almost no hydration products were formed in the control and gypsum groups.
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The carbon content of the control group, 20% gypsum, 10% hydrated lime, 20%
cement, and optimization group after carbonation was 1.91%, 1.98%, 3.01%, 3.53%, and
3.61%, respectively. The combined excitation promoted the carbonation of CFBFA, with the
relative amount of CO2 absorbed by CFBFA in the five samples being optimization group >
20% cement > 10% hydrated lime > 20% gypsum > control group. This verifies the results
of XRD analysis.

3.6.3. FTIR Analysis

Figure 12 shows the results of the FTIR analysis. FTIR analysis confirmed and com-
plemented the results of XRD analysis. The CFBFA sample exhibits an absorption peak
at 474 cm−1 which can be attributed to the Si-O-Si bending vibration of quartz [35]. The
strong and broad band observed at 781 cm−1 is associated with the symmetric stretching vi-
bration of Si-O-Si and AlO4 in quartz, present in the CFBFA [41]. The symmetric stretching
vibrations of Al-O-Si are observed at 561 cm−1 and are attributed to biased kaolinite in the
CFBFA [42]. However, in the optimization group, these peaks are significantly weakened
due to the breakage of their chemical bonds by ternary activator.

The band observed between 3408 and 3545 cm−1 corresponds to the stretch band in
the water molecule of the hydration product [43]. It can be seen that each group has some
hydration, but the control group exhibits the weakest hydration due to the weak pozzolanic
activity of the unexcited CFBFA.

The absorption peaks at 874 cm−1 and 1420–1480 cm−1 correspond to calcite bending
vibrations in CO3

2− due to composite gravel carbonation, with the latter peak indicating
C-O symmetric stretching vibrations. The cement and hydrated lime groups exhibit absorp-
tion peaks at 3620 cm−1 due to the hydroxyl groups in Ca(OH)2. The optimal and gypsum
groups exhibit absorption peaks at 1600 cm−1, representing the stretching and bending
vibration bands of water molecules in gypsum [44]. Furthermore, the absorption peak
observed only at 1686 cm−1 represents water of crystallization in the ettringite, indicating
that the optimization group and gypsum group produces more ettringite.
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The presence of Q3 and Q4 units are possible in C–S–H gels in carbonated sam-
ples [45–47]. The bands at 1110 cm−1 and 1143 cm−1 are typical bands of Q3 and Q4 sites
assigned to C-S-H with higher SiO2 content [48].

The absorption peaks observed at 680 cm−1 correspond to the in-plane bending
vibrations of SO4

2− in anhydrite. The figure shows that unhydrated anhydrite is still
present in the cementitious material excited by a single activator. The hydration of anhydrite
can be stimulated by the ternary activator. In the optimization group, the characteristic
absorption peak of the AlO6 octahedron in the monocarbonate, ettringite is observed at
669 cm−1 [49]. This also proves that the optimization group produces more ettringite.

3.6.4. Microstructural Analysis

Figure 13 displays the scanning electron microscopy (SEM) images of the control
group, 20% cement group, 10% hydrated lime group, 20% gypsum group, and optimization
group captured at 5000× magnification and are depicted in Figure 13. Sample group
names are listed in the top left corner of the picture. Figure 13a shows a SEM plot of the
CFBFA revealing a large number of CFBFA particles with rough morphology and poor
microstructure. The addition of 20% gypsum to the CFBFA (Figure 13b) leads to the release
of the pozzolanic activity of CFBFA slightly, resulting in the formation of a small amount of
C-S-H gel [12]; Figure 13c,d illustrate the SEM images captured after adding 20% cement
and 10% hydrated lime, respectively, where a large amount of C-S-H gel and a small amount
of ettringite are produced. Figure 13e shows the SEM image of the optimization group
where the mixture of cement, hydrated lime, and gypsum significantly excites CFBFA
activity to generate a large number of hydration products, leading to the formation of a
dense and optimized pore structure with interwoven flocculent C-S-H gels and needle-rod
ettringite, which is consistent with the compressive strength test results.
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4. Conclusions

1. BBD-RSM and GA-ANN can be employed for statistical modeling and optimization of
the compressive strength of composite gravels. These two numerical analysis methods
have their own advantages. ANN predicts more accurately than RSM, with R2 of
0.9932 and 0.9820, respectively.

2. The RSM model can be applied to describe the interaction effect between the pairwise
activators. CFBFA activated only by cement and lime produced less ettringite. CFBFA
activated only by cement and gypsum cannot be fully activated. CFBFA activated
only by hydrated lime and gypsum lacks binders. Binary activator is not as effective
as the ternary activator.

3. The utilization of XRD and FTIR characterization techniques revealed that the com-
bined action of the three activators resulted in the generation of abundant hydration
products. Cement undergoes pozzolanic reaction with CFBFA. The alkalinity of ce-
ment is not enough to activate large amounts of CFBFA. Hydrated lime is introduced
to increase the alkalinity, effectively supplementing the required Ca(OH)2 for poz-
zolanic reactions. Gypsum provides SO4

2− to form ettringite. The ternary activator
synergistically influences the overall hydration and carbonation transformations in
the cementitious system, contributing to its improved performance and properties.
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4. The utilization of TG-DTG characterization techniques revealed that the CO2 curing
process resulted in the generation of significant amounts of calcite, improving the
mechanical properties of the material. The optimization group generated the most
hydration products and carbonation products.

5. The application of SEM characterization techniques unveiled that the synergistic action
of the ternary activator led to a strong activation of CFBFA, resulting in the needle
and rod-shaped ettringite intertwined with a substantial quantity of flocculent C-S-H
gel. The existence of this interwoven structure makes the microstructure compact and
the pore structure optimized. These characterization findings are consistent with the
experimental results of uniaxial unconfined compressive strength.
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