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Abstract: The utilization of auxiliary tools employing ultrasonic high-frequency vibration to enhance
rock breaking efficiency holds significant potential for application in underground hard rock exca-
vation engineering. To investigate the failure mechanism of rocks under high frequency ultrasonic
vibration load, this study employs particle flow software PFC2D for numerical simulation. By in-
corporating boundary conditions from actual ultrasonic vibration rock breaking experiments and
utilizing a parallel bond model to construct the rock, we analyze the deformation, damage, fracture,
and energy evolution process of hard rocks subjected to vibrational loads. The results demonstrate
that the maximum displacement in hard rocks increases nearly linearly with vibrations until reaching
5.0199 × 10−3 m, after which it plateaus. Additionally, macroscopic fissures formed during rock
failure exhibit an X-shaped pattern. Furthermore, based on our model, we examine the impact of
amplitude variation on hard rocks with an equal number of cycles (5,000,000 cycles). Under ultrasonic
vibration loads, amplitude influences the total input energy within the rock system. While increasing
amplitude does not alter maximum deformation in rocks, it enhances fragmentation degree, fracture
degree and energy dissipation coefficient—thereby improving rock breaking efficiency.

Keywords: ultrasonic vibration load; particle flow; parallel bonding model; energy dissipation

1. Introduction

Energy serves as a pivotal foundation for societal advancement. As shallow strata
resources gradually deplete, the pursuit of resource exploration and development is pro-
gressively shifting towards deeper, more resilient, and intricate strata. In China, for instance,
coal mining operations have reached depths exceeding 500 m. Currently employed rock
fragmentation techniques in coal mining encompass mechanical methods and drilling
with blasting approaches. However, the conventional mechanical method is increasingly
inadequate for tackling hard strata while the drilling and blasting method exhibits certain
drawbacks such as compromised safety measures and limited automation feasibility. Conse-
quently, there arises an imperative need to cultivate novel rock fragmentation technologies
that are both efficient and secure.

Compared to the conventional underground hard rock crushing method, high-frequency
vibration rock breaking technology offers several advantages: Firstly, it can be seamlessly
integrated with mechanical equipment to facilitate automation. Secondly, the impact of
high-frequency vibration significantly reduces the time required for rock fatigue damage,
thereby alleviating the fragmentation difficulty associated with hard rocks. Thirdly, within
a specific range, the vibrational load induces resonance in hard rocks and leads to severe
internal deformation during this resonant state, further reducing the challenges encoun-
tered in crushing hard rocks. The novel application of ultrasonic vibration rock technology,
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characterized by its low power consumption and efficient rock fragmentation, is intro-
duced for the first time in space sampling [1–3]. The first ultrasonic rotary impact drilling
test platform was constructed by Wiercigroch, which, in combination with testing and
theoretical analysis, demonstrated the effective enhancement of rock breaking efficiency
through the introduction of ultrasonic vibration into traditional drilling methods [4]. These
investigations offer novel insights for the efficient fragmentation of deep hard rock.

In recent years, extensive research has been conducted on the mechanism of rock
deformation damage and fracture under cyclic loading. Wang performed uniaxial cyclic
compression tests at different frequencies on coal samples and observed that the elastic
modulus of coal exhibited an initial sharp increase followed by a subsequent sharp decrease
with increasing number of cyclic loading cycles [5]. Liu investigated the mechanical and
failure characteristics of coal subjected to cyclic load under high stress and discovered a
positive correlation between compressive strength of specimens and cyclic loading rate, as
well as identified tensile failure as the microfailure mechanism during cyclic loading [6].
Vaneghi determined that higher load amplitudes resulted in greater degrees of strength
degradation in hard rock, while also observing more localized fractures compared to static
loading conditions [7]. Erarslan conducted a study on the tensile strength of limestone
under cyclic loading and observed a 30% decrease in rock’s tensile strength under sinusoidal
loading. Furthermore, intergranular fracture and transgranular fracture were identified
within the rock [8]. Liu investigated the deformation and failure characteristics of rocks with
different lithologies subjected to cyclic loading, revealing that sandstone exhibited superior
energy storage capacity and experienced the highest degree of damage [9]. Fan, utilizing
real-time CT scanning technology, analyzed the mesoscopic damage evolution features
of granite under cyclic load. It was discovered that rock porosity remained unaffected
when subjected to cyclic stress lower than 46.04% of its uniaxial compressive strength [10].
Erarslan examined the response characteristics of rock fracture resistance to cyclic load,
observing a maximum reduction in static fracture toughness (KIC) by 27% under sinusoidal
cyclic load [11].

The cyclic load frequencies investigated in the aforementioned studies are all below
100 Hz, and the mechanical properties of rocks under high-frequency vibration differ sig-
nificantly from those under low-frequency vibration [12]. Currently, there is a scarcity of
relevant research on rock fragmentation through high-frequency vibration. Some scholars
have independently developed a high-frequency vibration testing platform to investigate
the deformation and failure characteristics of rocks subjected to ultrasonic vibrations using
experimental and numerical simulation approaches. Li utilized the finite element method
to simulate the rock intrusion process of a cylindrical indenter under high-frequency vibra-
tion [13]. The comprehensive analysis of deformation displacement field and stress field of
rocks was conducted by considering various parameters such as amplitude, frequency, load
surface position, etc. Yin investigated the mechanical properties of rocks under static loads
through mechanical experiments and discovered that optimal static load could maximize
the damage degree of rocks [14]. Zhou monitored strain in granite samples subjected to
ultrasonic vibration and categorized rock deformation into elastic deformation, plastic
deformation, and damage stages; it was also pointed out that when the vibration frequency
approached natural frequency of rock, maximum displacement amplitude on rock surface
was achieved [15]. In our previous studies [16,17], we performed uniaxial compressive tests
and nuclear magnetic resonance tests which revealed that ultrasonic vibrations facilitated
initiation and expansion of micro-pores in rocks while increasing static load expanded
range for rock rupture.

Currently, the majority of studies primarily focus on investigating the macroscopic
mechanical properties of rocks under ultrasonic vibration excitation. However, a significant
challenge arises due to the inherent heterogeneity of rock materials, resulting in substantial
deviations in test results even when sample size matches the vibration parameters of the
testing system. Moreover, existing damage measurement methods like acoustic emission
fail to provide real-time monitoring of crack growth throughout the entire excitation pro-
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cess. Consequently, there is a scarcity of research examining rock damage and fracture
processes during ultrasonic vibration from an energy perspective. Building upon previ-
ous experimental studies, this paper employs PFC2D particle flow program to construct
numerical simulations for sandstone and meticulously analyzes the evolution patterns
of rock displacement field, force chain field, fracture field as well as energy dissipation
characteristics under ultrasonic vibration load. The aim is to elucidate how amplitude
influences rock damage and failure mechanisms

2. Numerical Simulation of Rock Breaking by Ultrasonic Vibration
2.1. Establishment of the Particle Flow Model

The present study establishes a numerical model of rock using PFC2D 5.0 simulation
software, defining it as a spherical particle aggregate based on the particle flow theory [18].
To ensure both accuracy and consideration of actual rock particle size, the particle radius
range is set at 0.5–0.35 mm in this investigation, as shown in Figure 1. By incorporating
a contact model between adjacent particles, the constitutive characteristics of the rock
are simulated, enabling accurate representation of its macroscopic mechanical properties
including elastic deformation, tensile resistance, and shear resistance. The correlation study
in pfc2d [19,20] demonstrates that the mechanical properties of simulated rock materials
are better represented by the parallel bond model, as depicted in the Figure 2. This model
facilitates force transfer between adjacent particles within a radius r, and can be expressed
through the following equations for normal stress σ and tangential stress τ:

σ =
−Fi

n

A
(1)

τ =

∣∣∣Fi
s
∣∣∣

A
(2)

where A is the cross-sectional area of the bond, Fi
n and represents tangential force and nor-

mal force respectively. When the tangential and normal stresses surpass the corresponding
bond strength, shear cracks and tensile fractures occur due to shearing and tension failure
of the bonds.
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Figure 2. Parallel bond model.

In this study, sandstone samples of standard dimensions (diameter 50 mm, height
100 mm) were utilized as prototypes, and a particle flow model was constructed using
a parallel bonding approach. Prior to the model calculation, it was essential to calibrate
the parameters based on the macroscopic mechanical characteristics of the rock through
an iterative trial and error method. The contact modulus, parallel bond modulus, and
microscopic stiffness ratio of the numerical model were adjusted repeatedly until the
simulated stress-strain curve and rock failure mode closely matched those obtained from
laboratory tests. Following parameter calibration, a comparison between the stress-strain
curve obtained from uniaxial compression testing and numerical simulation was conducted
alongside fracture modes (Figure 3). The mesoscopic parameters employed in this model
are presented in Table 1.
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Figure 3. (a) Comparison of stress-strain curves; (b) Failure mode comparison.
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Table 1. Mesoscopic parameters of numerical models.

Particle density/(kg/m3) Particle stiffness ratio parallel bond modulus/(GPa)

2700 1.5 4.5

Particle contact modulus (GPa) Friction coefficient parallel bond stiffness ratio

4.8 0.5 2.5

Tangential bond strength (MPa) Normal bond strength (MPa) parallel bond radius factor

45 37 1

When the rock is subjected to simulated uniaxial stress, ultrasonic high-frequency
vibration is applied to stimulate the rock. The stimulation is achieved by removing the
lateral walls and introducing sinusoidal velocity to the upper surface of the rock sample
using a driver. In actual ultrasonic vibration testing, forced vibrations of identical frequency
are generated on the excitation surface, and the displacement calculation formula for the
loading surface can be expressed as follows:

X = A · sin(2π f · t) (3)

The amplitude A, vibration frequency f, and time t are denoted as variables in this
study. In the simulation presented in this paper, a fixed vibration frequency of 20 kHz
(f ) is employed, while the velocity boundary of the load surface can be determined by
differentiating time using the aforementioned formula:

v =
dX
dt

= A · 2π f · cos(2π f · t) (4)

2.2. Mesoscopic Energy Theory of Rock

The process of rock deformation and fracture under external load is invariably accom-
panied by the accumulation and dissipation of energy. In the initial stage, continuous input
of external energy is transformed into strain energy within the rock system, constituting the
energy storage stage. Subsequently, when internal damage occurs in the rock, stored strain
energy is released, marking the onset of the energy dissipation stage. The dissipated energy
facilitates internal damage and promotes crack initiation and propagation. Assuming no
heat exchange between the rock system and external load, we can express the total input
energy Wt to the rock as follows:

Wt = We + Wd + Wk (5)

The process of rock deformation and fracture under external load is always accompa-
nied by the accumulation and dissipation of energy. In the initial stage, continuous input
of external energy is transformed into strain energy within the rock system, known as the
energy storage stage. Subsequently, when damage occurs inside the rock, stored strain
energy is released in what is referred to as the energy dissipation stage. This dissipated
energy contributes to internal rock damage and facilitates crack initiation and propagation.
Assuming no heat exchange between the rock system and external load, total input energy
Wt can be expressed as follows: Where We represents total strain energy, Wd represents
total dissipated energy, and Wk represents kinetic energy. By utilizing PFC2D 5.0 software
for simulating ultrasonic vibration excitation on rocks, real-time tracking of changes in
internal energies can be achieved. According to discrete element-based theory on tracking
energies, expressions for total strain and dissipated energies are given below:{

We = Wpb + Wc
Wd = W f + Wβ

(6)
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The total strain energy comprises the parallel bond strain energy (Wpb) and particle
strain energy (Wc), while the total dissipative energy plasticity encompasses deformation
energy (Ws) and frictional energy (Wf). The calculation equation for each type of energy is
presented as follows:

Wt = ∑
Nw

(Fi∆Ui + M3∆θ3)

Wk =
1
2 ∑

Np
∑

i=1
ς(i)υ

2
(i)

Wpb = 1
2 ∑

Npb

(∣∣∣Fi
n
∣∣∣2/

(
Akn

)
+

∣∣∣Fi
s
∣∣∣2/

(
Aks

)
+ M3

2/Ikn

)
Wc =

1
2 ∑

Nc

(∣∣∣Fi
n
∣∣∣2/kn +

∣∣∣Fi
s
∣∣∣2/ks

)
W f ←W f − ∑

Nc

(
Fi

s(∆Ui
s)slip

)
(7)

where Np, Npb, Nc, and Nw represent the number of particles, parallel bonds, contact
numbers, and wall numbers in the model respectively, ς(i) and υ(i) represent the mass and

volume of the ith particle respectively; ∆Ui and (∆Ui
s)slip denote particle displacement and

relative frictional displacement respectively; ∆θ3 represents the particle angle. kn and ks
stand for normal stiffness and tangential stiffness respectively; I denotes moment of inertia
while A represents cross-sectional area of parallel bond.

3. Results
3.1. Deformation and Displacement Characteristics of Hard Rock under Ultrasonic Vibration Load

The evolution law of the rock displacement distribution cloud map is illustrated
in Figure 4. Under the influence of high-frequency ultrasonic vibration, the internal
displacement of the rock exhibits a distinct stratification effect, with a gradual decay
in displacement values from the load surface to the bottom of the rock. From a statistical
perspective, both maximum and minimum displacements vary with cycle numbers, as
depicted in the Figure 5. Once reaching a maximum displacement value of 5.0199 × 10−3,
it reaches a plateau indicating stability without further increase. A similar trend can be
observed for minimum displacements, where they cease to increase upon reaching an
extreme point at 7.3360 × 10−5. The maximum displacement area of the rock is consistently
located in close proximity to the excitation surface. During the initial stage of ultrasonic
vibration excitation, the internal deformation of the rock exhibits an approximate linear
increase, indicating elastic deformation within the rock without any concurrent damage.
Once the displacement generated in the rock reaches its limit deformation value, particle
bonds within the interval experiencing maximum deformation are more prone to breakage
and subsequent cracking occurs.
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3.2. Characteristics of Rock Fracture under Ultrasonic Vibration Load

The process of rock failure and internal crack development and expansion under
the influence of high-frequency ultrasonic vibration is illustrated in Figure 6. It can be
observed from the figure that macro-cracks penetrating above and below the rock, induced
by high-frequency ultrasonic vibration, do not result in overall rock damage but rather
localized damage occurs. Under continuous vibrational loading, initial failure of the rock
occurs at the edge of the load surface and progressively extends towards lower and central
regions. Eventually, volumetric fracture causes complete upper section fragmentation with
subsequent detachment of free broken blocks. The internal crack evolution diagram reveals
a distinct X-shaped fracture surface within the rock, where damage area gradually expands
from the load surface edge to lower sections. In this region, inter-particle bonding initially
breaks leading to crack initiation; subsequently these cracks aggregate and propagate
downwards forming macroscopic fractures which extend primarily in two directions: one
along maximum shear stress direction beneath the load surface while another propagates
towards adjacent boundaries on both sides. Simultaneously, as excitation time increases,
shear fractures originating from maximum shear stress zone progress further downwards
into lower parts as well as sideways along boundary areas resulting in additional rock
damage. The variation curve depicting number of cracks generated during entire excitation
process is presented in Figure 7, indicating comparable quantities for both shear cracks and
tensile cracks within the rock at an amplitude of 40 µm.
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Figure 7. Crack number evolution.

The distribution and evolution of the contact force inside the rock under ultrasonic
vibration excitation are illustrated in Figure 8. Prior to the application of vibration treatment,
influenced by the gravitational force exerted by the rock itself, the maximum contact force
is observed at the bottom of the rock, reaching 33.811 N. Subsequently, due to ultrasonic
vibration loading, there is a gradual transfer of contact force from the upper load surface to
encompassing regions within a short duration. Notably, a region with high concentration
of contact forces emerges near the load surface where also lies the maximum contact force
value. As external energy input persists, internal contact forces continue to escalate until
bond strength surpasses particle cohesion leading to crack formation.
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The distribution of rock internal force chain field at different vibration stages is illus-
trated in Figure 9, where compressive stress is represented by black and tensile stress is
represented by red. Initially, both tensile and compressive stresses are evenly distributed
within the rock. However, under the influence of vibration load, this initial equilibrium is
disrupted, resulting in the generation of a stress concentration zone dominated by com-
pressive stress below the load surface that extends downwards. The intensification of rock
fracture leads to a more pronounced development of compressive stress chains within
the rock, resulting in an increased extension range of force chains and predominantly
compressive internal stresses.
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Figure 9. Force chain distribution.

3.3. Energy Evolution of Rock under Ultrasonic Vibration Load

The evolution curve of each energy is depicted in Figure 10. In comparison to other
energies, the kinetic energy generated within the rock under high-frequency ultrasonic
vibration load is negligible and can be disregarded. Both particle strain energy and par-
allel bonded strain energy exhibit a linear increase with vibration excitation, reaching a
maximum value before leveling off and declining, which aligns with the trend of rock dis-
placement. During the initial stage of vibration excitation, external vibrational load input
energy is continuously stored as strain energy within the rock, leading to an increasing ac-
cumulation of strain energy. Subsequently, these accumulated strain energies are gradually
released as fracture energy; however, due to limited crack formation during this early stage,
the rate of release remains lower than that of storage resulting in an overall upward trend
in strain energy. As cracks continue to propagate and expand further, more strain energy is
released causing an increased proportion of fracture energy until eventually leading to a
decrease in overall strain energy within the rock system. Additionally, it can be observed
from Figure 9 that dissipated energy also exhibits continuous growth indicating noticeable
friction between particles inside the rock under high-frequency ultrasonic vibrations which
results in a portion of external load input being consumed as frictional heat.

The energy dissipation coefficient is defined as follows:

η =
Wβ

Wt
(8)

The energy dissipation coefficient represents the ratio of the partial energy released
during rock fracture to the total input energy, thereby reflecting the efficiency of energy
utilization under vibrational loading conditions. A higher coefficient indicates a greater
amount of energy allocated towards rock fracturing. The dynamic evolution of the energy
dissipation coefficient is illustrated in Figure 11, Due to the sinusoidal variation charac-
teristics of the vibration load, the dissipation coefficient curve exhibits local fluctuations.
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During the initial stage of vibration, dissipative energy emerges as cracks initiate in the
rock, leading to an upward trend in the energy dissipation ratio. However, due to a lower
energy dissipation rate compared to the strain energy storage rate, the growth rate of the
dissipation ratio gradually slows down and even exhibits a downward trend after reaching
its peak value. As more cracks develop, eventually surpassing the energy storage rate, the
curve of the energy dissipation ratio begins to rise continuously.
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3.4. Effect of Amplitude on Rock Fracture

The rock breakage under ultrasonic high-frequency vibration loads with amplitudes
of 40 µm, 50 µm, 60 µm, 70 µm, and 80 µm respectively for the same number of cycles
is illustrated in Figure 12. It can be observed that increasing the amplitude expands
the range of rock failure and generates more fragments. To quantitatively describe the
degree of damage to rocks under different amplitudes, a fish language was developed
to record real-time fragmentation levels. The dynamic evolution of rock fragmentation
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volume under different amplitudes was obtained over 5,000,000 cycles as depicted in the
Figure 13. Clearly, as the amplitude increases, the evolution curve of rock fragmentation
area gradually steepens indicating an accelerated rate of rock failure with larger amplitudes
leading to earlier occurrence of fragmentation. Under an equal number of cycles, when
increasing from an amplitude of 40 µm to 80 µm, there is a significant increase in overall
crushing area from 57.3 mm2 to 303.5 mm2 representing a growth rate of approximately
429.67%.
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The evolution of crack formation and propagation in the rock under varying ampli-
tudes is illustrated in Figures 14 and 15. The amplification of amplitude expedites the
initiation and progression of cracks. Under the same number of cycle steps, when the
amplitude increases from 40 µm to 80 µm, the total number of cracks generated increases by
494.44%. The cumulative shear and tensile cracks in the rock are 1251 and 962, respectively,
which is five times higher than the number of shear and tensile cracks generated at a
load amplitude of 40 µm. The difference between the numbers of shear and tensile cracks
increased from 63 to 298, representing a growth rate of 373.02%.
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Figure 14. (a) The number of shear cracks varies with different amplitudes; (b) The number of tensile
cracks varies with different amplitudes.
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Figure 15. The number of cracks produced by different amplitudes under the same number of cycles.

The rock deformation field under different amplitudes after the same number of cycles
is illustrated in Figure 16. Altering the amplitude does not affect the ultimate displacement
value of the rock. Prior to reaching the maximum deformation capacity, higher ampli-
tudes result in greater displacements within the rock induced by vibrational loading for
a given number of cycles. Once the maximum displacement in the rock reaches its limit
deformation value, increasing the amplitude expands the range of maximum deformation.
The aforementioned analysis demonstrates that the amplification of amplitude during
ultrasonic vibration loading can expedite the attainment of rock’s ultimate deformation
and broaden its range, thereby inferring that an increase in amplitude can accelerate the
speed and extend the scope of rock fracture.
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Figure 16. Evolution curve of maximum displacement.

The evolution curve of rock energy under different amplitudes is illustrated in Figure 17.
Both strain energy and dissipated energy exhibit an increasing trend with the amplitude,
indicating that the amplitude significantly influences the total input energy of the rock
system. Moreover, it can be observed from the Figure 18 that higher amplitudes enhance the
utilization efficiency of rock breaking energy. The energy dissipation coefficient increased
from 0.26209 to 0.3126, while the amplitude exhibited a rise of 19.272%. This increase in en-
ergy within the system elucidates the enhanced utilization rate of ultrasonic vibration from
an energetic perspective, thereby indicating that amplifying the amplitude can enhance the
efficiency of ultrasonic vibration loading.
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Figure 17. (a) Strain energy evolution under different amplitudes; (b) Evolution of dissipated energy
at different amplitudes.
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4. Conclusions

The present study focuses on the numerical simulation of damage and failure charac-
teristics in hard rock under high-frequency ultrasonic vibration load, as well as the law of
energy dissipation. Based on this analysis, the influence of amplitude on the rock failure
process is investigated. The simulation results reveal the following findings:

(1) Ultrasonic vibration excitation leads to a maximum deformation of 5.0199 × 10−3

m in the rock, causing initial cracks at the load surface that propagate towards both
edges and experience maximum shear stress. Continuous vibration further induces
shear failure within the region experiencing maximum shear stress, resulting in
crack propagation downwards and along both boundaries, ultimately leading to an
X-shaped fracture surface in the rock.

(2) Under ultrasonic vibration load, a compressive stress-dominated stress concentration
zone forms beneath the load surface and extends downwards. The degree of stress
concentration decreases with increasing distance from the excitation surface. Internal
kinetic energy generated within the rock is minimal; instead, primary sources of
energy include particle strain energy, parallel bond strain energy, frictional energy,
and plastic deformation energy. The curve representing energy dissipation coefficient
exhibits an initial increase followed by a decrease before eventually increasing again.

(3) The deformation, fracture, and energy evolution characteristics of the rock under the
five different amplitudes are compared and analyzed. The results demonstrate that
while amplitude variations do not affect the maximum displacement value of the
rock, they do accelerate its deformation rate. As the maximum displacement within
the rock reaches its limit deformation value, increasing the amplitude expands the
range of maximum deformation. Moreover, there exists a proportional relationship
between amplitude changes and rock fragmentation, crack propagation, as well as
energy dissipation coefficient. Increasing the amplitude contributes to enhancing rock
breaking efficiency. Under an equal number of cycle steps (5,000,000 cycles), when
increasing from 40 µm to 80 µm in amplitude, fracture volume, crack count, and
energy dissipation coefficient increase by 429.67%, 494.44%, and 19.272% respectively.
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