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Abstract: This paper aims to investigate the seru scheduling problem while considering the dual
effects of worker cooperation and learning behavior to minimize the makespan and order processing
time. Given the complexity of this research problem, an improved shuffled frog leaping algorithm
based on a genetic algorithm is proposed. We design a double-layer encoding based on the problem,
introduce a single point and uniform crossover operator, and select the crossover method in probabil-
ity form to complete the evolution of the meme group. To avoid damaging grouping information, the
individual encoding structure is transformed into unit form. Finally, numerical experiments were
conducted using numerical examples of large and small sizes for verification. The experimental
results demonstrate the feasibility of the proposed model and algorithm, as well as the necessity of
considering worker dual behavior in the seru scheduling problem.
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1. Introduction

To efficiently and flexibly respond to the market and meet the diverse needs of con-
sumers, the seru system has emerged. The seru system is an outcome produced by trans-
forming the traditional assembly line disassembly, efficiently combining efficiency and
flexibility [1,2]. It is known as the “ecological and economic” manufacturing model in the
Japanese manufacturing industry [3]. After the application of seru systems by manufactur-
ing companies such as Canon, Sony, and Panasonic, it has been found that seru systems
also possess advantages such as reduced production costs, decreased production time, and
minimal energy consumption [4–8]. Therefore, the seru system is deemed one of the most
promising production methods in the era of Industry 4.0.

The current research on seru systems mainly focuses on seru construction and seru
scheduling. Seru scheduling relies on the seru construction process to determine the order
allocation and processing order of each seru unit. Additionally, seru scheduling is the key
to reflecting the efficiency and flexibility of seru systems, and whether the advantages of
seru systems can be fully utilized mainly depends on the core step of seru scheduling. In
terms of seru scheduling, Zhan et al. [9] proposed the GP-SS scheduling rule to address
the seru scheduling problem with resource conflicts. Jiang et al. [10] transformed the
seru scheduling problem into an assignment problem. Li et al. [11] studied the on-line
seru scheduling problem while considering resource conflicts. Wu et al. [12] devised a
reinforcement learning-driven two-stage evolutionary algorithm to address the scheduling
problem of a hybrid seru system considering worker transfer. Lian et al. [13] solved the
energy-saving scheduling problem by considering seru reconfiguration. Zhang et al. [14]
used the branch and bound algorithm to solve the seru scheduling problem. Shen et al. [15]
designed a hybrid GA-PSO algorithm to solve the seru scheduling problem that considered
worker learning effects and dynamic resource allocation. Zhang et al. [16–18] constructed
scenarios for different seru scheduling problems that considered worker learning behavior
and demonstrated that considering worker learning behavior can help improve seru system
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performance. Jiang et al. [19] found that as the learning effect of workers increases, the
production cost of the seru system will decrease. Based on the aforementioned research
findings, the seru scheduling problem has been extensively explored from various angles
and has achieved significant progress. However, due to the difficulty in measuring worker
cooperation and learning behavior, few research studies on seru scheduling simultaneously
considered worker dual behavior. The seru system is centered around workers, and the two
most prominent behaviors are worker cooperation and learning behavior. Its production
efficiency and performance largely depend on the workers’ abilities and personal behavior.
Therefore, how to effectively leverage the dual behavioral effects of workers to optimize
the performance of the seru system is a crucial issue that needs to be addressed urgently.

In the production workshop, when workers repeatedly operate the same process or
task, there will be a learning effect [20–22]. The learning effect refers to the phenomenon
where the processing time of a single product decreases with the increase in cumulative
production volume [23]. At the theoretical level, Wright [24] proposed the learning effect
curve for the first time in the aviation manufacturing industry. Subsequently, learning
effect models, such as the S-curve [25], Stanford-B [26], Dejong [27], and Plateau [28], were
proposed based on different research scenarios. At the application level, Zhang et al. [29]
considered learning effects in constructing problem scenarios in hybrid flow shop schedul-
ing. Hu et al. [30] constructed a single-process workshop scenario that considers learning
effects. Wang et al. [31] studied the joint decision-making problem of unit manufactur-
ing systems considering learning and forgetting effects. Learning behavior is a common
phenomenon in production and manufacturing, and constructing scenarios that consider
learning behavior can shorten the gap between theory and practice, which is beneficial for
enterprises to make low-cost and efficient production decisions. Due to human social needs,
cooperative behavior may occur among workers. Good cooperative behavior can improve
the work efficiency of workers; on the contrary, work efficiency will decrease [5,32,33]. In
the current study, Sakamaki [32], Cao et al. [34], and Wang et al. [33] all proved that consid-
ering worker cooperation behavior in production scheduling can help improve production
efficiency. It can be seen that worker behavior is a realistic influencing factor that cannot be
ignored in production scheduling.

When solving the seru scheduling problem, scholars mainly relied on improved
genetic algorithms [35–39] to solve problems and have achieved certain results, but the
optimization algorithm has the limitation of the solving scale and the shortage of solving
quality. Therefore, this paper intends to utilize the shuffled frog leaping algorithm, which
has a simple idea, fewer experimental parameters, and strong global optimization ability,
to solve the problem. The shuffled frog leaping algorithm combines the advantages of the
Memetic algorithm and particle swarm optimization algorithm, with a strong global search
ability. Some scholars have applied it to the field of production scheduling. Moreover,
the hybrid leapfrog algorithm has not yet been applied in the research of seru production
systems, so it is necessary to explore the application of the hybrid leapfrog algorithm to
solve seru systems, which is a further expansion of the research field of seru production
systems. Drawing from the preceding analysis, this paper will explore the seru scheduling
problem while considering the dual behavior of workers. The objective is to minimize
both the makespan and order processing time. The improved hybrid leapfrog algorithm
serves as a breakthrough. The ultimate goal is to enhance the efficiency of the seru system,
propose reasonable and effective worker and order-allocation plans, and provide managers
with a theoretical basis and technical support for making informed scheduling decisions.

2. Problem Description

This article adopts a segmented seru as the basic unit, which is the corresponding
process assembly assigned by workers within the unit. Within a seru unit, the assembly
of a product is jointly completed by multiple workers. This article focuses on three sub-
problems: seru-worker, seru-order, and order-worker allocation. Assuming a seru system
that produces C product types, W versatile workers are allocated to N seru units for I
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order production. Producing each product requires k processes, each corresponding to a
skill. Because workers are multi-skilled, there are multiple matching relationships between
workers and processes. In the seru unit, a worker can be responsible for multiple processes
of the product, which can be discontinuous, but the corresponding processing skills for the
process need to be mastered by the worker.

Figure 1 describes the problem studied in this paper. In the figure, there are six processes,
three orders, two products, and five workers to build two seru units. Taking seru1 as
an example, if the distribution order is i1 and i3, and the product c1 is produced, the
corresponding operation set is u1 = (k1, k2, k4, k5), of which worker w1 is responsible for
operations k1 and k2, and worker w5 is responsible for operations k4 and k5.
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Figure 1. Problem description under seru production system.

3. Model Formulation
3.1. Model Assumptions

The research questions in this article include the following assumptions:

(1) The type and quantity of products in the order are known.
(2) Batch splitting is not considered, which means each order can only be produced

within one seru unit.
(3) Each order encompasses only one type of product.
(4) The processing time of each task in each product is known and constant.
(5) The number of workers is constant.
(6) The worker movements between serus do not exist.

3.2. Modeling

This paper takes the model proposed by Wang et al. [33] as a reference, considering the
influencing parameters of worker learning behavior effects, and modifies the model based
on segmented units. According to the DeJong learning effect model and the characteristics
of segmented units, it is necessary to calculate the cumulative number of products com-
pleted by each order worker before starting processing, as well as the cumulative number
of products completed after this order is completed. This can be recorded as the upper and
lower limits of the q variable cumulative completed products in the learning effect. The
specific calculation formula is shown in Equations (1) and (2).

Qub
ijw =

{
Qjw , k = 1

∑
j
r=1 ∑K

k=1 XirkQrwCrp Cjp , k ̸= 1
(1)

Qlb
ijw =

{
1 , k = 1

∑
j−1
r=1 ∑K

k=2 QrwXir(k−1)XijkCrp Cjp + 1 , k ̸= 1
(2)

In the segmented seru unit, the cooperative behavior between workers is mainly the
cooperation between workers and their left and right workers. Due to the coefficient of
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cooperative behavior, awu is inversely proportional to the processing time; that is, the higher
the cooperation coefficient, the shorter the processing time. Based on this, 1 − awu can
directly represent the impact on processing time. For the overall cooperation coefficient of
workers, see Equation (3).

aw = (1 − awu)
(
1 − apw

)
YwiYuiYpi (3)

The quantity of products completed by worker w is shown in Equation (4)

Qjw = ∑I
i=1 YwiRijSj (4)

Considering the factors influencing worker cooperation and learning behavior, the
total processing time for worker w to complete process s of order j is shown in Equation (5).

Ts
jw = ∑

Qub
ijw

q=Qlb
ijw

Ts
paw

(
M + (1 − M)qb

)
(5)

The model in this article aims to minimize the maximum completion time and mini-
mize the order processing time. The specific model construction is as follows:

f1 = min makespan = min
{

max{j∈{1,2,...J}}
(

FCBj + ST j + FCj
)}

(6)

f2 = min∑J
j=1 ∑W

w=1

(
∑I

i=1 ∑K
k=1 FCjYwiXijk

)
(7)

s.t.
∑I

i=1 Ywi = 1 , w = 1, 2, . . . , W (8)

Wmin ≤ ∑W
w=1 Ywi ≤ Wmax , i = 1, 2, ..., I (9)

∑I
i=1 Rij = 1, j = 1, 2, . . . , J (10)

FCj =
∑I

i=1 Xijk∑W
w=1 Ywi∑P

p=1 UwpCjp∑S
s=1 Ts

jw

∑I
i=1 ∑W

w=1 YwiRij
(11)

ST j = ∑J
r=1 ∑P

p=1 Xir(k−1)ZpCjp
(
1 − Crp

)
, i f k ̸= 1, r ̸= j, Xijk = 1 (12)

FCBj = ∑j−1
r=1 ∑I

i=1 ∑j
k=1 (FC r + STr)XijkXir(k−1) (13)

∑J
j=1 ∑K

k=1 XijkFCj < Ti , i = 1, 2, ..., I (14)

Cj = FCj + ST j + FCBj < Dj (15)

Xijk , Ywi ∈ {0, 1}

Sj ∈ Z , ∀i (16)

−1 ≤ b ≤ 0 , 0 ≤ M ≤ 1

where Equations (6) and (7) are objective functions that represent the minimizing makespan
and order processing time, respectively. Equation (8) ensures that each worker can only
work within one seru unit. Equation (9) represents the number of workers within each
seru unit. Equation (10) indicates that each order can only be assigned to one seru unit
without considering order splitting. Equation (11) represents the processing time of all
products in seru i for order j. Equation (12) represents the preparation time of order j in
seru i. Equation (13) represents the start time of order j in seru i. Equation (14) limits
the processing time of all orders in seru i to be less than the available production time of
seru i. Equation (15) indicates that order j must be completed within the delivery date.
Equation (16) represents other logical constraints in this model.
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4. Improved Shuffled Frog Leaping Algorithm (SFLA)

The SFLA is a meta-heuristic algorithm that mimics the communication and coop-
eration among frogs during their foraging process [40]. It mainly includes four basic
operations: population initialization, meme group partitioning, meme group evolution,
and meme group reconstruction [41,42]. This paper proposes refinements to the hybrid
leapfrog algorithm based on the characteristics of the research problem. The main contribu-
tion or improvement ideas are as follows: firstly, due to the multi-objective optimization
problem in this study, there are Pareto optimality and non-dominated frontier solution sets,
and the method of using a single objective function to evaluate the fitness of individuals is
no longer applicable. To avoid subjective factors, this article introduces non-dominated
sorting and crowding distance in the NSGA-II algorithm to evaluate individual strengths
and weaknesses. Secondly, using non-dominated level grouping as the grouping result of
the meme group, in order to improve the convergence speed of the algorithm, the optimal
individuals from non-dominated levels are selected to form the optimal group. During the
evolution process of the meme group, cross-operations are performed within the optimal
group, which can better transmit optimal information. Thirdly, we introduce the single
point crossover and uniform crossover operators in genetic algorithms, comprehensively
utilize the advantages of the two operators, and randomly select crossover operations in
the form of probability to increase population diversity.

4.1. Encoding Method

When encoding the order-scheduling problem in the seru production system, it is
necessary to consider three sub-problems: worker-seru, order-seru, and order-worker. In
the first two sub-problems, both workers and orders are the result of allocation in the
seru unit. Due to the common feature of the seru unit, this paper proposes a double-layer
gene-coding approach. The first layer of coding consists of W + I gene loci, including the
allocation results of two sub-problems: the first part consists of W gene loci, representing
the allocation results of worker-seru; the second part consists of I gene loci, representing the
allocation results of order-seru. The numbers on the first gene locus are all seru numbers.
The second layer of coding represents the result of order-worker allocation. As the result
of order-worker allocation is influenced by the results of the first two sub-problems, each
order is considered as a unit, and the number of operations in the order is the number of
gene bits under that order. Regarding the gene bits, the corresponding processing workers
for that operation are represented. For example, the coding example in Figure 2 is a seru
system consisting of 4 seru units, 12 workers, and 8 orders. In the first layer, the first 12
loci represent worker seru allocation, while the last 8 loci represent order seru allocation;
the second layer is the worker corresponding to the process in the order. In the seru 1 unit,
workers w2, w9, and w12 work together to complete production orders j1 and j5. In order 1,
w2 is responsible for processing J11 and J15, w9 is responsible for processing J12 and J14, w12
is responsible for processing J13, and other orders are assigned similarly.
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4.2. Population Initialization

Generate an initial population F consisting of N frogs in the feasible domain. Ensure
that all solutions corresponding to frogs meet the coding requirements and are feasible
solutions for the optimization problems. Specifically, for randomly generated frog individ-
uals, the first layer of genes corresponds to the two parts of seru-worker and seru-order
allocation. Adjust the random allocation results according to the constraints in the model.
The second layer of gene coding is determined by the first layer of gene coding. The
assigned order and corresponding worker must be in the same seru unit, and the worker
must have the ability to process the process. Therefore, it is feasible to randomly produce
initialized frog population individuals.

4.3. Division of Meme Groups

Divide the frog population into different meme groups based on non-dominated
sorting and crowding distance at each level. Non-dominated sorting compares the corre-
sponding function values of two individuals. If both objective function values of Frog 1 are
better than Frog 2, it is considered that Frog 1 dominates Frog 2; if Frog 1 has an objective
function value that is better than Frog 2 and another equal objective value, it is considered
that Frog 1 dominates Frog 2. Count the number of non-dominated levels, denoted as Yn.
Memetic group division refers to the grouping of non-dominated levels.

4.4. Memetic Evolution

For better meme evolution, select the optimal individuals from different meme groups
to form a group so that frog individuals can quickly transmit optimal information. This
article uses a crossover operator to update individuals within the meme group. The
crossover operation only applies to the first layer of genes, while the second layer of genes
is determined based on the first layer of genes. In the improved shuffled frog leaping
algorithm, each meme group has one frog with the best position and the worst position,
which is the best position among all frogs. Here, the best frog individual in the group is the
same as the best frog individual in the population.

During the first evolution of the meme group, a crossover operation is performed
on Fb and Fw to generate a new solution. If the generated new solution is better than
Fw, it is replaced. If the effect is not good, a secondary adjustment is made. The second
adjustment is to randomly generate a new individual Fg to replace it. When making
alternative comparisons, the fitness used in this article is the solution corresponding to
the objective function one, as the solution corresponding to the objective function one is
the maximum completion time of the seru production system, which better indicates the
rationality of the scheduling plan.

Before performing the crossover operation, use Figure 3 to change the first-layer
structure of the individual and transform it into a unit-combination form. The reason for
the transformation form is, firstly, it can avoid cross operation from damaging grouping
information; secondly, during the crossover process, this approach can better preserve
some excellent genes of the parents; thirdly, the individual gene loci in the first layer are too
long. After transforming the form, each seru unit is treated as a whole for cross-operation,
which shortens the length of individual genes in the form and can improve the algorithm’s
solving speed.

For the seru-worker section, this article adopts a single-point crossover operation,
which is simple and easy to implement and can compensate for the slow speed of uniform
crossover optimization. On two parent genes, each seru unit is treated as a single gene point,
and gene points are randomly selected for crossover. The crossover operation involves all
genes after that gene point. In the newly generated offspring genes, since the evolution of
the meme group mainly involves updating the worst frog, during the single-point crossover
operation, the right gene of the worst frog was replaced with the right gene of the best frog.
In order to retain some of the genes in the optimal solution, the left gene in the duplicate
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gene was deleted. For missing gene loci, compensate for the missing genes in the worker
coding order. The single-point crossover operation is shown in Figure 4.
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For the seru-order section, this article adopts the uniform crossover operation, which
can compensate for the situation where a single point cross is prone to falling into local
optima and increasing the diversity of the population. On two parent genes, treat each seru
unit as a single gene point as a whole. For each gene point of the optimal frog individual
in the parent generation, Uk is randomly generated to represent its selection probability,
where Uk ∈ (0, 1). The gene points on the parent gene are exchanged with a probability of
P = 0.5. When the probability of corresponding gene points on the parent gene is Uk > P, a
gene-crossover operation is performed; otherwise, no crossover operation is performed. In
the process of uniform crossover, the probability of gene points is compared in order from
left to right, and the operations for repeated and missing values are the same as those in
the single-point crossover. The uniform crossover operation is shown in Figure 4.

To comprehensively utilize the advantages of the two operators and randomly select
crossover operations in the form of probability, the single-point crossover operation of
the worker-seru part and the uniform crossover operation of the order-seru part are both
carried out with a 50% probability; that is, if the random selection probability P > 50%, the
seru-worker part of the crossover operation will be carried out, and the seru-order part will
be adjusted accordingly; if P ≤ 50%, proceed with the cross-operation of the seru-order
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section. The portion of the second gene worker order is adjusted according to changes in
the first gene. The specific steps are as follows:

Step 1: Determine the optimal frog Fb and worst frog Fw in the meme group.
Step 2: Take probability P and perform single-point crossing (P > 50%) or uniform

crossing operation (P ≤ 50%) on Fb and Fw to obtain Fnew1.
Step 3: Compare the fitness values of Fnew1 and Fw. If the fitness of Fnew1 is better

than that of Fw, replace Fw with Fnew1; otherwise, proceed to step 4.
Step 4: Randomly select another frog in the group to replace Fw.
Step 5: After updating the position of the worst frog, upgrade the cultural genome

and re-rank the fitness. If the maximum number of evolutions has not been reached, return
to step 1 to continue the local search until the maximum number of evolutions in the meme
group is reached, ending the local search.

4.5. Algorithm Flow

The improved shuffled frog leaping algorithm proposed in this article uses non-
dominated sorting and crowding distance in NSGA-II to evaluate the superiority and
inferiority of individuals. To improve the convergence speed of the algorithm, the optimal
individuals from each non-dominated level are selected to form a group and complete
the evolution of the meme group. In the process of meme evolution, using crossover
operators to update frog individuals can improve population diversity. The combination of
single-point crossover and uniform crossover for meme evolution can further improve the
convergence speed of the algorithm, effectively avoid reducing local optimal solutions, and
improve the breadth and depth of the search. The detailed steps of SFLA are as follows:

Step 1: Frog population initialization. Randomly generate a population of S with
N frogs.

Step 2: Frog population sorting. Sort the frog individuals in the population using
non-dominated sorting and crowding distance, and record the frog Fg with the best fitness
in population S.

Step 3: Meme grouping. The grouping of individual frogs is equivalent to a non-
dominated ranking hierarchy, and the optimal solutions from each hierarchy are selected to
form a meme group.

Step 4: Meme evolution. Independently perform meme evolution on the meme group
and update the worst frog in the group.

Step 5: Meme group reconstruction. Mixed cultural genomes: after completing a local
search in each meme group, reassemble population S to complete communication and
communication between frogs, reorder according to step 2, update the optimal frog in each
meme group, and record the frog Fg with the best fitness in population S.

Step 6: If the maximum evolution number (Gen) or convergence condition of the
entire population has not been reached, return to step 3 to continue. Otherwise, stop the
algorithm iteration and output the global optimal value.

The basic process of the improved shuffled frog leaping algorithm in this article is
shown in Figure 5.
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5. Numerical Tests

To verify the rationality and applicability of the improved hybrid leapfrog algorithm
designed in this article in solving the order-scheduling problem considering worker co-
operation and learning effects in the seru production environment, MATLAB R2022a
software was used to conduct experimental simulation verification on large-scale and
small-scale examples.

The parameters set in Table 1 are for using the improved hybrid leapfrog algorithm
to solve specific examples in this article. The experimental parameter settings of the size
calculation examples in this article refer to the experimental settings of Lian et al.’s [1]
calculation examples, and adjustments have been made based on this. In the production
process of seru, due to different product types, the corresponding processes and standard
processing times of the products may vary. The specific processes and standard processing
times of the products are shown in Table 2. The specific processing skills of workers are
shown in Table 3.

Small scale examples: Assuming there are 4 seru units and 12 workers in the produc-
tion workshop, and 10 orders have arrived, order scheduling and allocation are required.
The basic information on the orders is shown in Table 4. This article allocates orders based
on the size of their delivery dates. The order of order allocation is Order 6, Order 1, Order
5, Order 7, Order 9, Order 4, Order 10, Order 2, Order 8, and Order 3.
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Table 1. Example parameters.

Systemic Factors Parameter Value

pop_size 100
m_frog 20
n_frog 5

Gen 50
awu N(0, 0.01)
M U(0, 1)
b U(−1, 0)

worker_lowlim 2
worker_uplim 5

T_seru 2400

Table 2. Standard processing time for the corresponding process of the product.

S1 S2 S3 S4 S5 S6 S7 S8

P1 2.92 2.79 3.36 - 3.72 2.94 3.12 3.08
P2 - 2.79 3.36 3.40 3.72 - 3.12 3.08
P3 2.92 2.79 3.36 3.40 3.72 2.94 3.12 3.08

Note: “-” indicates that the product does not require this processing step.

Table 3. The corresponding process for workers’ processing skills.

S1 S2 S3 S4 S5 S6 S7 S8

W1
√

-
√

-
√ √ √ √

W2 -
√ √ √ √ √

-
√

W3
√ √

-
√ √

-
√ √

W4 -
√ √ √ √

-
√ √

W5
√ √ √ √ √

-
√

-
W6 -

√ √
-

√ √ √ √

W7
√ √ √

- -
√ √ √

W8 -
√ √ √ √

-
√ √

W9
√ √ √ √ √ √ √ √

W10 -
√ √ √ √

-
√ √

W11
√ √ √

-
√ √ √ √

W12 -
√ √ √ √

-
√ √

Note: “
√

” indicates that the worker has mastered the skill, “-” Indicates that the worker does not master the skill.

Table 4. Example of order basic information.

Order Number J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

Product type 1 3 2 2 3 2 1 1 2 2
Order 32 16 17 28 17 35 35 33 19 31

Delivery date 750 1200 1800 900 780 550 850 1750 870 960
Setup time 3.4 2.7 3.1 3.1 2.7 3.1 3.4 3.4 3.1 3.1

To verify the necessity of considering the effects of worker cooperation and learning
behavior when solving order-scheduling problems in this article, a comparative experiment
was conducted.

Example experiment 1: Research the necessity of considering the effects of learning
behavior. The indicators for considering learning behavior are selected with an incompress-
ible factor of M = 0.79 and a learning index of b = −0.7. Other variables and parameters are
controlled to be consistent with the control group. In the control group, worker cooperation
and learning behavior were not considered. The seru order-scheduling problem with and
without considering worker learning effects is solved separately, and the results are shown
in Figure 6. From the results, it can be seen that under the premise of this article, the
order-scheduling scheme considering worker-learning effects obtains better solutions for
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the maximum completion time and total processing time of worker orders in the seru
production system; that is, considering worker-learning effects in the seru scheduling
scheme can obtain better allocation results.
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When considering the learning effect of workers, this article adopts the DeJong learn-
ing effect model. In the DeJong learning effect model, changes in the incompressible factor
M and learning index b will both affect the learning effect. To further explore the impact of
worker learning effects on order scheduling, this article changes the incompressible factor
and learning index that affect learning effects.

Example experiment 2: Changing the incompressibility factor and learning index.
Selecting incompressible factors M with values of 0.79, 0.89, and 0.95, and controlling for
the same other variables, the results obtained are shown in Figure 7. From the results of
Figure 7, it can be seen that when the learning index remains unchanged and the incom-
pressibility factor increases, the solutions obtained for both objective functions increase.
The incompressible factor represents the impact of the automation level of the production
line on the learning effect. A larger index indicates a greater degree of automation in the
assembly line and a diminished learning ability of workers. This indicates that in the
seru production system, an appropriate level of automation can improve the completion
efficiency of orders. However, since the seru production system mainly relies on worker
production, a higher level of automation is not conducive to the improvement in worker
learning ability and affects the production time of orders. Selecting learning indices of −0.7,
−0.8, and −0.9, controlling for the same other variables, the results are shown in Figure 8.
From the results of Figure 8, it can be seen that when the control incompressibility factor
remains constant and the learning index | b | is increased, the overall learning ability
continues to increase, and the solutions obtained from the two objective functions tend
toward the origin; that is, as the learning index | b | increases, the results become better.
This further demonstrates the necessity of considering the worker-learning effect in order
scheduling for a reasonable arrangement of order scheduling.
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Example experiment 3: Research on the necessity of considering the effects of worker
cooperative behavior. The cooperation coefficient of randomly selected workers remains
unchanged in the comparative experiment, and other variables and parameters are con-
trolled to be consistent with the control group. In the control group, worker cooperation
and learning behavior were not considered. The results are shown in Figure 9. In Figure 9,
it can be seen that the order-scheduling scheme obtained by considering the cooperative
behavior of workers has a better solution for the objective function of maximum completion
time and total order processing time. Therefore, considering the cooperative behavior of
workers is beneficial for the allocation of seru order scheduling.
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To further explore the impact of worker behavior effects on seru scheduling and to
consider the dual factors of worker cooperation and learning behavior effects on seru order
scheduling, case experiment 4 was conducted.

Example experiment 4: The necessity of considering the dual behavioral effects of
workers was studied, and the experimental results are shown in Figure 10. In Figure 10,
it can be seen that the optimal solutions obtained by considering worker behavior effects
are better than those obtained without considering worker behavior effects, indicating that
considering worker behavior effects can improve the efficiency of the seru production sys-
tem. In Figure 10, it can also be observed that the optimal solution obtained by considering
the dual behavioral effects of workers is superior to the optimal solution obtained by solely
considering the cooperative or learning behavioral effects of workers. This indicates that
in actual production scheduling, considering both cooperative and learning behaviors of
workers to develop order-scheduling schemes can better leverage the effects of worker
behavior, maximize human production efficiency, and optimize the performance of the
seru system.

To verify the effectiveness of the algorithm, this paper applies the GA algorithm and
the improved shuffled frog leaping algorithm to solve the problem through small-scale
examples. To provide a more intuitive reflection of the results, this article has expanded
the production volume of orders. The same applies to other items, and Table 5 shows the
order demand quantity table. Figure 11 shows the results obtained from running three
algorithms five times. The GSFLA algorithm applies a crossover operator based on the
traditional shuffled frog leaping algorithm. The crossover operator is the same as in this
article, but the meme group evolution is different. The GSFLA algorithm applies the meme
group evolution idea of the traditional shuffled frog leaping algorithm. In the graph, it
can be seen that the algorithm in this study is superior to the GSFLA algorithm but has
no significant advantage compared to the GA algorithm. However, the average single
operation time of the algorithm in this paper is 0.95 s, and the average single operation
time of the GA algorithm is 16.2 s, reducing the running time by 94%. Through the above
comparison, it can be concluded that the algorithm in this study is effective, but there are
still shortcomings in improvement. In the future, the idea of the genetic algorithm can be
further referenced to improve the optimization ability.
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Order Number J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

Order 164 115 117 128 127 135 185 133 119 131
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In the actual seru production scenario, the batch size of orders received by the work-
shop will be greater than that in small-scale examples, and the relationship between seru
units and orders will also be more complex.

To further validate the effectiveness of the algorithm, this article intends to conduct
large-scale numerical experiments, with specific experimental parameters shown in Table 6.

Table 6. Parameter information of large-calculation examples.

Parameter Value Range

Seru 6
Worker 18
Order 25

Order quantity [20, 40]
Workers’ master skills [6, 8]

Delivery lead time [800, 2000]
Incompressible factor M 0.79

Learning Index b −0.7

Table 7 shows the non-dominated solution set for the large-scale experiment. Table 8
and Figure 12 take the large example of non-dominant solution 1 as an example and
list the Gantt charts of the optimal solution for the optimal solution and the optimal
order-scheduling scheme. In summary, in the design process of production scheduling,
enterprises can improve the efficiency of the seru production system by leveraging worker
cooperation and learning behavior.

Table 7. Large example experiment’s non-dominant solution set.

F1 F2

1182.22 5567.60
1203.59 4722.48
1483.43 4496.41
1524.19 4365.36
2084.35 4295.84
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Table 8. Large-example worker-allocation plan.

Worker Seru Worker Seru

1 3 10 3
2 1 11 3
3 4 12 6
4 1 13 2
5 6 14 6
6 5 15 4
7 5 16 6
8 5 17 2
9 4 18 3

6. Conclusions

This article studies the order-scheduling problem while considering the effects of
worker cooperation and learning behavior. In constructing the problem model, factors
such as worker cooperation behavior, learning behavior, and preparation time for order
processing are taken into account. A nonlinear programming model is established to
minimize the maximum completion time and order processing time. To better solve the
seru production scheduling problem, this paper introduces a hybrid frog jump algorithm
with a strong global optimization ability to solve it. Based on the order-scheduling problem
solved in this article and the characteristics of the model, the hybrid leapfrog algorithm is
improved. The effectiveness of the model and algorithm has been demonstrated through
small-scale and large-scale numerical experiments. The following conclusions can be drawn
from the example experiment: (1) Both cooperative and learning behaviors of workers
will have an impact on seru production, and learning behavior has a greater impact on
seru production efficiency than cooperative behavior. (2) Considering the dual behavioral
effects of workers can optimize the seru’s production efficiency. (3) Positive cooperative
behavior can promote seru production, but negative cooperative behavior can hinder seru
production. Based on the aforementioned findings, we can offer several recommendations
for business managers. Firstly, enterprises should focus on creating a conducive work
environment, enhancing employee cooperation awareness, and facilitating communication
and collaboration to improve workshop production efficiency. Secondly, when developing
an order-scheduling plan, managers should take into account the learning tendencies of
workers during the order-production process. They should also fully utilize the learning
behavior effects of workers, gathering similar orders to improve worker skill proficiency
and further improving the efficiency of seru production systems.

The order-scheduling problem addressed in this article, with known order require-
ments, does not consider the impact of dynamic factors such as random order arrival
and new order arrival. It is limited to static order scheduling. Future research can focus
more on dynamic factors and consider random order demands to better fit the actual seru
production environment.
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Notation

i Index of seru, i = 1, 2, . . ., I.
j Index of order, j = 1, 2, . . ., J.
w Index of worker, w = 1, 2, . . ., W.
p Product types, p = 1, 2, . . ., P.
k Processing sequence of orders in seru, k = 1, 2, . . ., K.
Ts

p Standard processing time for process s of product p.
M Incompressible factor (0 ≤ M ≤ 1).
b Learning index (−1 ≤ b ≤ 0).
αwu Cooperation coefficient between worker w and worker n.
αw Cooperative influence factors of workers w.
Sj Quantity of order j.
Wmin The lower limit for worker allocation within seru.
Wmax The upper limit for workers allocated within seru.
FCBj Start time of order j in seru i.
ST j Preparation time of order j in seru i.
FCj Processing time of order j in seru i.
Qjw Number of orders completed by worker w.
Qijw The number of orders completed by worker w in seru i.
Ts

jw The total processing time for worker w to complete process s in order j.
Ti Available production time for seru i.
Zp Replacement time for product p.
Dj Delivery date of order j.

Ywi =

{
1, i f worker w is assigned to seru i
0, otherwise

Rij =

{
1, i f order j is processed in seru i
0, otherwise

Cjp =

{
1, i f the product type o f order j is p
0, otherwise

Xijk =

{
1, i f the processing position o f order j in seru i is k
0, otherwise

Uwp =

{
1, I f the type o f product processed by worker w is p
0, otherwise
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