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Abstract: Accurate stress field calculation of the casing-cement-stratum system is crucial for evaluat-
ing wellbore integrity. Previous models treated in-situ stress as boundary pressure loads, leading to
unrealistic infinite displacements at infinity. This study presents a three-dimensional (3D) analytical
solution for the stress field within the casing-cement-stratum system in inclined wells, considering
in-situ stress and hydrostatic stress in cement as the initial stress state and taking into account stress
components related to the axial direction. Assuming a plane strain condition and superimposing the
in-plane plane strain problem, elastic uni-axial stress problem and anti-plane shear problem, a 3D
analytical solution is obtained. Comparisons with previous models indicate that the existing model
overestimates the absolute values of stress components and failure potential of casing and cement
in both 2D and 3D scenarios. The presence of initial stress in cement greatly increases the absolute
value of the compressive stress state but decreases the failure potential in cement, which has not
been well studied. Additionally, a low Young’s modulus and high initial stress state of the cement
benefits the cement’s integrity since the maximum Mises stress significantly decreases. The new 3D
analytical solution can provide a benchmark for 3D numerical simulation and quick assessment for
wellbore integrity.

Keywords: casing-cement-stratum system; 3D analytical solution; initial stress state of cement; in-situ
stress; inclined well

1. Introduction

Zonal isolation often fails throughout the life of oil/gas wells due to mechanical failure
of casing and cement [1]. Moreover, the oil/gas leaks from the reservoir to the shallow
aquifers and abandonment of the well occurs, and environmental and safety concerns are
inevitable [2,3]. Hence, precise stress field calculations of the casing-cement-stratum system
play a crucial role in evaluating mechanical wellbore integrity.

Aside from numerical modeling works, analytical solutions have been developed
for determining the stress field in the casing-cement-stratum system [4–6]. Yin et al. [7]
developed a theoretical solution for in-plane stress distribution in the casing-cement-
stratum system. Moreover, Yin and Gao [8] derived the in-plane stress field in directional
(inclined) cemented wells. Then, in the directional wells [9] and vertical section of the
wells [10], the stress field and collapse resistance of multilayer cemented casing were
examined. The wellbore integrity of HPHT gas wells [11], carbon sequestration projects [12],
well testing and production process [13] have all been analytically analyzed by taking into
consideration the thermal effect. Moreover, the impact of casing eccentricity on the failure
of the cement sheath was analytically examined [14]. Xia et al. [15] obtained a transient
response to the casing-cement-stratum system under dynamic radial tractions. Li et al. [16]
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obtained an analytical thermo-poroelastic response of the casing-cement-stratum system
under internal hydraulic and thermal perturbation. However, the aforementioned models
only obtained the in-plane stress field in vertical and inclined wells, neglecting the 3D
stress field, which takes into account stress components with the axial direction. Atkinson
and Eftaxiopoulos [17] employed complex potentials to determine the stress field in the
in-plane and anti-plane issues for an inclined, cased and cemented wellbore. Vitali et al. [18]
combined classical Kirsch and Einstein-Schwartz solutions to obtain an analytical solution
for tunnels not aligned with geostatic principal stress directions, which provides the stress
and displacement distribution induced by far-field axial shear stresses. Jo [19] derived the
3D stress field for inclined wells under the assumption of generalized plane strain condition
and taking thermal effect into account.

However, the majority of models [7–19] considered the in-situ stress that already
existed prior to excavation as the boundary pressure load rather than as the initial stress;
this results in infinite displacements at infinity in the stratum and significant error for
calculating an appropriate stress field [20]. Li et al. [21] considered the in-situ stress as the
initial stress state to assess the casing integrity during the hydraulic fracturing of shale
gas wells. Wei et al. [22] simulated the factors influencing the cement sheath integrity in
hydraulic fractured wells, discovering that injection pressure significantly affects cement
debonding. Yan et al. [23] simulated the debonding degree of cementing interfaces during
fracturing and found that improving the interfacial bonding strength and reducing the
elastic modulus of cement can promote wellbore integrity. Simone et al. [24] developed
an analytical solution to calculate the in-plane stress field of the vertical casing-cement-
stratum system with uniform in-situ stress, taking into account the drilling, construction,
and production phases. To the best of the authors’ knowledge, a 3D stress field has not yet
been established for the inclined casing-cement-stratum system that treats in-situ stress as
the initial stress state.

A further factor that must be overlooked is the cement’s initial stress state. According
to Saint-Marc et al. [25], attaining long-term cement-sheath integrity depends on the initial
condition of stress. Petersen and Ulm [26] examined the impact of early-age stress and
pressure developments in the setting of cement on cement failure. When Meng et al. [27]
proposed a model to estimate the drop in total interface stress in cement during hydration,
they discovered that increasing the cement’s initial stress will protect it. For the sake of
simplification, the hydrostatic stress of cement is frequently taken to be equal to the initial
stress state [28–30].

This work establishes a 3D analytical model of the stress field in the casing-cement-
stratum system for inclined wells to assess wellbore integrity. The 3D problem is separated
into three parts on the plane strain condition: in-plane plane strain problem, elastic uni-
axial stress problem and anti-plane shear problem. Moreover, the in-situ stress in the
stratum and the hydrostatic stress in the cement are regarded as the initial stress state.
The stress field in the casing-cement-stratum system for inclined wells is then obtained by
applying continuity of stress and displacement at the interfaces and boundary conditions.
Comparisons with the existing model are made to demonstrate the necessity of treating the
in-situ stress as the initial stress. In addition, a sensitivity analysis is conducted to estimate
the influence of different factors on the integrity of the casing and cement. In the end,
a 3D analytical solution can provide a benchmark for numerical simulation and a rapid
assessment of wellbore integrity.

2. Formulation
2.1. Problem Description, Decomposition and Basic Equations

The system of steel casing, cement sheath, and stratum constitutes the near wellbore
region after wellbore drilling and completion, as depicted in Figure 1. Assuming perfect
bonding at the interfaces of casing-cement and cement-stratum, the continuity of the
corresponding stress and displacement components is satisfied. The inner radii of casing,
cement and stratum are a, b, and c, respectively. It should be noted that in-situ compressive
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stresses in the stratum have been applied before well construction, so they represent the
initial stress state for the casing-cement-stratum system. Then, the three principle stresses in
the stratum at the Cartesian coordinate can be decomposed by the vertical stress component
σv and unequal horizontal stress components σH and σh, respectively. Moreover, the gravity
of the casing and cement (hydrostatic pressure) has also been exerted before wellbore
completion. In this study, the initial stress state in the cement is simulated by the hydraulic
pressure of the slurry. Meanwhile, a uniform wellbore pressure pw acts on the inner surface
of the casing. Given that the cross-sectional dimension is trivial compared to the length
dimension of the system, this 3D problem can be treated as a plane strain problem [31,32].
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Figure 1. The structure of cylindrical casing-cement-stratum system.

The transformation from the Cartesian coordinates to the borehole coordinate is shown
in Figure 2, where an inclined or horizontal wellbore in the petroleum industry is considered.
We assume that the borehole is inclined to the X-Y-Z far-field principal stress axes. The
Cartesian coordinate system coincides with the principal axes of the in-situ far-field stress,
which are designated as σx, σy, σz. The borehole coordinate is defined by a local coordinate
system x-y-z, with the borehole axes coinciding with the z-axis. In the borehole system, α is
an azimuth angle to the Z-axis, and β is a zenith angle toward the Z-axis.
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Then, in the borehole coordinates, the stress tensor reads:

σ =

σxx σxy σxz
σxy σyy σzy
σxz σzy σzz

 = L

σH 0 0
0 σh 0
0 0 σv

LT (1)
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where

L =

 cosβcosα −cosβsinα sinβ
sinα cosα 0

−sinβcosα sinβsinα cosβ

 (2)

To obtain the principal horizontal stress components, a rotation of coordinates around
the z-axis is performed. The angle of rotation is given as:

θr =
1
2

tan−1 2σxy

σxx − σyy
. (3)

Then, the initial in-situ stress in the polar coordinate reads:

σs
rr0 = −P− S cos(2θ′), σs

θθ0 = −P + S cos(2θ′), τs
rθ0 = S sin(2θ′). (4)

where P = (σxx + σyy)/2, S = (σxx − σyy)/2, θ′ = θ − θr. Variables with superscripts con-
taining ‘i = ca, ce, s’ are related to corresponding casing, cement and stratum, respectively.
Moreover, the subscript 0 denotes the initial stress state.

Owing to the linearity of elasticity theory and the in-situ far-field conditions, the
problem can be decomposed into three sub-problems: (I) in-plane plane strain problem;
(II) elastic uni-axial stress problem; (III) elastic anti-plane shear problem [31–33]. Then, the
total solution of the inclined casing-cement-stratum system can be obtained by superposi-
tion. In addition, the tensile stress is taken as a positive.

The boundary conditions of three Sub-problems I, II and III can be listed as:

(1) In-plane plane strain Sub-problem I: this sub-problem can be divided into an axisymmetric
and asymmetric mode, which is widely applied. Mode one, axisymmetric loading:

σ
I(1)
rr

∣∣∣
r=rw

= −pw, τ
I(1)
rθ

∣∣∣
r=rw

= 0,

σ
ce,I(1)
rr0 = σ

ce,I(1)
θθ0 = −σce

0 = −ρcegh,

σ
s,I(1)
rr0 = σ

s,I(1)
θθ0 = −P,

(5)

Mode two, asymmetric loading:

σ
I(2)
rr

∣∣∣
r=rw

= 0, τ
I(2)
rθ

∣∣∣
r=rw

= 0,

σ
s,I(2)
rr0 = −Scos(2θ′), σ

s,I(2)
θθ0 = Scos(2θ′), τ

s,I(2)
rθ0 = Ssin(2θ′),

(6)

(2) Elastic uni-axial stress problem II:

σce,II
zz0 = −σce

0 = −ρcegh, σs,II
zz0 = −σs

zz0, (7)

(3) Elastic anti-plane shear problem III:

σca,III
rz

∣∣∣
r=rw

= 0, σca,III
θz

∣∣∣
r=rw

= 0,

σs,III
rz0 = −(σs

xz0 cos θ + σs
yz0 sin θ),

σs,III
θz0 = (σs

xz0 sin θ − σs
yz0 cos θ),

(8)

2.2. Solution Formulation
2.2.1. Solution of Mode One in Sub-Problem I

The classical solution for an elastic hollow cylinder subjected to axisymmetric loads is
used for the casing, cement, and stratum. Chemical shrinkage during the cement setting
process, which can affect the internal stress state in cement, is not considered in this
paper since the stress state in the cement is caused by fluid column pressure and the



Processes 2023, 11, 1164 5 of 17

deepest cement sets first. Then, the general solution for the stress and displacement field in
increment form is given as [19]:

∆σ
i,I(1)
rr = Ai

2 + Bi

r2 ,

∆σ
i,I(1)
θθ = Ai

2 −
Bi

r2 ,

ui,I(1)
rr = 1

2Gi

[
( 1

2 − νi)Air− Bi

r

]
,

(9)

Then the total stress in Mode one can be written as:

σ
i,I(1)
rr = σi

rr0 + ∆σ
i,I(1)
rr ,

σ
i,I(1)
θθ = σi

θθ0 + ∆σ
i,I(1)
θθ .

(10)

Due to the infinity of displacement at infinity in the stratum, As = 0 applies. In
contrast, the existing models [19] treat the in-situ stress as boundary pressure loads instead
of an initial stress state, thus Equations (9) and (10) can be rewritten as:

σ
s,I(1)
rr = As

2 + Bs

r2 ,

σ
i,I(1)
θθ = As

2 −
Bs

r2 ,
(11)

In this case, according to σ
s,I(1)
rr

∣∣∣
r=∞

= −P in Equation (5), As = −2P applies. Conse-
quently, the corresponding ultimate stress field will differ from that of the present model
with As = 0.

The normal traction and displacement continuity and boundary conditions at the
casing-cement-stratum interfaces in Mode one are:

σ
ca,I(1)
rr

∣∣∣
r=R1

= −Pw,

σ
ca,I(1)
rr

∣∣∣
r=R2

= σ
ce,I(1)
rr

∣∣∣
r=R2

, uca,I(1)
rr

∣∣∣
r=R2

= uce,I(1)
rr

∣∣∣
r=R2

,

σ
ce,I(1)
rr

∣∣∣
r=R3

= σ
s,I(1)
rr

∣∣∣
r=R3

, uce,I(1)
rr

∣∣∣
r=R3

= us,I(1)
rr

∣∣∣
r=R3

,

(12)

Substituting Equations (9) and (10) into Equation (12), the linear equations can be
given as:

MI(1) ·XI(1) = NI(1) (13)

where MI(1) is a five-by-five matrix whose non-zero entries are given in Appendix A, and:

XI(1) =
[

Aca Bca Ace Bce Bs ]T,

NI(1) =
[
−Pw −σce

0 0 σce
0 − P0 0

]T.
(14)

From Equation (13), the array XI(1) consisting of the unknown coefficients can be
solved straightforwardly. Then, the corresponding stress and displacement distributions
within the casing-cement-stratum system in Mode one can be yielded. The vertical stress
components induced by horizontal stress, assuming plane strain condition, in Mode one
are given as:

∆σ
i,I(1)
zz = vi(∆σ

i,I(1)
rr + ∆σ

i,I(1)
θθ ) (15)
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2.2.2. Solution of Mode two in Sub-Problem I

In Mode two, the in-situ stress in the stratum varies with the polar angle θ′ in Equation (6).
By solving the stress function, the solution of a hollow cylinder subjected to cosinoidal and
sinusoidal distributions of normal and shear traction can be given as [20,21]:

σ
i,I(2)
rr = σ

i,I(2)
rr0 + ∆σ

i,I(2)
rr = σ

i,I(2)
rr0 − 2

(
Bi + 3Ci

r4 + 2Di

r2

)
cos(2θ′),

σ
i,I(2)
θθ = σ

i,I(2)
θθ0 + ∆σ

i,I(2)
θθ = σ

i,I(2)
θθ0 + 2

(
6Air2 + Bi + 3Di

r4

)
cos(2θ′),

σi,I
rθ = σ

i,I(2)
rθ0 + ∆σ

i,I(2)
rθ = σ

i,I(2)
rθ0 + 2

(
3Air2 + Bi − Ci

r2 − 3Di

r4

)
sin(2θ′),

(16)

Moreover, the displacement components are given as [18,19]: ui,I(2)
rr = − 2(1+νi)

Ei
(2vi Air3 + Bir− (1− vi)

2Ci

r −
Di

r3 ) cos(2θ′),

ui,I(2)
θθ = 2(1+νi)

Ei
((3− 2vi)Air3 + Bir− (1− 2vi)

Ci

r3 + Di

r3 )sin(2θ′),
(17)

Similarly, the vertical stress components in Mode two under the plane strain condition
are given as:

∆σ
i,I(2)
zz = vi(∆σ

i,I(2)
rr + ∆σ

i,I(2)
θθ ) (18)

In Mode two, the initial stress components are zero in the casing and cement, while
the initial stress components are non-zero for the stratum. Since the increment of stress and
the displacement of the stratum in Equations (16) and (17) at infinity is zero, we obtain:

As = Bs = 0 (19)

The continuity of stresses and displacements at the interfaces and boundary conditions
in Equation (6) give the following linear aligns:

MI(2) ·XI(2) = NI(2), (20)

where MI(2) is a 10-by-10 matrix whose non-zero entries are given in Appendix A, and:

XI(2) = [Aca, Bca, Cca, Dca, Ace, Bce, Cce, Dce, Cs, Ds]T,
NI(2) = [0, 0, 0, 0, S/2, S/2, 0, 0, 0, 0]T,

(21)

By substituting the unknown coefficients in XI(2), the incremental and total stress distri-
bution in Mode two of the system can be obtained. In contrast, the existing model [19] treats
the in-situ stress as boundary pressure loads instead of an initial stress state; Equation (16) can
be rewritten as: 

σ
i,I(2)
r = −2

(
Bi + 3Ci

r4 + 2Di

r2

)
cos 2θ′,

σ
i,I(2)
θ = 2

(
6Air2 + Bi + 3Di

r4

)
cos 2θ′,

τ
i,I(2)
rθ = 2

(
3Air2 + Bi − Ci

r2 − 3Di

r4

)
sin 2θ′,

(22)

According to the boundary conditions at infinity for the stratum in Equation (6),
As = 0, Bs = S/2 differing from those in corresponding Equation (19) applies. Correspond-
ingly, the matrix NI(2) in Equation (21) can be rewritten as:

NI(2)
old = [0, 0, 0, 0, S/2, S/2, 0, 0, Sc/2/Gs, Sc/2/Gs]T, (23)

2.2.3. Comparison between the Present and Existing Model

Previous models considered in-situ stress as the boundary pressure load at infinity
for the stratum, which led to displacements of the stratum at infinity being infinite, not
reflecting the actual situation [20,21]. The present model improves upon this by consid-
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ering in-situ stress as the initial stress state instead. For instance, the incremental radial
displacement in the stratum in Sub-problem I includes the terms in Equations (9) and (17): us,I(1)

rr = − (1−2vs)
4Gs

As,I(1)r,

us,I(2)
rr = 2(1+νs)

Es
Bs,I(2)r cos(2θ′),

(24)

In Equation (24) As,I(1) = −2P, Bs,I(2) = S/2 applies in the existing model while
As,I(1) = Bs,I(2) = 0 applies in the present model. So the displacements at infinity in the
stratum will be infinity rather than zero in the existing model. This difference between the
previous and present model ensures that the displacement and stress distribution in the
stratum are modeled more accurately, and this applies to Sub-problem III.

2.2.4. Solution of Sub-Problem II: Elastic Uni-Axial Stress Problem

Based on the plane strain assumption, vertical stress can be given as:

σi
zz = σi

zz0 + νi(∆σ
i,I(1)
zz + ∆σ

i,I(2)
zz ) (25)

2.2.5. Solution of Sub-Problem III: Anti-Plane Shear Problem

In this problem, the Navier equation of equilibrium is [16]:

∇2ui
z = 0, (26)

where ui
z is the vertical displacement component. Given that the wellbore is long, ∂ui/∂z = 0

applies, and we can assume that uz is a function of the radial coordinate r and polar angle θ.
Then, the solution of Equation (26) has the following forms [18]:

ui
z =

∞

∑
n=1

(Ai
nsin(nθ) + Bi

ncos(nθ))rn +
∞

∑
n=1

(Ci
nsin(nθ) + Di

ncos(nθ))r−n (27)

Using symmetry considerations, it can be suggested that the dependence of the stress
upon the polar angle θ in Equation (8) makes n = 1. Therefore, the stress components are
derived as follows:

σi
rz = σi

rz0 + ∆σi
rz = σi

rz0 + Gi((Ai − Ci

r2 ) sin θ + (Bi − Di

r2 ) cos θ),

σi
θz = σi

θz0 + ∆σi
θz = σi

θz0 + Gi((Ai + Ci

r2 ) cos θ − (Bi + Di

r2 )sinθ),
(28)

According to the boundary and continuity conditions, linear equations can be obtained
for the stress distributions induced by the initial stress in Sub-problem III. Additionally,
since the displacement of the stratum at infinity must be zero, As = Bs = 0 applies in
Equations (27) and (28). Therefore, the corresponding linear aligns are given as:

K ·XIII
1 = L1,

K ·XIII
2 = L2,

(29)

where
XIII

1 = [Aca, Cca, Ace, Cce, Cs]T, XIII
2 = [Bca, Dca, Bce, Dce, Ds]T,

L1 =
[
0, 0, Ss

yz0, 0, 0
]T

, L2 =
[
0, 0, Ss

xz0, 0, 0
]T,

(30)

and K is listed in Appendix A.
In contrast to the present model, the existing model assumes that the sum displacement

and stress at the interface is continuous. The coefficients in Equations (27) and (28) can be
given as As

old = Syz/Gs, Bs
old = Sxz/Gs, according to the initial stress state in Equation (8),

following a similar approach as in Sub-problem I. However, this leads to the displacement
at infinity of the stratum being infinite due to the term (As

old sin θ + Bs
old cos θ)r, which is
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not realistic and will be discussed later. Correspondingly, the modified parameters L1, L2
in the existing model can be given as:

L1old =
[
0, 0, Ss

yz0, 0, Ss
yz0c/Gs

]T
, L2old = [0, 0, Ss

xz0, 0, Ss
xz0c/Gs]

T (31)

2.3. The 3D Total Stress Field within the Casing-Cement-Stratum System

The ultimate stress components can be obtained as a superposition solution of three
Sub-problems: in-plane plane strain, uni-axial stress and anti-plane shear problems. Addi-
tionally, the initial stress of cement is considered, which affects the stress field and failure
potential. The ultimate stresses can be given as:

σi
rr = σi

rr0 + ∆σ
i,I(1)
rr + ∆σ

i,I(2)
rr ,

σi
θθ = σi

θθ0 + ∆σ
i,I(1)
θθ + ∆σ

i,I(2)
θθ ,

σi
rθ = σi

rθ0 + ∆σ
i,I(2)
rθ ,

σi
zz = σi

zz0 + νi(∆σ
i,I(1)
zz + ∆σ

i,I(2)
zz ),

σi
rz = σi

rz0 + ∆σi
rz,

σi
θz = σi

θz0 + ∆σi
θz.

(32)

3. Results and Discussions
3.1. Validation of Present Analytical Model

The purpose of this paper is to introduce a straightforward and comprehensive 3D
analytical solution for the stress field of the casing-cement-stratum system, taking into
account the initial stress state of cement and the stratum. The input parameter values used
in the simulation, listed in Table 1, are obtained from the literature of Liu et al. [20]. The
new analytical solution to the present model in Sub-problem I is compared with the Liu
model [20], which considers the initial displacement induced by the in-situ stresses in the
stratum and ignores the hydrostatic stress in the cement. In contrast, this paper uses the
initial stress in the stratum and cement directly to obtain the ultimate stress field, resulting
in a more straightforward and understandable approach.

Table 1. Input parameters (Data from Liu et al. [20]).

Component Casing Cement Stratum

Elastic coefficients and geometry
Young’s modulus E/GPa 210 12 10

Poisson’s ratio ν 0.3 0.25 0.2
Inner radius/mm 59.31 69.85 107.95

Stress state
Initial vertical stress σV/MPa 0 0 −100 (assumed)

Initial horizontal stress σH , σh/MPa 0 0 −82, −55
Internal pressure pw/MPa −34

The accuracy of the model results in Sub-problem I, which considers the in-situ stress
as the initial stress state (present model) or as boundary pressure loads (existing model);
this is validated by excellent agreement with existing results and finite element analysis
(FEA) [20], as shown in Figure 3. The existing model considers the initial stress in the
stratum as the boundary pressure loads, which causes great error compared to the present
model. A detailed analysis has been conducted by Liu et al. [20] and Li et al. [21], which is
not discussed here.

Furthermore, the existing model leads to an infinite radial displacement at infinity in
the stratum, which is clearly unrealistic, as shown in Figure 4. In contrast, in the present
model, as the radius increases, the radial displacement approaches zero. The reason lies in
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the fact that the initial stress in the stratum has been exerted before wellbore completion
and cannot be regarded as the boundary pressure loads, which is always assumed in the
existing model.
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Figure 3. Comparisons of model results in Sub-problem I with existing model results and corresponding
FEA [20] (Reproducted with permission from Liu W, Appl. Math. Mech): (a) radial stress; (b) hoop
stress. In addition, model results consider in-situ stress as boundary pressure loads, which coincide
with corresponding FEA [20] and validate the accuracy of the analytical method. The input parameters
are given in Table 1.
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Figure 4. Radial displacement along 0◦ direction with increasing radius in Sub-problem I. The
displacement in stratum increases linearly with increasing radius, which implies unrealistic infinite
displacement at infinity.

3.2. Model Comparison between the Present Solution and Existing One in Antiplane Shear
Problem III

In the case of an inclined wellbore with a deviation azimuth of 30◦ and a devia-
tion angle of 60◦, the in-situ anti-plane shear stresses in the stratum can be given as
σs

xz0 = 16.6 MPa, σs
yz0 = 5.8 MPa. The induced anti-plane stresses using both the present

and existing analytical models are shown in Figure 5. Similar to Sub-problem I, the existing
analytical model leads to significant errors compared to the corresponding present model
in Sub-problem III.
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Figure 5. Comparisons of model results of anti-plane stress field in the casing-cement-stratum system
with existing model: (a) nondimensionless σrz/σs

xz0 distribution along 90◦ direction; (b) nondimension-
less σθz/σs

yz0 distribution along 0◦ direction, which show great differences between them.

Equations (29) and (30) imply that the coefficients XIII
1 , XIII

2 are proportional, resulting
in the same nondimensionless anti-plane shear stress as the σrz/σs

xz0, σrz/σs
yz0 distributions

when considering the dependence of cosinoidal and sinusoidal anti-plane shear stress in
Equation (8). However, the existing model greatly amplifies the induced anti-plane shear
stresses σrz, σθz compared to the corresponding present model, especially in casing and
cement. Therefore, the present analytical model is recommended to accurately calculate
the stress field in the casing-cement-stratum system in all Sub-problems. Additionally, the
existing model in Sub-problem III causes linearly increasing radial displacement in the
stratum in Figure 6, which is also unrealistic at infinity.
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Figure 6. Radial displacement along 0◦direction with increasing radius in the anti-plane shear
Sub-problem III. The radial displacement in stratum increases linearly with increasing radius, which
implies unrealistic infinite displacement at infinity.

Similar to the result of Sub-problem I, a low Young’s modulus of cement will decrease
the anti-plane shear stress σrz, σθz in the casing and cement in both the present and existing
models, as shown in Figure 7. This reduction will benefit wellbore integrity. However,
Poisson’s ratio of cement has little influence on the anti-plane shear stress.
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Figure 7. Influence of Young’s modulus and Poisson’s ratio of cement on the anti-plane shear stress dis-
tribution: (a) nondimensionless σrz/σs

xz0; (b) nondimensionless σθz/σs
yz0 distribution along 0◦ direction.

3.3. The Effect of Initial Stress State of Cement on the Stress Field

In previous models [7–21], the initial stress of the cement was often ignored. However,
the existence of initial stress in cement has a significant influence on the stress distribution,
as shown in Figure 8. Due to the isotropic initial stress state in the cement, the effect of the
initial stress state of cement is studied in Mode one of Sub-problem I. The initial stress state
in cement promotes the uniformity of radial and hoop stress along the radial direction and
increases the absolute values of compressive radial and hoop stresses. Moreover, for the
given parameters in this case, the initial stress state in cement has little influence on the
stress field in the casing.
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Figure 8. Influence of the initial stress state of cement on stress field within the casing-cement-stratum
system: (a) Radial stress; (b) Hoop stress in Mode 1 of Sub-problem I. In this case, a vertical well is
considered.

The effect of Young’s modulus and Poisson’s ratio on cement in the stress field in
Mode one of Sub-problem I, considering the initial stress state of cement, is studied in
Figure 9. Considering the initial stress state of cement, a low Young’s modulus also induces
low absolute values of radial and hoop stress. Ignoring the initial stress state of cement will
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amplify the decreasing degree of absolute values in radial and hoop stresses in the casing
and cement under low Young’s modulus of cement condition.
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case, a vertical well is considered.

4. Estimation of the Casing and Cement Integrity

The Mohr-Coulomb failure criterion has been widely used to evaluate cement failure
potential, while the von Mises yield criterion is used to assess longitudinal zonal isolation
in the cement [34]. In this paper, the 3D von Mises yield criterion is adopted to evaluate the
failure potential of casing and cement:

σMises =

√
1
2

[
(σr − σθ)

2 + (σr − σz)
2 + (σz − σθ)

2
]
+ 3τ2

rθ + 3τ2
rz + 3τ2

θz (33)

Correspondingly, the 2D von Mises yield criterion is simplified as:

σMises,2D =

√
1
2
((σr − σθ)

2 + σ2
r + σ2

θ + 6τ2
rθ) (34)

The Mises stress in the 2D and 3D solution at the inner surfaces of casing and cement
are evaluated by the present and existing models, as shown in Figure 10. In this case, an
inclined wellbore with a deviation azimuth of 30◦, a deviation angle of 60◦ and zero initial
stress of cement is considered. The symmetry of von Mises stress in the 2D solution, θr,
validates the accuracy of the model results in Sub-problem I. In contrast, the existence of an
anti-plane shear stress distribution in Sub-problem III breaks the symmetry of the Mises
stress distribution, θr, in the casing and cement.

Consistent with the law above, the existing model greatly signifies the values of Mises
stress in casing and cement both in the 2D and 3D solution. The 3D solutions of the present
and existing models differ from the corresponding 2D solutions, which highlights the
necessity of establishing the 3D analytical solution to evaluate wellbore integrity. Counter-
intuitively, the 2D Mises stress in both the present and existing models is higher than that
in the 3D case, particularly for the cement. This suggests that the common 2D solution
overestimates the failure potential of cement compared to the 3D model. This could be
because ignoring the existence of stress components with axial direction increases the
nonuniform degree of stress components.
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Figure 10. The Mises stress distribution in 2D and 3D solution at the inner surfaces of (a) casing and
(b) cement using the present and existing model. Two-dimensional von Mises stress distribution with
a changing circumference angle shows symmetry θr, while anti-plane shear stress in the 3D model
breaks it. In this case, an inclined wellbore with a deviation azimuth of 30◦ and a deviation angle of
60◦ is considered.

Figure 11 demonstrates how Young’s modulus and the initial stress state of cement
affect the maximum Mises stress in casing and cement in the present 3D model. As Young’s
modulus increases, the maximum Mises stress in the casing, and cement approaches
a constant value. Simultaneously, the presence of initial stress in cement significantly
decreases the maximum Mises stress in the cement with moderate Young’s modulus values
of cement. This occurs because the initial hydrostatic compressive stress state in cement
moves Mohr’s circle of stress in cement away from the failure envelope compared to the
case of zero initial stress. Additionally, under a low Young’s modulus of cement conditions,
the presence of initial stress in cement aggravates the failure potential of the casing, and
vice versa.
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Figure 11. The effect of Young’s modulus and initial stress of cement on the maximum von Mises
stress in (a) casing and (b) cement in the present 3D model.

Figure 12 illustrates the influence of wellbore pressure on the maximum Mises stress
in casing and cement in the present 3D model. As the wellbore pressure increases, the
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failure potential of the casing decreases while that of the cement increases. Furthermore,
the presence of initial stress in cement significantly decreases the increased failure potential
of cement with increasing internal wellbore pressure. The initial stress state has little
influence on the maximum Mises stress in the casing since radial and hoop stresses hardly
change with increasing initial stress in cement for the given specific parameters, as shown
in Figure 8.
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Figure 12. The initial stress state of cement’s effect on the maximum von Mises stress in (a) casing
and (b) cement in the present 3D model for the given specific parameters in Table 1.

5. Conclusions

This paper presents a new 3D analytical model for evaluating the stress field in inclined
oil/gas wells, considering in-situ stress as the initial stress instead of boundary pressure
loads and the existence of the initial stress of cement. The 3D analytical solution is obtained
by dividing the model into an in-plane plane strain problem, elastic uni-axial stress problem
and anti-plane shear problem. Moreover, the accuracy of the present model is validated by
the existing model results and finite element analysis. The following main conclusions can
be made:

(1) Compared to the existing model, the present model provides a more accurate stress
level in the anti-plane shear problem and eliminates unrealistic infinite displacements
at infinity.

(2) The maximum Mises stress in the present 3D model differs from that in the corre-
sponding 2D model, highlighting the importance of considering the uni-axial stress
problem and anti-plane shear problem. For the specific conditions studied in this
paper, the maximum Mises stress in the cement in the present 3D model is lower than
that in the corresponding 2D model, resulting in a more conservative failure potential
in the 3D circumstance.

(3) The existence of initial stress in cement has a significant effect on the cement failure
potential. For the specific conditions studied in this paper, as the wellbore pressure
increases, the failure potential of the casing decreases while that of cement increases.
However, the presence of initial stress in cement significantly decreases the increased
failure potential of cement with increasing internal wellbore pressure.
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Appendix A

MI(1)
1,1 = 1/2, MI(1)

1,2 = 1/a2,

MI(1)
2,1 = 1/2, MI(1)

2,2 = 1/b2, MI(1)
2,3 = −1/2, MI(1)

2,4 = −1/b2,

MI(1)
3,1 = (1− 2νca)b/(4Gca), MI(1)

3,2 = −1/(2Gcab),

MI(1)
3,3 = −(1− 2νce)b/(4Gce), MI(1)

3,4 = 1/(2Gceb),

MI(1)
4,3 = 1/2, MI(1)

4,4 = 1/c2, MI(1)
4,5 = −1/c2,

MI(1)
5,3 = (1− 2νce)c/(4Gce), MI(1)

5,4 = −1/(2Gcec),

MI(1)
5,5 = 1/(2Gsc),

MI(2)
1,2 = 1, MI(2)

1,3 = 2/a2, MI(2)
1,4 = 3/a4,

MI(2)
2,1 = 3a2, MI(2)

2,2 = 1, MI(2)
2,3 = −1/a2, MI(2)

2,4 = −3/a4,

MI(2)
3,2 = 1, MI(2)

3,3 = 2/b2, MI(2)
3,4 = 3/b4,

MI(2)
3,6 = −1, MI(2)

3,7 = −2/b2, MI(2)
3,8 = −3/b4,

MI(2)
4,1 = 3b2, MI(2)

4,2 = 1, MI(2)
4,3 = −1/b2, MI(2)

4,4 = −3/b4,

MI(2)
4,5 = −3b2, MI(2)

4,6 = −1, MI(2)
4,7 = 1/b2, MI(2)

4,8 = 3/b4,

MI(2)
5,6 = 1, MI(2)

5,7 = 2/c2, MI(2)
5,8 = 3/c4,

MI(2)
5,9 = −2/c2, MI(2)

5,10 = −3/c4,

MI(2)
6,5 = 3c2, MI(2)

6,6 = 1, MI(2)
6,7 = −1/c2, MI(2)

6,8 = −3/c4,

MI(2)
6,9 = 1/c2, MI(2)

6,10 = 3/c4,

MI(2)
7,1 = 2νcab3/Gca, MI(2)

7,2 = b/Gca, MI(2)
7,3 = −2(1− νca)/(bGca), MI(2)

7,4 = −1/(b3Gca),

MI(2)
7,5 = −2νccb3/Gce, MI(2)

7,6 = −b/Gce, MI(2)
7,7 = 2(1− νce)/(bGce), MI(2)

7,8 = 1/(b3Gce),

MI(2)
8,1 = (3− 2νca)b3/Gca, MI(2)

8,2 = b/Gca, MI(2)
8,3 = −(1− 2νca)/(bGca), MI(2)

8,4 = 1/(b3Gca),

MI(2)
8,5 = −(3− 2νce)b3/Gce, MI(2)

8,6 = −b/Gce, MI(2)
8,7 = (1− 2νce)/(bGce), MI(2)

8,8 = −1/(b3Gce),

MI(2)
9,5 = 2νcec3/Gce, MI(2)

9,6 = c/Gce, MI(2)
9,7 = −2(1− νce)/(cGce), MI(2)

9,8 = −1/(c3Gce),

MI(2)
9,9 = 2(1− νs)/(cGs), MI(2)

9,10 = 1/(c3Gs),

MI(2)
10,5 = (3− 2νce)c3/Gce, MI(2)

10,6 = c/Gce, MI(2)
10,7 = −(1− 2νce)/(cGce), MII

10,8 = 1/(c3Gce),

MI(2)
10,9 = (1− 2νs)/(cGs), MI(2)

10,10 = −1/(c3Gs),

K1,1 = 1, K1,2 = −1/a2,

K2,1 = Gca, K2,2 = −Gca/b2, K2,3 = −Gce, K2,4 = Gce/b2,

K3,3 = Gce, K3,4 = −Gce/c2, K3,5 = Gs/c2

K4,1 = b, K4,2 = 1/b, K4,3 = −b, K4,4 = −1/b,

K5,3 = c, K5,4 = 1/c, K5,5 = −1/c,
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