
Citation: Ma, T.; Yang, Y.; Xu, H.;

Song, T. Optimizing Task Completion

Time in Disaster-Affected Regions

with the WMDDPG-GSA Algorithm

for UAV-Assisted MEC Systems.

Processes 2023, 11, 3000. https://

doi.org/10.3390/pr11103000

Academic Editor: Iqbal M. Mujtaba

Received: 24 September 2023

Revised: 13 October 2023

Accepted: 13 October 2023

Published: 18 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Optimizing Task Completion Time in Disaster-Affected Regions
with the WMDDPG-GSA Algorithm for UAV-Assisted
MEC Systems
Tianhao Ma , Yulu Yang, Han Xu and Tiecheng Song *

School of Information Science and Engineering, Southeast University, Nanjing 210096, China;
220210899@seu.edu.cn (T.M.); 220210753@seu.edu.cn (Y.Y.); han_xu@seu.edu.cn (H.X.)
* Correspondence: songtc@seu.edu.cn

Abstract: In this paper, we investigate a UAV-assisted Mobile Edge Computing (MEC) system that is
deployed with multiple UAVs to provide timely data processing services to disaster-stricken areas.
In our model, since base stations are unavailable in disaster-affected areas, we solely employ UAVs
as MEC servers, as well as enable real-time data transmission during UAV flights by estimating
and compensating for the Doppler Frequency Shift (DFS). Subsequently, an optimization problem is
formulated to jointly optimize the trajectories and offloading strategies of multiple UAVs to minimize
the task completion time. We enhance the performance of the Multi-Agent Deep Deterministic Policy
Gradient (MADDPG) algorithm by using a weighted strategy algorithm, and we thus propose the
Weighted-Strategy-Based Multi-Agent Deep Deterministic Policy Gradient (WMDDPG) algorithm
for optimizing UAV trajectories. We employ the Greedy-Based Simulated Annealing (GSA) algorithm
to overcome the limitations of the greedy algorithm and to obtain the best offloading strategy. The re-
sults demonstrate the effectiveness of the proposed WMDDPG-GSA algorithm, as it outperforms
benchmark algorithms.

Keywords: UAV; Mobile Edge Computing (MEC); Multi-Agent Deep Reinforcement Learning;
Doppler Frequency Shift (DFS)

1. Introduction

Edge computing has attracted extensive attention for its ability to offer faster response
times and a higher quality of service to User Equipment (UE) in the context of the Internet
of Things (IoT) [1]. However, in areas affected by natural disasters such as earthquakes,
the limited power supply of traditional edge computing nodes hampers their ability to
provide data processing services. This limitation obstructs timely feedback on disaster-
related data and hinders the progress of relief efforts. In conventional edge computing
systems, unmanned aerial vehicles (UAVs) serve as communication relays to facilitate edge
computing by establishing a line-of-sight (LoS) channel with terrestrial UE [2]. In recent
years, the enhanced mobility and computing capabilities of UAVs have sparked interest in
utilizing them as mobile edge servers to deliver reliable data processing services for UE in
disaster-stricken areas [3]. This development has given rise to UAV-assisted Mobile Edge
Computing (MEC) systems [4].

Ensuring the timely processing and feedback of data during disaster rescue operations
is crucial in mitigating the impact of secondary disasters on lives and property. Therefore,
timeliness becomes a paramount consideration in UAV-assisted MEC systems [5]. Con-
sequently, this paper adopts timeliness as the evaluation criterion for UAV-assisted MEC
systems in disaster-affected areas or in other energy-constrained regions. The following
section introduces UAV-assisted MEC systems, explores the impact of the DFS on these
systems, discusses the current research on UAV trajectory design and offloading strategy,
and then finally introduces the main contributions and structure of this paper.
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1.1. The UAV-Assisted MEC System

In previous studies, due to significant signal obstructions caused by urban infrastruc-
ture, some UAV-assisted MEC systems employed UAVs as communication relays [6,7].
The utilization of UAVs as communication relays and MEC servers is a common approach
in UAV-assisted MEC systems [8,9]. Limited studies have explored exclusively utilizing
UAVs as MEC servers [10].

However, these studies do not consider the situation in which ground base stations in
disaster-stricken areas are unable to provide services due to power limitations. Therefore,
in order to better reflect the actual situation, this paper only considers UAVs as MEC servers
to assist the MEC system. Furthermore, to fully exploit the computing power and data
transmission potential of UAVs during flight, we combine data transmission with UAVs
movement and employ the Orthogonal Frequency Division Multiplexing (OFDM) system
to effectively meet the timeliness requirements.

1.2. The Impact of the DFS on the UAV-Assisted MEC System

With the application of 5G and B5G (beyond 5G) technologies in a MEC system,
along with the Doppler Frequency Shift (DFS) caused by the high mobility of UAVs, the
subcarriers of the OFDM communication link are no longer orthogonal; as a result, the
receiver cannot correctly demodulate the signal [11–13]. Therefore, in order to achieve
data transmission during UAV flights, it is necessary to consider DFS estimation and
compensation in the transmission process.

The research on UAV-assisted MEC systems has produced a data-assisted DFS estima-
tion and compensation method, whereby the DFS estimation process has been optimized by
utilizing historical estimation results to achieve rapid and accurate DFS compensation [14].
However, this research is limited to the communication link between UAVs and UE without
encompassing specific MEC scenarios. In the papers of [15,16], a more practical G2A chan-
nel model was used, and it was assumed that the DFS caused by UAVs was well estimated.
However, the above studies did not use actual algorithms to estimate the DFS.

1.3. UAVs Trajectory Design

Currently, UAV-assisted MEC systems can be divided into two categories: single-
UAV systems and multi-UAV systems. In single-UAV systems, due to the highly non-
convex nature of UAV trajectory design, conventional research approaches often employ
strategies based on continuous convex approximation [17,18]. With the advancement of
deep reinforcement learning (DRL), the DRL techniques based on discrete or continuous
action spaces have been employed in UAV-assisted edge systems. The commonly used
algorithms include DDPG [19], Q-learning [20], etc.

The Multi-UAV-assisted MEC systems offer numerous advantages compared to single-
UAV systems. For example, the collaboration among UAVs can effectively cater to a
larger number of UE simultaneously, thereby further reducing the overall service duration.
In earlier studies, a meta-heuristic ant colony optimization algorithm was proposed to
optimize the trajectory of UAVs [21]. Since traditional DRL algorithms such as DDPG
can only be used for single-agent tasks, they are not suitable for multi-UAV systems.
However, the integration of multi-agent learning and deep reinforcement learning has led
to the development of algorithms such as MADDPG [22] and COMA [23], which have
simplified the solution for multi-UAV systems. As a result, multi-agent reinforcement
learning (MADRL) has gained popularity in the field of multi-UAV systems. For example,
both the papers of [24,25] utilized the MADDPG algorithm to optimize UAV trajectories.

1.4. Offloading Strategy

After determining the flight trajectory of UAVs, different offloading strategies will
affect the timeliness of the system. Most studies on UAV-assisted MEC systems do not have
specific offloading strategy algorithms [24,26]. If we consider UE as tourists and different
UAVs as different means of transportation, this offloading strategy can be seen as a multi-
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criteria itinerary planning strategy. In [27], a state-transition-simulated annealing algorithm
was proposed to find the shortest path for multi-criteria journey planning. Considering
the different interests tourists have in different attractions, a greedy algorithm was used
to minimize the total distance of the journey [28]. The above algorithms can be used as
offloading strategies in this study, but the simulated annealing algorithm may have the
problem of not finding the optimal solution, while the greedy algorithm may fall into the
issue of local optima.

1.5. Contributions and Structure

This paper considers a UAV-assisted MEC system for disaster scenarios, where multi-
ple UAVs are deployed as MEC servers. The main contributions of this paper are as follows:

1. This paper presents a UAV-assisted MEC system that models the UAV trajectory as
a continuous variable. This approach offers a more accurate representation of the
UAV’s behavior and performance during movement.

2. In our model, we enable data transmission during UAV movement by considering
the impact of the DFS on data transmission. The accurate estimation of the DFS is
employed to enhance the precision of data transmission during UAV movement.

3. To tackle this highly non-convex problem, we decompose it into two sub-problems in
this study. The first sub-problem addresses UAV trajectory planning, for which we
propose a Weighted-Strategy-Based Multi-Agent Deep Deterministic Policy Gradient
(WMDDPG) algorithm to determine the optimal trajectory. The second sub-problem
deals with optimizing the offloading strategy. To overcome the limitations of a
greedy algorithm, we introduce an enhanced approach that combines both greedy
and simulated annealing (GSA) algorithms.

The remaining sections of this paper are structured as follows: Section 2 presents the
system model and problem formulation, which is followed by our proposed WMDDPG-
GSA algorithm in Section 3 to address the optimization problem. Subsequently, we present
the simulation results in Section 4, and then conclude with Section 5.

2. System Model

As shown in Figure 1, this paper presents a UAV-assisted MEC system that consists
of multiple UAVs collaborating to provide services to a UE group. The UAVs primarily
receive data from the UE and process it, which is denoted byM = {1, 2, . . . , M}. It is
assumed in this paper that there are N randomly distributed UE in the system, which is
represented by N = {1, 2, . . . , N}.

Figure 1. System model.
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2.1. Motion Model

In order to minimize the service time, this paper discretizes the total service time
into Kmax time slots, each of length ∆, which is represented by K = {1, 2, . . . , Kmax}.
The UAVs move to the next destination in each time slot and can receive and send data
during the flight. The position of the l-th UAV after the end of the k-th time slot (when
k = 0, the position of the UAV is the starting position) is denoted as follows:

ql(k) = [xl(k), yl(k)]
T , ∀l ∈ M, ∀k ∈ K. (1)

The location of the i-th UE is the following:

wi = [wi(x), wi(y)]
T . (2)

As shown in Figure 2, the l-th UAV flies at a velocity vl(k) in each time slot k. This velocity
cannot exceed the maximum flight speed Vmax. The flight direction is represented by the
unit vector ξ l(k).

ql(k) = ql(k− 1) + vl(k)ξ l(k), ∀l ∈ M, ∀k ∈ K, (3)

ξ l(k) = [cos (ϕl(k)), sin (ϕl(k))], ∀l ∈ M, ∀k ∈ K. (4)

Figure 2. Schematic diagram of UAV flight.

The UAV flight area is defined as a circular area with radius R, which has the following:

xl(k)
2 + yl(k)

2 ≤ R2, ∀l ∈ M, ∀k ∈ K. (5)

In order to prevent collisions between the UAVs, the positions of the UAVs should have the
following relationship:

‖ql(k)− ql′(k)‖2 ≥ Dmin, ∀l 6= l′ ∈ M, ∀k ∈ K. (6)

According to the paper of [29], the flight power of the UAVs can be expressed as a function
of velocity:

PF(v) = P0

(
1 +

3v2

U2
tip

)
+ Pi

(√
1 +

v4

4v4
0
− v2

2v2
0

) 1
2

+
1
2

d0ρsGv3, (7)

where P0 and Pi are constants, Utip, v0, d0, s and G are parameters associated with UAV
characteristics, and ρ is a parameter related to the environment. Therefore, the energy
consumption of the l-th UAV flight in time slot k is given by the following formula:

EF
l (k) = PF(vl(k))∆, ∀l ∈ M, ∀k ∈ K. (8)
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2.2. Communication Model
2.2.1. Communication between UAVs and UE

At the beginning of each time slot, the UE choose whether to offload data to UAVs
or to perform local computing. Let ai,l(k) denote the offloading policy of i-th UE at time
slot k, where ai,l(k) = 1 indicates that i-th UE, which is connected to l-th UAV, otherwise
ai,l(k) = 0. In this paper, we adopt the orthogonal frequency-division multiplexing (OFDM)
system, which means that, due to the limited number of subcarriers, only the maximum
Cmax UE can offload tasks to the UAVs within one time slot:

N

∑
i=1

ai,l(k) ≤ CMAX, ∀l ∈ M, ∀i ∈ N , ∀k ∈ K. (9)

Due to the limited transmission capability of the UAVs, the UE whose distance is greater
than Dmax cannot be linked:

ai,l(k)di,l(k) ≤ Dmax, ∀l ∈ M, ∀i ∈ N , ∀k ∈ K, (10)

where di,l(k) represents the distance between the i-th UE and l-th UAV, which is defined as

follows: di,l(k) =
√
‖ql(k)−wi(k)‖2

2 + H2.
The angle between the l-th UAV and the i-th UE on slot k can be expressed as follows:

θ1
i,l(k) = arcsin

(
H

‖ql(k)−wi(k)‖2

)
. (11)

Considering the LoS channel between the UAVs and UE, we assumed that the UAVs
can obtain the positions of the UE through the radar or cameras equipped on the UAVs.
According to [30], the probability of the LoS channel is as follows:

Pi,l(k) =
1

1 + Cexp
(
−D

(
θ1

i,l(k)− C
)) . (12)

Therefore, the average channel gain can be expressed as per the following:

hi,l(k) = Pi,l(k)χβ0d−α
i,l (k) + (1− Pi,l(k))β0d−α

i,l (k)

= P̂i,l(k)β0d−α
i,l (k).

(13)

where β0 and χ are the attenuation coefficients, and α is the path loss exponent.
P̂i,l(k) = Pi,l(k)χ + (1− Pi,l(k)) represents the equivalent attenuation coefficient that con-
siders the LoS channel between the l-th UAV and the i-th UE at time slot k. Hence, the
transmission rate is expressed as follows:

ri,l(k) = B log2

(
1 +

hi,l(k)PUE

σ2

)

= B log2

(
1 +

β0PUE P̂i,l(k)
σ2di,l(k)

α

)
.

(14)

B represents the bandwidth of the communication channel, PUE represents the transmission
power of the UE, and σ2 represents the variance in the Gaussian noise that is added during
the transmission process. For simplicity, we defined this as follows:

SNR =
β0PUE

σ2 . (15)
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As shown in Figure 3, due to the limited energy of UE, the UE can perform partial
data computation locally in the initial stage. We assume that in time slot k, the i-th UE is
connected to the l-th UAV, and from then on, the data of the UE will only be computed
on the UAV. TTr

i,l (k) represents the duration of transmission between the i-th UE, which is
connected to the l-th UAV in the k-th time slot, and klink

i,l indicates the time slot number
when the i-th UE and l-th UAV start linking. Therefore, the number of bits transmitted by
the i-th UE and l-th UAV in the k-th time slot can be expressed as per the following:

Di,l(k) = ri,l(k)TT
i,l(k), (16)

M

∑
l=1

Kmax

∑
k=0

Di,l(k) = Di −
f UE

(
klink

i,l − 1
)

∆

si
, TT

i,l(k) ≤ ∆. (17)

where Di represents the total amount of data for the i-th UE, and si represents the CPU
cycles required for the i-th UE to process one bit.

Compared to offloading data, the amount of data for computing results is relatively
small, so the return time can be ignored. In addition, based on the above, it can be inferred
that the energy consumed by the l-th UAV during the data reception process in time slot k
is as follows:

ET
l (κ) =

N

∑
i=1

TT
i,l(k)Ptr−UAV , TT

i,l(k) ≤ ∆, (18)

Ptr−UAV is the power of the UAVs when receiving data.

Figure 3. Schematic diagram of the UE data processing.

2.2.2. Communication between UAVs

We assume that the communication between the UAVs does not interfere with the
communication between the UAVs and UE. As the communication between the UAVs is
mainly used to transmit computational results, the communication time between the UAVs
can be ignored.

2.2.3. DFS Estimation during UAV Flight

During the flight of the l-th UAV, the received data experience the DFS. Let the
original transmission frequency be f , and the known speed of flight for each time slot be
vl(k). We assume that the communication between the UAVs does not interfere with the
communication between the UAVs and UE. As the time slots are very small, the DFS of the
initial position of each time slot can be found instead of the DFS of that time slot.

In time slot k, the vector representing the projection of the connection between the l-th
UAV and i-th UE in the horizontal direction is as follows:

QWi,l(k) = [xl(k)− wi(x), yl(k)− wi(y)]
T . (19)

The angle between the flight direction of the l-th UAV and QW i,l(k) is as per the following:

θ2
i,l(k) = arccos

(
QW i,l(k) · ξ l(k)∣∣QW i,l(k)

∣∣× |ξ l(k)|

)
. (20)

The projection of the velocity of l-th UAV at time slot k on the line connecting the l-th UAV
and i-th UE can be calculated as follows:

vi,l(k) = vl(k)× cosθ2
i,l(k)× cosθ1

i,l(k). (21)
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The estimated DFS received by l-th UAV from i-th UE is per the following:

∆ f i,l =
C

C− vi,l(k)
f − f . (22)

After obtaining the estimated DFS, a pre-compensation algorithm can be used to correct
the impact of DFS on the OFDM system [15].

2.3. Computational Model

The local computing capability of the UE is denoted by f UE. Therefore, the local
execution time for the UE is given by the following formula:

TL
i =

Disi

f UE . (23)

The computational capability of the UAV is denoted by f UAV , and it is evenly allocated
to the connected UE in each time slot. Thus, the computation time of the l-th UAV for the
i-th UE in time slot k (which processes the data received in time slot k− 1) is given by the
following formula:

TC
i,l(k) =

Di(k− 1)si

f UAV (24)

The computation of the DFS at each time slot k is relatively simple, and it does not require
the calculation of computation time and energy consumption. The energy consumption of
the l-th UAV for computation is represented as follows:

EC
l (k) =

N

∑
i=1

εai,l(k− 1)Di,l(k− 1)si f UAV2
, (25)

where ε is a constant related to the chip structure of the UAVs.

2.4. Problem Formulation

In a disaster scenario, serving all UE as quickly as possible is of paramount importance.
Therefore, under the constraint of UAV energy, we jointly optimized the trajectory and
offloading strategy of the UAVs to minimize the total service time.

The total energy consumption of l-th UAV can be represented as per the following:

Kmax

∑
k=0

El(k) =
Kmax

∑
k=0

(
EF

l (k) + ET
l (k) + EC

l (k)
)

. (26)

Hence, the optimization problem in this paper can be formulated as follows:

P1 :min Kmax,

s.t.(1)− (6), (9), (10),
Kmax

∑
k=0

El(k) ≤ Emax,

(27)

Here, ql(k) and ai,l(k) are the parameters to be optimized.
Our objective is to jointly optimize the trajectory and offloading strategy of UAVs

under the energy constraint to minimize the total service time. Therefore, the appropriate
scheduling strategy and offloading strategy for UAVs are the key to our algorithm. Problem
P1 is a highly non-convex problem with integer variables ai,l(k) and continuous variables
ql(k), thus making it extremely difficult to find the optimal solution. To address this, we
propose a WMDDPG-GSA algorithm to solve the problem.
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3. WMDDPG-GSA Algorithm

In this section, we divide P1 into two sub-problems: one is finding the optimal
offloading strategy when using the GSA algorithm, and the other is finding the optimal
UAVs flight trajectory when using WMDDPG.

3.1. Offloading Strategy Algorithm

Given the known UAV trajectory in time slot k, the offloading strategy algorithm
aims to minimize the sum of distances between all connections while ensuring the maxi-
mum number of connections between the UAVs and UE. Therefore, the problem can be
formulated as follows:

P2 : min max
∑N

i=1 ai,l(k)

N

∑
i=1

ai,l(k)di,l(k),

s.t.ai,l(k) = {0, 1}, ∀i, l, k,
N

∑
i=1

ai,l(k) ≤ Cmax, ∀k ∈ K, ∀l ∈ M,

ai,l(k)di,l(k) ≤ Dmax, ∀i, l, k.

(28)

To address the above issue, our proposed GSA algorithm consists of two steps. First,
a greedy algorithm is used to find a local optimal solution. Then, a simulated annealing
algorithm is employed to use the local optimal solution generated by the greedy algorithm
as a reference and search for the global optimal solution of the problem. The pseudo-code
for the offloading strategy is given in Table 1.

Table 1. GSA algorithm for the offloading policy.

Algorithm GSA Algorithm for the Offloading Policy.

1: Update the distance between all UE and UAVs: di,l(k).
2: Initialize the sorted list of distance between all UAVs and UE: sorted_lst, and sort it in
ascending order.
3: Initialize the list of unassigned UE that can be connected to UAVs: unassigned_users.
4: Initialize the list of UE connected to each UAV as the empty list: link_dict_UAV = [] ∗ M,
initializes the list of UE connected to UAV in slot K as the empty list already_in = []
5: for l = 1, 2, . . . , M do
6: for i in sorted_lst do
7: if di,l(k) ≤ Dmax and i not in already_in and the pending data of i-th UE > 0 then
8: add i to the list link_dict_UAV[l] and the list already_in.
9: end if
10: end for
11: end for
12: store link_dict_UAV as the initial solution in best_solution, calculate the distance sum of
all UE connected to the UAVs as best_cost, and calculate the total number of connected UE as
max_connect_ue.
13: for i in range(200) do
14: update already_in and link_dict_UAV as empty lists.
15: for l = 1, 2, . . . , M do
16: for _ in range(Cmax) do
17: randomly select a i′-th UE from unassigned_users.
18: remove i′-th UE from unassigned_users.
19: if di′ ,l(k) ≤ Dmax and i′ not in already_in then
20: add i′ to the list link_dict_UAV[l] and the list already_in.
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Table 1. Cont.

Algorithm GSA algorithm for the offloading policy.

21: end if
22: end for
23: end for
24: end for
25: Calculate the distance sum of all the UE connected to the UAVs as new_cost, and calculate
the number of connected UE in the link_dict_UAV as new_connect_ue.
26: if new_connect_ue > new_connect_ue then
27: best_solution = link_dict_UAV
28: end if
29: if new_connect_ue == new_connect_ue then
30: if new_cost < best_cost then
31: best_solution = link_dict_UAV
32: end if
33: end if

3.2. UAV Trajectory Algorithm
3.2.1. State Space S

In our improved MADDPG algorithm, the state is divided into private observation
ol

pri(k) and public observation opub(k):

ol
pri(k) =

{[
dl,l′(k), dl,i(k), dl(k), Cl(k)

]
: ∀l′ 6= l ∈ M, ∀i ∈ N , Cl(k) ≤ 3,

dl(k) =
√

xl(k)
2 + yl(k)

2
}

,
(29)

opub(k) = {[Di(k), T(k)] : ∀i ∈ N}, (30)

where dl,l′(k) represents the spatial relationship with other UAVs, dl,i(k) represents the
spatial relationship with UE, dl(k)represents the distance between l-th UAV and the ori-
gin, and Cl(k) represents the number of UE connected to l-th UAV. Di(k) represents the
remaining data of the i-th UE in time slot k, and T(k) represents the elapsed time.

The observable state for the l-th UAV in time slot k is denoted as follows:
sl(k) = [opub(k), ol

pri(k)] : ∀l ∈ M. The observation of the entire environment is de-
noted by s(k) :

s(k) =
{[

opub(k), o0
pri(k), o1

pri(k), . . . , oM
pri(k)

]}
(31)

3.2.2. Action Space A
Action determines the UAV’s movement, including direction and speed:

a(k) = {al(k) = [vl(k), ϕl(k)] : vl(k)ε[0, VMAx], ϕl(k) = [0, 2pi), ∀l ∈ M }. (32)

3.2.3. State Transition Probability P

The state transition of dl,i(k) is determined by di,l(k) =
√
‖ql(k)−wi(k)‖2

2 + H2 and
the movement of the UAVs. The position relationship with other UAVs is determined by
the movement of all UAVs. The distance between the UAVs and the origin is determined
by the movement of the UAVs. Given the known positions of the UAVs, Cl(k) and Di(k)
are determined by the offloading strategy GAS algorithm.

3.2.4. RewardR
When the program is running, the environment provides feedback on the actions of the

UAVs. This paper aims to minimize the maximum service time. In order to accomplish the
overarching objective, it is imperative for each time slot to efficiently offload a substantial
amount of data while minimizing energy consumption. Consequently, all of the UAVs
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exhibit cooperative behavior, thereby enabling us to establish a unified form for the reward
of each UAV as follows:

R(k) = η1

M

∑
l=1

EC
l (k) + η2

M

∑
l=1

N

∑
i=0

Di,l(k). (33)

To satisfy Equations (5) and (6), we set a collision penalty and an out-of-bounds penalty
as follows:

Φc
l (k) =

{
Γc if (5) is not satisfied,
0 otherwise,

(34)

Φb
l (k)

{
Γb if (6) is not satisfied,
0 otherwise.

(35)

So the final reward for the UAVs is as per the following:

R̂l(k) = R(k) + Φc
l (k) + Φb

l (k) (36)

3.2.5. WMDDPG Algorithm

In order to find the optimal solution to the above problem, we utilized the Weighted-
Strategy-Based Multi-Agent Deep Deterministic Policy Gradient (WMDDPG) algorithm.
The algorithm is shown in Figure 4:

Figure 4. The WMDDPG algorithm.

First, the actor network and the critic network are initialized using parameters θC
M

and θA
M. To prevent oscillation during training, target networks are introduced in both the

actor and critic networks, with the parameters denoted as θC′
M and θA′

M . To ensure network
exploration, the Weight-Based Strategy algorithm or adding noise to the output of the actor
network are employed to generate actions for each agent in the early stages of training
(labeled as 1© in Figure 4).

The Weight-Based Strategy (WS) algorithm: For each UAV, the weight of the different
UE is a function of the distance from the UAV and whether there are data to be calculated.
The UAV always moves toward the UE with the largest weight. Because the UAV can
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serve multiple UE, the UE that are closer to each other can be regarded as the same UE.
The pseudo-code for the WS algorithm is given in Table 2.

Table 2. The WS algorithm.

Algorithm WS algorithm.

1: Initialize epsilon = 1.0.
2: if random(0, 1) <= epsilon then
3: Update the distance between all UE and UAVs:di,l(k).
4: Initialize the sorted list of distance between all UAVs and UE: distance_sort, and sort it in
ascending order.
5: Initialize the list of selected UE in time slot k as the empty list: selected_UE= [] ∗M.
6: Initialize the list of each UAV for the time slot k to move towards the UE as the empty list:
uav_move = [] ∗M.
7: for l = 1, 2, . . . , M do
8: for i in distance_sort[l] do
9: if len(selected_UE[l] ==0) and i not in selected_UE and the distance from the previ-
ously selected UE >= 80 then
10: add i to the list selected_UE[l]
11: end if
12: end for
13: end for
14: Initialize the sorted list of distances between the already selected UE and all UAVs: dis-
tance_selected_UE, and sort it in ascending order.
15: for l = 1, 2, . . . , M do
16: for i in distance_selected_UE[l] do
17: if len(uav_move[l] ==0) and i not in uav_move then
18: add i to the list uav_move[l]
19: end if
20: end for
21: end for
22:end if

The environment generates rewards and next states based on the actions deployed by
each agent during the current time step, and it then stores them as [s(k), a(k), r(k), s(k + 1)]
(labeled as 2© and 3© in Figure 4). Once a sufficient number of different time steps are
stored, the network training can commence.

The stored [s(k), a(k), r(k), s(k + 1)] is then extracted into the network structure. Differ-
ent actor networks take the respective agent’s observation sl(k) as inputting and outputting
the corresponding predicted actions µl(k) (labeled as 5© and 6© in Figure 4). Different
actor target networks take the respective agent’s observation sl(k + 1) as inputting and
outputting the corresponding predicted actions µ′l(k + 1) (labeled as 7© and 9© in Figure 4),
which together form the predicted actions µ′(k + 1) for all agents at the next time step.

µ′(k + 1) =
{[

µ′0(k + 1), µ′1(k + 1), . . . , µ′M(k + 1)
]}

. (37)

As shown in Figure 4, by inputting s(k) and a(k) into the critic network and replacing
al(k) in a(k) with µl(k), the corresponding score Q̃l(k) under this condition is obtained.
The parameters of the actor network are updated using policy gradients, as shown in
step 17© in Figure 4.

∇θC
M

J ≈ 1
S ∑

j
∇θC

M
µl(sl(k))∇al(k)Q̃l(s(k), a0(k), . . . , al(k), . . . , aM(k))

∣∣∣∣∣
al(k)=µl(sl(k))

(38)

As shown in steps 9© and 10© in Figure 4, different critic target networks input s(k)
and output scores Ql(k) for action a(k). As shown in steps 11© and 12© in Figure 4, different
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critic networks input s(k + 1) and output scores Q′l(k + 1) for action µ′(k + 1). In step 13©
of Figure 4, the actual Q value is calculated using the Bellman equation.

Q̂l(k) = rl(k) + γQ′l(k + 1). (39)

Based on the actual Q value and the estimated Q value, the loss function of the critic
network can be calculated:

L
(

θC
M

)
=

1
S

MSE
(
Ql(k), Q̂l(k)

)
. (40)

Finally, in steps 14© and 18©, the parameters of the target network are periodically updated
according to a rule:

θA′
M ← τ0θA

M + (1− τ0)θ
A′
M , (41)

θC′
M ← τ0θC

M + (1− τ0)θ
C′
M . (42)

where τ0 ∈ (0, 1) represents the soft update rate.

4. Simulated Result

In this section, we initially present the simulation configuration details and subse-
quently analyze the training performance of the proposed WMDDPG-GSA algorithm
when using the Weight-Based Strategy (WS), Random Choice (RC) algorithm, and tra-
ditional MADDPG algorithm as evaluation benchmarks. During the testing phase, we
validate the effectiveness of our algorithm by comparing it with the baseline algorithms in
a simulated environment.

4.1. Simulation Settings

We consider a service area with a radius of 300 m, which encompasses 16 randomly
distributed UE and 3 UAVs. The initial position of the UAV is fixed while maintaining
a flight height of 50 m. Furthermore, the value for other environmental parameters are
presented in Table 3.

Table 3. Simulation parameters.

Notation Physical Meaning Value

Dmax Coverage area of the UAVs 100 m
Dmin Minimum distance allowed between UAVs 15 m

∆ Duration of time slots 1 s
Vmax Maximum flight speed 30 m/s
Cmax Number of UE that the DP-UAVs can compute in parallel 3
f uav Computing capacity of UAVs 3× 109 cycle/s
f ue Computing capacity of the UE 1× 107 cycle/s
B Bandwidth 5× 105 Hz

The actor and critic networks both feature a fully connected hidden layer comprising
64 neurons, with the Rectified Linear Unit (ReLU) serving as the activation function for this
layer. The activation function of the output layer is the logical function (sigmoid). Further
details regarding the parameter settings associated with neural network training can be
found in Table 4.
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Table 4. Training parameters.

Training Parameter Value

Total number of training steps 1× 105

Learning rate of critic network 5× 10−5

Learning rate of actor network 5× 10−4

Discount factor 0.9
Soft update rate for target networks 0.01

4.2. Learning Stage

The variations in the reward function during training for different UAVs, given the
aforementioned parameters, are depicted in Figure 5. The cumulative reward shows an
upward trend from the beginning of training and eventually stabilizes at approximately
25,000 after 40,000 steps. During the training process, a collision occurred between UAV2
and UAV3, thereby leading to a sudden decrease in the reward function. The model
promptly adjusted its policy in subsequent training iterations, thus leading to a continuous
rise in the reward function. To further verify the effectiveness of the WMDDPG-GSA
algorithm, we propose three basic algorithms:

The Random Choice (RC) algorithm: The flight actions of the UAVs within the limited
range are randomly selected.

Figure 5. The cumulative reward of the UAVs.

The Weight-Based Strategy (WS) algorithm: The weights of the different UE associated
with each UAV are determined based on their distance to the UAV and the availabil-
ity of data for calculation; meanwhile, the UAV always moves toward the UE with the
highest weight.

The MADDPG-GSA algorithm: The network parameters are the same as the WMDDPG-
GSA algorithm, but the actions of each agent are generated by random selection in the early
stage of training or by adding noise to the output of the actor network.

The reward function in the training process is then compared with three baseline algo-
rithms, and the corresponding results are presented in Figure 6. Specifically, we conducted
simulations using the WS algorithm and the RC algorithm on 100 randomly generated
environments. The average objective function value obtained for the WS algorithm was
found to be 21,340.74, while that for the RC algorithm was determined to be 20,355.01.
The reward function of the WMDDPG-GSA algorithm initially increased and surpassed
that of the WS and RC algorithms within the first 20,000 training steps. When comparing
it to the MADDPG-GSA algorithm, we can observe that the MADDPG-GSA algorithm
converges around 80,000 steps with significantly inferior convergence compared to the
WMDDPG-GSA algorithm. This suggests that combining the WS algorithm with MADDPG
can accelerate convergence speed and enhance convergence effectiveness.
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Figure 6. Comparison of the cumulative reward functions of different algorithms.

4.3. Testing Phase

After the agents complete the centralized training, the UAVs carry a network of pre-
trained actors and service the UE based on their own private observations. To validate
the effectiveness of the pre-trained actor network in practical applications, we conduct
tests across multiple random environments, and plot the trajectory of the UAV in some
environments in Figure 7. The initial position of the UAV is denoted by a cross, while
its trajectory is represented by a line. The gray dots indicate the positions of the UE. In
the trajectories of the UAVs, it is evident that they exhibit divergent flight paths while
maintaining collision-free operations, thereby facilitating cooperative behavior. During the
initial stage, UAVs tend to operate at higher speeds, thus enabling faster service delivery to
the UE. Once one or more UE are connected, the UAVs transition into a hover or low-speed
movement toward the location with the next highest priority.

Figure 7. The trajectory of the UAVs in some environments.

The timeliness of the algorithm is primarily positively correlated with the aggregation
degree of the UE in terms of efficiency. A higher aggregation degree results in improved
timeliness, as it allows for a simultaneous service to a greater number of UE by the UAVs. In
this scenario, under the condition of an uninterrupted power supply, all terminals perform
data operations through local computing, thereby resulting in a total time of approximately
465 s. This paper employs the WMDDPG-GSA algorithm and achieves a task completion
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time reduction of over 90% across various scenarios. In the test scenario, the best shortening
effect reached 96.74%.

We conducted a test comparison of the WMDDPG-GSA algorithm with three bench-
mark algorithms. Some of the test results are shown in Figure 8, and it can be observed
that the proposed algorithm outperforms the benchmark algorithms. Compared to the
RC algorithm, the WMDDPG-GSA algorithm reduced the task completion time by 93.23%.
Compared to the WS algorithm, the WMDDPG-GSA algorithm reduced the task completion
time by 8.70%. Compared to the MADDPG-GSA algorithm, the WMDDPG-GSA algorithm
reduced the task completion time by 22.22%. From the test results, it can also be inferred
that the combination of the WS algorithm and the MADDPG-GSA algorithm has played a
very instructive role in further reducing the task completion time of the WMDDPG-GSA
algorithm proposed in this paper.

Figure 8. Test comparison of the different algorithms.

5. Conclusions

This study focuses on trajectory design and a task offloading strategy optimization in a
UAV-assisted Mobile Edge Computing (MEC) system while considering energy constraints.
To address this issue, we decomposed the problem into two subproblems, and we propose
the Weighted-Strategy-Based Multi-Agent Deep Deterministic Policy Gradient (WMDDPG)
algorithm for trajectory design and the Greedy-based Simulated Annealing (GSA) algo-
rithm for task offloading strategy optimization. In order to account for the impact of the
Doppler Frequency Shift (DFS) on UAV data transmission during flight, an estimation
and compensation method was employed to mitigate its effects. The numerical results
demonstrate that the proposed WMDDPG-GSA algorithm achieves a superior performance
compared to benchmark algorithms such as the Weight-Based Strategy (WS), Random
Selection (RC), and the conventional Multi-Agent Deep Deterministic Policy Gradient
(MADDPG) algorithm.
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