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Abstract: Shale gas reservoirs are one of the most rapidly growing forms of natural gas worldwide.
Gas production from such reservoirs is possible by using extensive and deep well fracturing to
contact bulky fractions of the shale formation. In addition, the main mechanisms of the shale gas
production process are the gas desorption that takes place by diffusion of gas in the shale matrix and
by Darcy’s type through the fractures. This study presents a finite element model to simulate the
gas flow including desorption and diffusion in shale gas reservoirs. A finite element model is used
incorporated with a quadrilateral element mesh for gas pressure solution. In the presented model, the
absorbed gas content is described by Langmuir’s isotherm equation. The non-linear iterative method
is incorporated with the finite element technique to solve for gas property changes and pressure
distribution. The model is verified against an analytical solution for methane depletion and the
results show the robustness of the developed finite element model in this study. Further application
of the model on the Barnett Shale field is performed. The results of this study show that the gas
desorption in Barnett Shale field affects the gas flow close to the wellbore. In addition, an artificial
neural network model is designed in this study based on the results of the validated finite element
model and a back propagation learning algorithm to predict the well gas rates in shale reservoirs. The
data created are divided into 70% for training and 30% for the testing process. The results show that
the forecasting of gas rates can be achieved with an R2 of 0.98 and an MSE = 0.028 using gas density,
matrix permeability, fracture length, porosity, PL (Langmuir’s pressure), VL (maximum amount of
the adsorbed gas (Langmuir’s volume)) and reservoir pressure as inputs.

Keywords: Langmuir; shale; gas; neural; finite element

1. Introduction

Recently, shale gas reservoirs have been considered essential resources, used to supply
the world with part of the required energy to compensate for the depletion of conventional
reservoirs. Shale gas reservoirs are not similar to conventional reservoirs; these types
of formations include conductive natural fractures, narrow thickens and infinite lateral
extension. As a result of these properties, only horizontal wells are usually used to increase
the gas production rates. In addition, such reservoirs typically have ultra-low permeability;
therefore, hydraulic fracturing technology is used to exploit the production zones by
creating fracture networks around the wellbore. The gas stored in shale reservoirs is in
both free and adsorbed phases; consequently, the production behavior drastically changes
through the reservoir’s lifetime [1–3].

Based on different field and lab data, 50% of gas in place is stored as adsorbed gas [4,5]
and this amount is quantified through Langmuir isotherms [6–11]. The Langmuir isotherms
are always used to describe the relationship between methane adsorption on shale surface
and gas pressure through ignoring the variation in reservoir temperature.

The gas adsorption in shale systems is controlled by the TOC (Total Organic Carbon),
organic matter type, clay minerals and thermal maturity. As the TOC content is raised, the
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gas capacity increases. The presence of gas in shale in micro-fractures and on surface shale
grains during the gas production process leads to gas releasing that provides additional
gas in place. Gas production takes place by diffusion in shale matrices while it takes place
by Darcy’s flow type in the fractures [12–17]. Due to the extra low permeability of shale
formations, the continuous effects of pressure transients during well production complicate
the gas production forecasting process. Hence, this study presents a simulation model to
estimate the shale gas volume in place and to predict surface gas flow rates.

During the production process, free gas is produced at the beginning from natural
fractures, then the matrix feeds the fracture network. In turn, the matrix is fed by adsorbed
gas existing in the nanopores. In the presented simulation model in this study, organic
matter is assumed to be located in the matrix while inorganic matters (free gas) are stored in
the micro-fractures. The model also based on the assumption that the gas desorption from
organic matter feeds the matrix only, and never contacts the fracture directly, in which the
gas flows out of the fractures and not from matrix in a direct way. A vertical well is used in
the simulation model for the production process through a horizontal hydraulic fracture.

In this study, the Langmuir’s isotherm is used to define the relationship between the
gas storage capacity and pressure of the reservoir, and it could be given by:

VE = VL
P

P + PL
(1)

where VE is the gas content, P is the reservoir pressure, PL is the Langmuir’s pressure and
VL is the maximum amount of the adsorbed gas (Langmuir’s volume).

The gas content (VE) in the reservoir rock is affected by several factors including min-
eral composition and organic matter. The organic matter is considered more important than
the mineral composition as it controls the amount of surface area available for adsorption.
The organic matter’s features include total organic carbon content (TOC) and thermal
maturity, and the Langmuir’s volume is a function of both. In the shale gas production
process, gas desorption cannot be ignored because at low reservoir pressures, most of
the gas production comes from desorbed gas. The desorption is the reverse process of
adsorption and with a decline in reservoir pressure and production of free gas, the adsorbed
gas desorbs from the matrix surface to preserve the reservoir equilibrium and ensure that
the reservoir pressure is maintained for a long period. The desorption process starts when
the reservoir pressure falls below critical desorption pressure [18,19]. The rate of desorbed
gas is controlled by the reservoir permeability, and it has a significant effect on the surface
gas production rate.

The desorbed gas volume can be defined by:

Vdes = VLVbρR
P

P + PL
(2)

where Vb is reservoir bulk volume and ρR is the shale density at initial reservoir pressure.
The desorbed gas rate into the matrix pore space can be given by:

− ∂Vdes
∂t

= −VLVbρR
1

(P + PL)
2

∂P
∂t

(3)

This equation gives the volumetric rate in scf/sec and the negative sign indicates that
the adsorbed gas decreases as gas desorbs into the matrix.

The advancement in drilling in shale reservoirs for petroleum production using hy-
draulic fracturing has become a major energy resource worldwide. Such an advancement
requires an accurate petroleum production forecast due to the high cost of these technolo-
gies. This concern has led scientists around the world to search for an economically feasible
project to accurately estimate petroleum production from such reservoirs.

Hydraulic fracturing parameters are the main controlling factor to accurately predict
shale gas production and have attracted scientists to develop prediction models. A response
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surface methodology (RSM) model was proposed by Yu and Sepehrnoori [20] to estimate the
net present value (NPV) of a shale gas project. The authors used reservoir parameters and
petrophysical properties such as porosity, permeability, reservoir pressure and thickness
and fracture properties (spacing, conductivity, half length). The authors did not include
a crucial parameter in determining the initial gas in place, namely the initial gas saturation
and adsorbed gas content. Later, Nguyen-Le et al. [21] used the parameters investigated
by [20], the initial gas saturation and absorbed gas content to develop an economic indicator
for the evaluation of shale gas production potential. In their model, they assumed that
hydraulic fracturing generates planner fractures. However, in naturally fractured reservoirs,
hydraulic fracturing may activate the existing natural fracture system [22–26].

The advancement of artificial neural networks (ANN) for optimizing and predicting
petroleum production from shale reservoirs has encouraged scientists to use the technology
to accurately predict production. Kim et al. [27] used eleven hydraulic fractures as well
as reservoir parameters to predict shale gas production. The authors used matrix-fracture
coupling and the diffusion coefficient as input controlling parameters for the prediction
model, while these parameters have no direct impact on shale gas production. Furthermore,
the authors, similar to Yu and Sepehrnoori [20], ignored the initial gas saturation and
adsorbed gas content. Li and Han [28] developed an ANN model to predict the pressure
decline parameter using fracture and reservoir properties. The predicted parameters along
with the logistic growth decline curve model can be used to reconstruct a production
profile. On the other hand, the authors collected the data from vertical oil wells which
induce a single stage longitude fracture to predict the model [29]. Multi-stage fracturing
techniques are usually carried out in a horizontal well where it is divided into many stages.
Moreover, each fracture stage is further divided into more than one fracture cluster. This
technique helps in increasing the productivity and contact area between the reservoir
and wells. Hence, the predicted model highly depends on the type of wells (i.e., vertical
or horizontal).

One model widely used in the literature to predict the petroleum production profile
is the decline curve analysis (DCA), due to its simplicity and efficiency. The principle of
DCA is to fit the production history data by tuning its decline parameters until the error
between the predicted and real data is minimized. Once the minimum fitting error is
reached, the DCA model, along with a set of decline parameters, is used to predict future
production. One important parameter for accurate prediction of the DCA model is the
availability of large amounts of production data (i.e., time). Nelson et al. [30] used the DCA
model to predict shale gas production from 48 months of production data. Bashier [31]
and Zuo et al. [32] predicted shale gas production using the DCA model with a minimum
of 60 months of production history. Odi et al. [33] predicted shale gas production using
the DCA model with 36 months of production history. It can be noted from the previous
studies that the average production time used for shale gas production predictions ranges
from 3–5 years.

Therefore, this study presents an accurate numerical simulation model to estimate the
gas production rate and gas volume in place for both adsorbed and free gas. The model
is based on a finite element technique using 8-node quadrilateral elements. The gas flow
equations are generated by using continuity and Darcy’s equations. In addition, an artificial
neural network model is proposed to develop a novel correlation for predicting the gas rate
and inflow performance using the proposed simulation finite element model. The devel-
oped correlation is based on numerous inputs including gas density, matrix permeability,
fracture length, porosity, PL (Langmuir’s pressure), VL (maximum amount of the adsorbed
gas (Langmuir’s volume)) and reservoir pressure. This novel correlation will be used in
assessing gas shale production avoiding the complexity existing in simulation models.

2. Description of the Flow Simulation Model

A mathematical model is derived in this study to simulate gas flow in shale reservoirs.
The gas is considered in a free state in the porous media and adsorbed in the shale matrix.
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The model is developed for single-phase fluid flow in a 2-dimensional space. In the
developed mathematical model, gas is produced under constant bottomhole pressure. The
gas flows from the matrix to the horizontal fracture and directly to the vertical well.

The continuity equation is used as follows:

∂

∂x
(
ρgug

)
= − ∂

∂t
(
φρg

)
(4)

where ρg is the gas density and ug is the gas velocity.
The continuity equation can be written in terms of formation volume factor as:

∂

∂x
(

βgug
)
− qg = − ∂

∂t
(
φβg

)
(5)

where qg is the source/sink and;

ug = − ckx

µg

∂pg

∂x
(6)

where c is the conversion factor, kx is the formation permeability in mD, µg is the gas
viscosity and pg is the gas pressure.

By introducing Darcy’s velocity in Equation (4), the equation can be written as:

∂

∂x

(
ckxβg

µg

∂pg

∂x

)
+ qg = φ

∂pg

∂t
∂βg

∂pg
(7)

In case of two-dimensional flows, the equation will be:

∂

∂x

(
ckxβg

µg

∂pg

∂x

)
+

∂

∂z

(
ckzβg

µg

∂pg

∂z

)
+ qg = φ

∂pg

∂t
∂βg

∂pg
. (8)

The amount of adsorbed gas can be treated as a sources term (injection well); therefore,
by using Equations (3) and (8), it can be written as:

∂

∂x

(
ckxβg

µg

∂pg

∂x

)
+

∂

∂z

(
ckzβg

µg

∂pg

∂z

)
+ VLρR

1

(p + pL)
2

∂p
∂t

= φ
∂pg

∂t
∂βg

∂pg
(9)

Introducing a weak formulation, Equation (6) for fluid flow through matrix is described
as follows:∫

Ω
w φ

∂Bg
∂t

dΩ =
∫

Ω
w
(

∂

∂x

(
ckxBg

µ

∂p
∂x

)
+

∂

∂z

(
ckzBg

µ

∂p
∂z

)
+

)
dΩ +

∫
Γ

wT q dΓ (10)

where (w = w (x, y, z)) is a trial function.
Using the finite element method for discretization with respect to time and space

results in:

∫
Ω

(
φctNp

T NpdΩ
)(→

P
i
−
→
P

i−1)
+

(
VLρR

1
(p+pL)

2 Np
T NpdΩ

)(→
P

i
−
→
P

i−1)
+∆ti

[∫
Ω

(
ckx Bg

µg

∂Np
T

∂x
∂Np
∂x +

)
dΩ
]→

P
i
+ ∆ti

[∫
Ω

(
ckzBg

µg

∂Np
T

∂z
∂Np
∂z

)
dΩ
]→

P
i

+
∫

Γ Np
Tq dΓ = 0.0

(11)

where:
→
P

T
= (p1 p2 · · · pn) (12)

→
Np

T = (N1 N2 · · · Nn) (13)
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→
Nu =

[
N1
0

0
N1

N2
0

. . .

. . .
0

NN

]
(14)

where Np and Nu are the shape function for pressure and displacement, respectively, n is
the number of nodes, Γ is the domain boundary and P is pressure nodal value.

Galerkin’s finite element method is used to discretize the equations as follows:

A.(p) + s.(p) + H.(p) = 0 (15)

where:

A =
∫
ve

[B]
T
(

k
PL

(PL + P)2

)
NpdV (16)

S =
∫
ve

[
Np
]T
(

βgVLPL

(PL + P)2

)
NpdV (17)

H =
∫
ve

[
∇Np

]T( k
µg

)
∇NpdV (18)

3. Validation of the Numerical Model

Figure 1 shows the model geometry with different boundary conditions. The inner
boundary of the reservoir is set to a wellbore pressure of 1000 psi while the outer boundary
condition is set as no flow boundary, ignoring the minimum and maximum horizontal
stresses. The well is vertical with one hydraulic fracture used to exploit the gas stored.
A plain strain is assumed in this model and this assumption is valid when one of the
dimensions is very large when compared to other two. In order to validate the developed
numerical simulator, a 2-D finite element mesh is used with 5000 elements and eight nodes
(see Figure 2). The mesh is generated with a fracture intersecting the wellbore. The fracture
length is 100 ft and the parameters of the 2-D model used for the simulation are presented
in Table 1. The reservoir pressure is set as 5500 psi with very low permeability of 0.01 md
to simulate the actual conditions in shale reservoirs.
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Table 1. Parameters used in the verification of the developed numerical model.

Parameter Value

Langmuir’s volume 0.08 scf/lb
Langmuir’s pressure 5100 psi

Gas viscosity 0.01 cp
Gas density 6 lb/cf

Fracture length 1 m
Fracture permeability 500 md

Initial reservoir pressure 5500 psi
Wellbore pressure 1000 psi

Formation permeability, kx 0.01 md
Formation permeability, ky 0.01 md

Wellbore radius 0.1 m
Reservoir outer radius 1000 m

Only a one-quarter model is selected to take advantage of the reservoir symmetry
as shown in Figure 2. Figure 3 shows in detail the gas distribution pressure inside the
fracture and the shale matrix. It can be seen from Figure 3 that the gas pressure is initially
depleted inside the hydraulic fracture; consequently, pressure depletion occurs on the
matrix surface. Figure 4 shows the comparison between the analytical and numerical
solution for the gas pressure distribution inside the matrix and the hydraulic fracture. It
can be seen from these figures that the gas pressure changes with production time across
the wellbore to the reservoir boundary are in a good agreement with the analytical solution.
Hence, the developed model in this study can be used to address numerous problems in
gas shale reservoirs.
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4. Results and Discussion

A case study is taken from Barnett Shale to estimate the volume of the reservoir
adsorbed and free gas. In addition, the developed simulator in this study will evaluate
the gas shale flow rates with time. A sensitivity study is performed as well to show the
effect of various fluid properties on gas production rates. The collected data are presented
in Table 2. The developed simulation model in this study assumes that the gas is stored in
natural fractures and pores and it is adsorbed in organic matter.
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Table 2. Shale gas reservoir properties used in the verification of the developed numerical model.

Parameter Value

Gas viscosity 0.019 cp
Gas formation volume factor 1.35 scf/rcf

Langmuir’s volume 0.099 scf/lb
Langmuir’s pressure 2696 psi
Initial compressibility 5.3 × 10−5 psi−1

Gas density 6.4/lb/cf
Fracture length 20 ft

Fracture permeability 500 md
Initial reservoir pressure 3100 psi

Wellbore pressure 2550 psi
Formation permeability, Kx 0.001 md
Formation permeability, Ky 0.001 md

Porosity 0.05
Reservoir outer radius 1000 m

Figure 5 shows the amount of the adsorbed and free gas versus the change in the
reservoir pressure, calculated using the Langmuir’s isotherm for Barnett Shale. As it can be
seen from this figure, a significant amount of adsorbed gas exists in the 20 ft fracture used
in the finite element mesh (see Figures 1 and 2).
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Using the permeability of 0.001 md as homogenous reservoir property, the gas pro-
duction profile is obtained, as shown in Figure 6. The gas production profile shows a long
term well performance of 18 years, and this performance is required during the production
process in shale gas reservoirs. The gas well is produced at constant bottom hole pressure
of 2550 psi at the initial production stage. The free gas exists in the natural fracture and
pores. The gas is produced continuously from the fracture until the pressure in the matrix
reaches the critical desorption pressure. Then, the adsorbed gas feeds the porous area
through the desorption process at a rate depending on the pressure change. Hence, the
production rate stabilizes after certain period of production when the total amount of
adsorbed gas is desorbed into the fracture near the wellbore (see Figure 6). The production
rate is initially started with 180 scf/s and this value is very close to what has been estimated
by Wang [34] (211 scf/s). The difference between this study’s initial gas rate estimation and
that of Wang [34] arises from the different geometry and fracture network used in the study
by Wang [34].
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Figure 6. Gas production rate versus reservoir pressure.

Figure 7 shows the cumulative gas production. As it can be seen from Figure 7, the
cumulative gas production is initially low due to small the time step size used at the be-
ginning of the simulation run. Then the cumulative gas production volume increases with
decreasing the pressure around the hydraulic fracture and the porous matrix. The total
volume produced after 12 years of gas production is 80 MMSCF in comparison to the work
of Wang [34], which found 88 MMSCF. Estimations of cumulative gas volume using this
simulation study and the study of Wang [34] are in a good agreement. Wang [34] uses a sub-
surface fracture network map which gives more gas volume during the production process.
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the closest to the fracture. Hence, the pressure drop decreases faster (see Figure 8). Next, 
during the period of production, the pressure stabilizes due to it reaching the phase of 
critical gas desorption. However, the pressure in the cell/element far from the wellbore 
displays a slow rate of reduction due to low matrix permeability. 
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Figure 8 shows the variation in gas pressure change due to gas production in two mesh
elements, one is close to the wellbore and the other is far from the fracture and wellbore.
Figure 8 shows various behaviors of the elements with time. In the early stages of the free
gas production, the gas is produced from the cell/element near the wellbore and the closest
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to the fracture. Hence, the pressure drop decreases faster (see Figure 8). Next, during
the period of production, the pressure stabilizes due to it reaching the phase of critical
gas desorption. However, the pressure in the cell/element far from the wellbore displays
a slow rate of reduction due to low matrix permeability.
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Figure 8. Pressure drop behavior for two elements used in the simulation model.

It can be observed from Figure 9 that the gas pressure diffusion behavior is transient
within the hydraulic fracture and matrix at early production stage and reached the boundary
after two months of production and the flow regime changed to a pseudo steady-state,
dominant for the rest of reservoir production time.
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Figure 9. Gas pressure behavior at the early stage of the production process for Pi = 3100 psi,
Pwf = 2550 psi, k-0.001 md and fracture length = 20 ft. The blue color is for P = 2550 psi and the red
color is for P = 3100 psi.

Figure 10 shows the gas desorption volume for the two cells/elements (with
an element/cell close to the fracture and another far from the wellbore). As it can be
seen from Figure 10, the gas production starts in the element that is close to the wellbore;
hence, its average pressure will be depleted faster. Next, the pressure in the adjacent
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element will start to deplete to the critical gas desorption pressure. Afterwards, the cell
will feed the gas to the pore space and this behavior depends on the reservoir heterogene-
ity. This means a different behavior might be observed in the desorption process due to
a difference in permeability and porosity of the elements.
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A sensitivity study was performed to test the effect of the fracture length on the gas
production rates. The fracture lengths used were 20 ft and 60 ft. Figure 11 shows the
production profile in both cases (with fracture lengths of 20 and 60 ft). It can be seen from
Figure 11 that a low production rate profile with fracture length = 20 ft occurred. In addition,
the critical desorption pressure is achieved at a later stage for fracture with a length = 60 ft.
It can be observed from Figure 11 that the gas production rate is sustained for a long period
during the production process with a fracture length = 60 ft. Moreover, it can be observed
from Figure 11 that the gas production rate declines 20–35% per month at the beginning of
the production process and then the declining rate stabilizes at around 7% after 2 years of
production (100-time step) which is a typical scenario for unconventional reservoirs.
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Since the amount of adsorbed gas depends on the gas density, a simulation run is
performed under different gas densities of 5 and 25 lb/cf, respectively. The analysis in
Figure 12 shows that the gas production profile is sustained longer in the case of a higher
gas density, as the gas in this case is densely packed into the organic matter; thus, a higher
amount of adsorbed gas will exist. Therefore, production of more gas is expected with
a high gas density and this parameter will be taken as an essential input parameter in the
ANN model to develop a new correlation for gas rate prediction.
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5. Neural Network for Gas Rate Prediction

Numerous machine learning algorithms have been used to predict the gas well perfor-
mance in shale reservoirs. Li et al. [35] used the Neural Based Decision Tree (NDT) learning
model for gas production prediction where ANN outperformed NDT. Clarke et al. [36]
used a high order neural network for gas well rate forecasting, while Klie [37] used sur-
rogate models for well rate furcating. Fulford et al. [38] combined a supervised learning
algorithm with calibrated bias to improve the posterior distribution of forecasts.

Nguyen [39] used the various fracture and reservoir properties to predict the produc-
tion decline parameters by developing an ANN model. The ANN model was based on data
collected from fractured vertical wells which induce a single-stage longitudinal fracture.
Syed et al. [40,41] used the unsupervised machine learning algorithm to model and analyze
the shale gas production.

Numerous authors have used machine learning algorithms including the neural net-
work (ANN), random forest (RF), function networks (FNs), adaptive neuro-fuzzy inference
system (ANFIS) and support vector machine (SVM) to predict the gas shale rates during
the production process [42,43].

The back propagation (BP) learning algorithm was used in this study as a supervised
algorithm. During the backward propagation, the errors are sent backward though the
hidden and input layers. Then, the error values are used to update the weight in the
artificial neural network (ANN). The error value at the output neuron can be defined as
a quadratic cost function:

Ep =
1
2

n2

∑
1

(
xp − yp

)2 (19)

where E is the error vector for the training pattern p.
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A gradient decent method [44,45] is used in this study in order to modify the weight
of the connection and compute the delta weight vector to minimize the cost function.
A stopping criterion is set in the ANN for a fixed error threshold, for a fixed number of
allowable epochs and for the use of validation data [46–48]. These criteria are very sensitive
to the input parameters and if these parameters are not chosen properly, the results will
show poor performance due to excessive training. Notably, the target outputs in the training
are usually scaled in the interval of (0 and 1) for logistic function.

During the learning phase, it is mandatory to test the performance of the neural net at
each single epoch. Therefore, the mean square error MSE in Equation (20) is used to show
the network performance.

MSE =

√
∑n1

1 ∑n2
1
(
xp − yp

)
n1.n2

(20)

where n1 and n2 are number of training output neurons, respectively. xp and yp are the
target and calculated outputs, respectively.

This section will show how the validated simulator developed in this study is used
to construct the ANN model by creating almost 300 data points to be used in the training
and testing processes. The inputs include gas density, matrix permeability, fracture length,
porosity, PL (Langmuir’s pressure), VL (maximum amount of the adsorbed gas (Langmuir’s
volume)) and reservoir pressure. The target output is the gas production rate (see Figure 13).
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Figure 13. Artificial neural network architecture used in this study.

Date Description

Around 300 points are created using the validated finite element model in this study
to design and develop the ANN model. The data contains six inputs including gas density,
matrix permeability, fracture length, porosity, PL (Langmuir’s pressure), VL (maximum
amount of the adsorbed gas (Langmuir’s volume)) and reservoir pressure that are used in
the training process, while the output is the gas production rate. The statistical analysis of
the collected data is presented in Table 3.

The data set is divided into two groups for training and testing processes. A total of
70% is assigned for the training and 30% for the testing. The Back Propagation learning
algorithm is used to minimize the results error between actual and target outputs with the
log sigmoid function. The BP learning algorithm provides exceptional results with an R2 of
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0.98 and a MSE = 0.018 for training (see Figure 14), and an R2 = 0.99 for the testing process
(see Figure 15).

Table 3. Statistics analysis of the input data.

Parameter Gas Density
(lb/cf)

Matrix Permeability
(md)

Fracture
Length (ft)

Langmuir’s Volume
(VL, psi)

Langmuir’s
Pressure (PL, psi)

Reservoir
Pressure (psi)

Max 18 0.099491 60 0.099662 2795 3996
Min 4 6.08 × 10−5 10 0.000322 701 1002

Standard Deviation 4.211135 0.028379 14.31894 0.028638 608.8278 866.6465
Skewness −0.04798 −0.10025 −0.18278 −0.00804 0.010806 0.038504

Mean 11 0.053936 38 0.050758 1760 2446

Processes 2022, 10, x FOR PEER REVIEW 15 of 20 
 

 

Table 3. Statistics analysis of the input data. 

Parameter 
Gas Density 

(lb/cf) 
Matrix Permeabil-

ity (md) 
Fracture 

Length (ft) 
Langmuir’s Vol-

ume (VL, psi) 
Langmuir’s Pres-

sure (PL, psi) 
Reservoir Pres-

sure (psi) 
Max 18 0.099491 60 0.099662 2795 3996 
Min 4 6.08 × 10−05 10 0.000322 701 1002 

Standard Devia-
tion 

4.211135 0.028379 14.31894 0.028638 608.8278 866.6465 

Skewness −0.04798 −0.10025 −0.18278 −0.00804 0.010806 0.038504 
Mean 11 0.053936 38 0.050758 1760 2446 

The data set is divided into two groups for training and testing processes. A total of 
70% is assigned for the training and 30% for the testing. The Back Propagation learning 
algorithm is used to minimize the results error between actual and target outputs with the 
log sigmoid function. The BP learning algorithm provides exceptional results with an R2 
of 0.98 and a MSE = 0.018 for training (see Figure 14), and an R2 = 0.99 for the testing 
process (see Figure 15). 

 
Figure 14. The predicted Qg from ANN versus simulation results for training. 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Gas rate (Simulation)

Ga
s 

ra
te

 (P
re

di
ct

ed
 fr

om
 A

N
N

 m
od

el
)

R2=0.98

Figure 14. The predicted Qg from ANN versus simulation results for training.
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Figure 15. The predicted Qg from ANN versus simulation results for testing.
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Using the results of training and testing processes, a mathematical correlation is
produced to show the relationship between the Qg and inputs to be used in the forecasting
of shale gas rates.

The novel correlation generated using ANN for Qg estimation is given by:

Qgn =

[
N

∑
i=1

w2i tan sig

(
J

∑
J=1

w1i,jxj + b1j

)]
+ b2 (21)

Qgn =

[
N

∑
i=1

w2i

(
1

1 + exp−(Gas density×w1,j,1+Frac/L×w1,j,2+Kmat×w1,j,3+VL×w1,j,4+PL×w1,j,5+PR×w1,j,6)+b1

)]
+ b2 (22)

where Qgn is the normalized gas rate, (w2,i) is the vector weight between the hidden layer
and output layer, (w1,j) is the vector weight connecting the input and the hidden layer, j is
the neuron number, b1 is the biases vector for the input layer and b2 for the output layer.
The extracted Qg equation can be attained by de-normalizing Qgn as follows:

Qg = 160×Qgn + 12 (23)

Table 4 shows the weights and bias for the correlation. The proposed correlation in
Equation (22) can be used to estimate and predict the gas flow rate for the shale reservoirs
using the above-mentioned inputs. Figure 16 shows the comparison between the simulated
gas rates and the gas rates values extracted from the ANN model based on inputs. It can
be seen from Figure 16 that a good match is achieved with a minimum square error (MSE)
of 0.018. The correlation proves that the designed ANN model is reliable and helps in
reducing the computational time used by the numerical simulation model which requires
extensive mathematics knowledge.
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Table 4. Weights and biases for the generated correlation Equation (22).

Neuron
Number Input and Hidden Layers Weights (w1)

Hidden and
Output Layers
Weights (w2)

Hidden Layer
Bias (b1)

Output Layer
Bias (b2)

1 −1.34 × 10+00 −1.53 × 10+00 1.04 × 10−01 4.56 × 10−01 1.04 × 10+00 −2.73 × 10+00 −1.99 × 10+00 4.93 × 10−02

−0.4621008

2 8.02 × 10−01 −3.40 × 10−01 6.41 × 10−01 1.31 × 10−01 −5.66 × 10−01 2.98 × 10−01 −2.53 × 10+00 −1.57 × 10+01

3 3.86 × 10−01 8.12 × 10−01 −1.18 × 10−01 −6.67 × 10−02 −2.47 × 10−01 −1.99 × 10+00 9.62 × 10−02 −2.92 × 10+00

4 −4.72 × 10−01 7.89 × 10−02 −3.63 × 10−02 1.10 × 10−01 −7.36 × 10−02 1.35 × 10+00 4.07 × 10−01 3.42 × 10−01

5 −1.07 × 10−01 2.10 × 10−01 1.04 × 10−01 2.09 × 10−01 2.59 × 10−01 −2.75 × 10+00 1.23 × 10+00 9.37 × 10−01

6 −1.26 × 10−01 −2.53 × 10−01 −1.61 × 10−01 3.92 × 10−02 1.20 × 10−01 1.55 × 10+00 8.74 × 10−01 1.16 × 10+00

7 −1.30 × 10−01 −1.69 × 10−01 2.73 × 10−01 −9.72 × 10−02 4.10 × 10−02 −9.88 × 10−01 −4.86 × 10−01 −4.20 × 10−01

8 −1.70 × 10−01 −2.73 × 10−01 3.09 × 10−01 6.93 × 10−02 −3.07 × 10−01 2.19 × 10+00 6.41 × 10−01 6.57 × 10−01

9 5.08 × 10−01 5.04 × 10−01 2.60 × 10−01 2.18 × 10−01 −1.20 × 10−01 9.73 × 10−02 4.79 × 10−02 −1.80 × 10+00

10 −3.55 × 10−02 −8.34 × 10−03 −3.27 × 10−01 5.66 × 10−02 3.37 × 10−01 −1.22 × 10+01 −6.69 × 10−01 −1.39 × 10+00
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6. Conclusions

This study presents a finite element model to simulate the shale reservoir response in
the gas production process for free and adsorbed gas within the shale matrix and the frac-
ture. The mass conservation equation used to develop the gas transport equation includes
both free and absorbed gas. The adsorbed gas volume is calculated through Langmuir
isotherms. The results show that the long term well performance is achieved during the gas
production process and the existing adsorbed gas led to a stabilization in the production
after an initial drop when the matrix elements reached critical desorption pressure.

Simulation results of Barnett Shale field show that the evolution of gas pressure
strongly depends on the gas desorption process near the wellbore during gas production.

In addition, an ANN is created to forecast the gas production rates for different
characteristics of the shale reservoirs. The number of hidden layers and neurons used in
the ANN are one and ten, respectively. The results show that the developed ANN in this
study predicts the gas rate precisely and these results led to the conclusion that the ANN
can be used in some cases for saving computational time.
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