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Abstract: In the competitive landscape of steel-strip production, ensuring the high quality of steel
surfaces is paramount. Traditionally, human visual inspection has been the primary method for
detecting defects, but it suffers from limitations such as reliability, cost, processing time, and accuracy.
Visual inspection technologies, particularly automation techniques, have been introduced to address
these shortcomings. This paper conducts a thorough survey examining vision-based methodologies
related to detecting and classifying surface defects on steel products. These methodologies encompass
statistical, spectral,texture segmentation based methods, and machine learning-driven approaches.
Furthermore, various classification algorithms, categorized into supervised, semi-supervised, and
unsupervised techniques, are discussed. Additionally, the paper outlines the future direction of
research focus.

Keywords: defect detection; defect classification; deep learning; image acquisition; quality control

1. Introduction

In the pursuit of maintaining competitiveness, steel manufacturers have prioritized not
only high productivity but also superior product quality. A critical aspect of achieving this
goal is the quality control of steel surfaces. Compared to automated alternatives, manual
inspection methods prove less reliable in high-speed production environments due to their
time-consuming nature, high dependency on inspector expertise, and elevated costs [1].
Consequently, automated inspection systems for steel surfaces have garnered significant
interest, promising enhanced performance, efficiency, profitability, cost reduction, and
product quality improvement. Automated defect inspection primarily aims to identify
and characterize image deformities, offering advantages such as reduced labor costs and
increased productivity [2]. Numerous studies advocate for automatic defect detection to
bolster quality [3]. In automated inspection systems, surface images of industrial products
are typically captured using charge-coupled device (CCD) cameras under specific lighting
conditions, as shown in Figure 1. Subsequently, various image processing methods are
employed, followed by defect detection utilizing structural or statistical techniques [4]. Au-
tomated defect inspection generally comprises two steps: defect classification, addressing
“What is the defect?” and defect detection, determining “What and Where is the defect?”
and outputting respective scores and bounding boxes [5]. Figure 2 illustrates both defect
detection and classification tasks on steel surfaces. Recently, numerous algorithms have
been proposed to detect surface defects, with steel surfaces being a focal point [6,7]. Sev-
eral reviews have investigated detecting and classifying defects on steel surfaces, offering
valuable insights for researchers in the field [8–15]. For instance, ref. [8] navigates the com-
plexities of automatic surface inspection and evaluates different detection and classification
methods for steel surface defects. Meanwhile, ref. [12] reviews hardware and software
aspects of visual detection, categorizing detection methods into statistics, models, filtering,
and machine learning and classifying classification methods into supervised and unsuper-
vised learning. Luo et al. [13,14] have conducted comprehensive surveys on surface defect
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detection and classification methods over the past two decades, categorizing methodologies
into statistical, spectral, model-based, and machine learning approaches for flat steel prod-
ucts. Czimmermann et al. [12] focus on visual inspection techniques for various surfaces in
industrial applications, while Zheng et al. [16] delve into deep learning-based methods for
surface defect inspection in various manufacturing processes. Additionally, Jin et al. [13,14]
explore defect detection in steel products using traditional image processing and deep
learning techniques, respectively. From these reviews, a typical visual inspection system for
steel surface strips can be categorized into three main components: an image acquisition
unit, visual processing algorithms, and a control unit. This study presents modern visual
processing methods specifically for detecting and classifying steel-strip defects, building
upon previous reviews and providing an updated overview of the field’s current status.

Figure 1. The elements of the image acquisition unit.

Figure 2. Defects detection and classification tasks. (a) Bounding box around detected defect.
(b) class identification of each detected defect.

Given the complex nature of detecting and classifying defects within the industrial
settings of steel-strip production, endeavors to enhance quality control continue, with
researchers diligently exploring diverse methodologies to achieve heightened efficacy.
Hence, we attempt to provide a comprehensive overview of cutting-edge techniques for
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detecting and classifying surface imperfections in steel, aiming to contribute to improving
quality assurance measures in this domain.

The contributions of this paper are as follows:

1. We provide a comprehensive overview of existing methods for detecting and classify-
ing defects on steel surfaces, encompassing more than 200 studies.

2. We present an analysis of the performance evaluation of various state-of-the-art
algorithms for detecting and classifying defects on steel surfaces.

3. We discuss evaluation metrics commonly used in steel surface defect detection. By
providing insights into these evaluation metrics, the paper aids in assessing the
performance of defect detection methods.

4. We provide an overview of diverse state-of-the-art methods employed in detecting
and classifying steel surface defects, emphasizing their strengths and weaknesses.

2. Steel and Its Surface Defect Types

Steel products can be broadly categorized into flat products and long products, as
illustrated in Figure 3 [17]. Of late, hot strips, cold strips, and plates have garnered
increased attention from researchers. The steel surface unavoidably accumulates various
defects throughout the production process, which involves processing, casting, and rolling.
These defects include scratches resulting from the relative movement between a hard,
sharp object and the steel surface or between two steel surfaces such as plates and strips.
Scales, primarily caused by incompletely removed impurities and greasy dirt on work
rollers during temper rolling, are also common. Roll marks, attributed to poor roller
shape or excessive curl, not only affect the product’s appearance but also diminish its
key features like corrosion resistance, abrasion resistance, and fatigue strength, leading
to significant economic losses [18]. Figure 4 showcases examples of typical steel surface
defects. According to Neogi et al. [17], no universally agreed standard exists for these
defects. The diverse array of steel surface products exhibits a wide range of defects,
characterized by both similarities and diversities within these groups. This diversity and
similarity challenge the defect classification process [19].

Figure 3. Categories of steel products.
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Figure 4. The common various types of defects found on steel surfaces: (a) patches, (b) waves,
(c) holes, (d) scratches, (e) scales, (f) scarring.

3. Defect Detection Methods

Researchers have explored numerous methods to enhance the quality of steel products
and facilitate automated inspection [20]. These methods can be categorized into four main
groups: statistical methods, spectral methods, texture segmentation based methods, and
machine learning-based methods, as outlined in Figure 5. This section provides a concise
overview of various approaches and techniques proposed for quality monitoring in steel
manufacturing settings.

Figure 5. Defects detection methods’ categories.

3.1. Statistical Models

Statistical models [21–23] leverage probability theory and statistical analysis to for-
mulate mathematical models capable of quantitatively predicting, analyzing, inferring,
and summarizing the spatial distribution of pixel gray values. In recent years, statistical
methods have gained traction for detecting defects in steel surfaces. Table 1 compares
the strengths and limitations of various statistical detection methods for steel defects.
This section offers a succinct introduction to seven representative statistical approaches
as follows:
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Table 1. Strengths and limitations of different statistical detection methods for steel surface defects.

Methods Strengths Limitations Applications

Autocorrelation Simple to utilize with repetitive textures
like textiles

Difficulties in identifying nonlinear
relationships; not suitable for textures with
randomly arranged textural elements

[24]

Thresholding Easy to understand, simple to implement A small difference in the background can
make defect detection fail [25]

Co-occurrence matrix Pixels’ spatial relationship can be extracted
with different statistical computations

Difficult to referee the optimal
displacement selection [26,27]

Local binary pattern Faster discriminative feature extraction
with rotation in gray invariance

Noise and scale change have a significant
influence; highly dependent on the gray
value of the image’s center point

[28–32]

Fractal model
Remains unaffected by significant
geometric transformations and variations
in lighting

Has limitations on images without
self-similarity; unsatisfactory detection rate [33]

Edge-based Easy to extract low-order features of the
image and simple to realize

It is only suitable for images with low
resolution; sensitive to noise [34]

Histogram properties Clarity, invariant to translation and
rotation; simple calculations

Poor detection rate for irregular textures
less than 70% [35–38]

3.1.1. Autocorrelation

The autocorrelation technique serves as a valuable feature for determining the size of
tonal primitives [39]. It aims to establish correlations between textures and their translations
using displacement vectors, particularly identifying vertices in cases of high regularity.
Notably, this technique demonstrates exceptional robustness against lighting variations
and noise. Methods relying on autocorrelation techniques find applications in analyzing
textures characterized by repetitive patterns, such as textiles. The mathematical expression
for one-dimensional autocorrelation is computed as follows:

r(τ) =
1
N

N−τ−1

∑
t=0

x(t + τ)x(t) (1)

where r represents the autocorrelation value, N represents the total number of samples, t is
the time, x is the normalized signal value, and τ is the shift value.

Zhu et al. [24] combined autocorrelation and the gray-level co-occurrence matrix
(GLCM) to detect yarn-dyed fabric defect; however, the results were not reported.

3.1.2. Thresholding

The main objective of thresholding methods is to separate objects from the image back-
ground. It is one of the common approaches used for image segmentation. In steel-surface
inspection systems, thresholding is often used to separate defective regions on steel surfaces.
It has been recently widely applied in automated visual inspection [40]. Djukic et al. [25]
used dynamical thresholding to discriminate true defects from random noise pixels for
hot-rolled steel. However, no quantitative results were reported for that study.

3.1.3. Gray-Level Co-Occurrence Matrix

The gray-level co-occurrence matrix (GLCM) is a statistical method that uses spatial
gray-level co-occurrence to analyze image texture. First proposed by Haralick et al. [39], it
is also known as the gray-level dependency matrix. It has the ability to construct a matrix
that quantifies the spatial relationship of pixels over an image. As described in [41], given
an image I of size N × N, the co-occurrence matrix (P) is expressed as
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Pd,θ(i, j) =
N−1

∑
x=0

M−1

∑
y=0

∆d,θ,i,j(x, y) (2)

where

∆d,θ,i,j(x, y) =


1, I(x, y) = i and

I(x + δx(d, θ), y + δy(d, θ)) = j
0, otherwise

(3)

where δx(d, θ) and δy(d, θ) are used to calculate the position of (x, y) in relation to its
neighbors at a distance d and direction θ.

Haralick’s features could then be extracted from the gray level co-occurrence matrix
to characterize steel surface.

Guo et al. [26] proposed a feature extraction method based on the GLCM to character-
ize four types of defects, including edge crack, pinch, and inclusion. This method was then
used to analyze forehead wrinkles extracted from steel strips. The higher recognition rate
obtained from the pinch defect type was 85.00%. Zaghdoudi et al. [27] presented a method
for the classification of steel defects based on machine vision techniques and support vector
machine (SVM). They composed two sets of features, GLCM and the Histogram of Ori-
ented Gradients (HOG), to extract the features from the training database. The recognition
accuracy was 90.16%. Nevertheless, the computing time taken by the GLCM was long, and
the process also required relatively a high storage space.

3.1.4. Local Binary Pattern

The local binary pattern (LBP), introduced by Ojala et al. [42], stands out as a remark-
ably efficient and straightforward feature descriptor. It operates by relabeling each pixel
in an image through a coding mechanism based on comparisons between the original
pixel value and those of its neighboring pixels [43]. This approach has garnered significant
attention across various applications owing to its computational simplicity and discrimi-
native power [44]. In recent years, several researchers have employed the LBP to detect
steel surface defects [45,46]. Abukhait [28] proposed an inspection system combining
the LBP’s uniform patterns’ histogram and GLCM textural features to construct feature
descriptors for surfaces, achieving a recognition accuracy of 95.60%. Makaremi [47] and
Tajerip [48] introduced a new technique based on modified local binary patterns for de-
tecting textures and fabrics, achieving detection rates of 91.86% and 95.00%, respectively.
Wang et al. [29] introduced the entity sparsity pursuit (ESP) algorithm for identifying steel
surface defects, utilizing an intuitive LBP-inspired feature extractor for industrial grayscale
images. Luo et al. [30] proposed a generalized completed local binary pattern framework
for steel surface defect classification. Additionally, Luo et al. [31] introduced a method to
enhance classification accuracy and time efficiency for existing LBP variants in steel defect
classification tasks. Gyimah et al. [32] presented the RCLBP method, which combined the
completed local binary pattern and an NL-means filter with wavelet thresholding to extract
noise-robust features for surface defect detection. However, despite its computational
simplicity, the LBP is highly sensitive to noise and scale changes.

3.1.5. Fractal Model

The fractal model, introduced by Mandelbrot in 1983 [49], serves as a valuable tool in
computer vision for recognizing and interpreting various objects. Two key metrics within
the fractal model are the fractal dimension and porosity. The formula for calculating the
fractal size is provided below:

D = − log(N)

log(r)
(4)
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where r represents the ruler scale, and N denotes the number of scales obtained with r. In a
study by [33], a defect detection algorithm based on multifractals was proposed, focusing
on detecting surface defects in cold strips. The algorithm utilized ten features to reduce
classifier complexity and successfully identified five types of defects, including pickled,
annealing stain defect, emulsion rust, dirty surface, and sticking, achieving an average
accuracy of 97.90%.

3.1.6. Edge-Based Features

Edge detection encompasses a collection of mathematical techniques designed to
pinpoint locations in a digital image where there are abrupt changes in brightness [50].
These techniques are utilized to delineate regions within the image based on color rendition.
Wen and Xia [34] introduced a method to discern and evaluate candidate edges against
predetermined conditions for leather surfaces.

3.1.7. Histogram Properties

Histograms provide a visual representation of the distribution of data values within an
image. Among the commonly used histogram statistics are the geometric mean, standard
deviation, range, harmonic mean, variance, and median. These properties offer advantages
such as low computational cost, translation, rotation, and scale invariance, particularly in
applications involving thresholding and segmentation of grayscale images, color-based
image classification, and image retrieval. Kobayashi [51] utilized histograms as feature
extractors for classifying defects on steel surfaces. Similarly, Kholief et al. [35] employed a
method based on two statistical features derived from histograms and edge detection for de-
tecting defects on steel surfaces. Furthermore, various studies have implemented histogram
properties for defect detection on surfaces composed of different materials [36,37]. Despite
their utility as low-level processes in defect detection, these methods have demonstrated
effectiveness in the field.

3.2. Spectral Methods

Spectral methods can be used for images that have a uniform structure, such as fabric
patterns that are created periodically, and they are not suitable for textures that are not
periodic in images with random textures. By using spectral methods, the defect objects’
separation can be easy from both the global and local backgrounds. In Table 2, the advan-
tages and disadvantages of several spectral methods are compared. Eight representative
spectral methods are briefly introduced below.

3.2.1. Fourier Transform

The Fourier transform is a mathematical operation used to decompose a signal or a
function of time into its constituent frequencies. In image processing, the input signal is
typically represented in the spatial domain (x, y). The Fourier transform of an image is
expressed by the following equation, where u and v denote frequency variables ranging
from 0 to N − 1 and 0 to M − 1, respectively:

F(u, υ) =
N=1

∑
x=0

M=1

∑
y=0

f (x, y)e−j2π( ux
N +

υy
M ) (5)

where f (x, y) denotes the gray-level intensity of the pixel at position (x, y), and N and M
represent the width and height of the image, respectively. Yazdchi et al. [33] proposed a
defect detection method based on a multifractal analysis for steel surfaces. In that approach,
the Fourier analysis was employed to temporally enhance the image temporally, followed
by the utilization of the multifractal dimension to isolate the defective region from the
image and specify its location. The achieved accuracy was 97.90%. However, Fourier
transform based approaches may encounter challenges in achieving non-interference when
dealing with frequency-domain components related to defects or background.
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3.2.2. Wavelet Transform

The wavelet transform emerged as an alternative to the Fourier transform to address
potential resolution issues. Unlike the Fourier transform, which decomposes the signal
into cosines and sines, the wavelet transform utilizes localized functions in both the real
and Fourier space [52]. Aarthi et al. [53] employed the discrete wavelet transform to isolate
defects by applying a threshold to the transformed image and extracting different statistical
features. Similarly, the imperfections were identified using the threshold of the transformed
image in order to exclude them. Selvi [54] introduced wavelet and lifting schemes combined
with co-occurrence features to distinguish between normal and defective steel surfaces.
Wavelet filters were utilized for noise removal, while co-occurrence features were extracted
for further analysis. However, methods based on wavelet transforms can be susceptible to
feature correlations between scales.

3.2.3. Gabor Filter

The Gabor filter, a linear filter widely employed in numerous image processing tasks,
including texture analysis, edge detection, and feature extraction, plays a significant role in
various applications. Considering an image, I, the two-dimensional Gabor residuals r(x, y)
are obtained by performing the convolution of I(x, y) with the Gabor function defined in
Equation (6) and formulated as [55]

r(x, y) =
∫∫

Ω
I(ξ, η)g(x − ξ, y − η)dξη (6)

where g(x, y) is defined as

gλ,θ,ϕ,φ,γ(x, y) = exp
(
− x2 + γ2y2

2σ2

)
cos

(
2π

x
λ
+ ϕ

)
(7)

where λ, θ, ϕ, σ, and γ represent the wavelength of the Gabor function cosine factor,
orientation normal to the parallel stripes of the Gabor function, phase offset of the Gabor
function cosine factor, standard deviation sigma of the Gaussian factor, and ellipticity of
the Gaussian factor, respectively. The Gabor filter has found wide application in detecting
defects on steel surfaces, as evidenced by several studies [56–58]. Choi et al. [59] proposed
combining morphological features and Gabor filtering to detect pinholes on steel slab
surfaces. Similarly, Wankhede [60] used Gabor filters to inspect defects on texture surfaces
of metal sheets automatically. Medina et al. [61] developed a method employing Gabor
filters to detect defects on flat products in a flat-steel cutting factory, achieving a detection
rate of 96.61%. These studies highlight the effectiveness of Gabor filtering in characterizing
distinctive texture patterns and its utility in detecting defects on steel surfaces.

3.2.4. Optimized FIR Filters

Finite impulse response (FIR) filters provide remarkable feature separation between
non-defective and defective regions in FIR-filtered frames [62]. Kumar [63] introduced a
method utilizing FIR filters for defect detection in fabric, yielding significant results within
the textile industry. Moreover, Jeon et al. [64] introduced a new filtering technique that
utilized lighting methods for identifying different shapes of defects on steel surfaces.
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Table 2. Advantages and disadvantages of different spectral detection methods for steel surface defects.

Methods Advantages Disadvantages Applications

Fourier transform Expansion and rotation invariance to
translation Lack of localized signal analysis function [33,65,66]

Wavelet transform
Capable of representing local signal features
and multiresolution analysis; high detection
accuracy, ranging from 83.00% to 97.00%

Hard to choose the wavelet basis; feature
correlations between scales can be easily
influenced

[53,54,67–69]

Gabor filters Appropriate for feature spaces with high
dimensions; low computational burden Difficult to select the best filter parameters [56,58,59,70]

Optimized FIR filters
Suitable, specifically on defects that have
subtle intensity variation; they are simple and
always stable

Require more memory; limitations to solve the
problem of low frequencies [63,64]

Multiscale geometric analysis Image compression efficiency with less data
loss; less details are required Existing redundancy problem [66,71,72]

Hough transform Robust against interference and insensitive to
noise

Only tracks the direction of edges; information
regarding the length of a line segment is lost [73]

Frequency-domain filtering
Suitable for detecting both global and local
defects; invariant to translation, expansion,
and rotation

Lack of ability for spatial orientation; not
suited for detecting random textures [40,74,75]

Morphological operations
Geometric representation of texture images;
suitable for random or natural textures;
computational simplicity.

Only implemented on non-periodic steel
defects [76–79]

Spatial filter
Its text-based approach is more centralized
(the text file segment is separated from the
image segmentation)

The best filter parameters are hard to
determine; difficult to maintain spatial
orientation

[80–84]

3.2.5. Multiscale Geometric Analysis

Multiscale geometric analysis (MGA) offers a versatile approach for detecting edge
features and distinguishing lines and surface singularities arising from the finite separable
wavelet directions [10]. Ai et al. [66] introduced a novel feature extraction technique
leveraging kernel locality-preserving projections (KLPP) and the curvelet transform to
detect surface longitudinal cracks in slabs. A sample set classification was performed using
an SVM, resulting in a classification rate of 91.89%. However, effectively distinguishing
active background textures proved challenging, as they were often mistaken for defective
edges, necessitating further investigation into this issue.

3.2.6. Hough Transform

The Hough transform is a method for extracting features that use a voting system
to identify approximate examples of objects belonging to a specific class of shapes [85].
Invented by Hough in 1962 for detecting intricate lines in images [86], it aids in separating
features of a specific shape within an image, which is especially useful for generating
a comprehensive description of features across the entire image. The Hough transform
has found applications in various fields, including vehicle license plate recognition [87]
and fingerprint identification [88,89]. Sharifzadeh et al. [73] proposed a Hough transform
detection method to detect defects such as scratches, holes, coil breaks, and rust on cold-
rolled steel strips. However, the detection rate achieved remained below 90.00%.

3.2.7. Morphological Operations

Morphological operations have been used to study the enhancement of images with
respect to appearance, shape, and organization. It has also been used in steel-strip
analysis [90]. Several studies have explored the combination of mathematical morphology
with genetic algorithms to develop an algorithm capable of detecting defects on steel
surfaces [91,92]. Using image processing techniques, a defect detection algorithm was
developed by Joen [93] to perform corner crack detection in the surfaces of billets. Land-
str et al. [76] proposed an online inspection method that used mathematical morphology to
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reduce the effect of noises and perform edge detection on steel surfaces. Tang et al. [77] used
mathematical morphology to detect steel surface defects. Additionally, Yazdchi et al. [78]
employed local entropy in combination with morphology to identify defect positions in
cold-rolling mill steel. In [94], an algorithm for defect detection on steel billets was intro-
duced, leveraging mathematical morphology to recognize both defects and pseudo-defects.
Other papers on morphological methods for defect detection are presented in [95–98]. Nev-
ertheless, these techniques depend on a structural element that traverses pixels within an
image to gather image information. Consequently, the computational cost must be carefully
considered, especially in online applications for inspecting steel-strip surfaces.

3.2.8. Frequency-Domain Analysis

Frequency domain analysis involves transforming an image into the frequency domain
utilizing a mathematical transformation technique, which can help address limitations
associated with spatial filtering methods. Wu [74] and Wu et al. [40] introduced two online
surface inspection methods for cold- and hot-rolled strips. Additionally, Wu et al. [75]
presented a method for detecting defects in hot-rolled strips, utilizing the fast Fourier
transform as a feature extractor and combining genetic algorithms and neural networks
for steel surface defect recognition. The achieved performance using frequency-domain
features was 92.92%.

3.2.9. Spatial Filter

The spatial filtering technique involves determining the value of a pixel at a given
coordinate based on the original value of that pixel and the original pixel values of its
neighboring pixels [99]. These techniques are broadly classified into two categories: linear
filtering operations and nonlinear filtering operations, both of which are integral to image
analysis. Gradient filters, for instance, are employed to detect edges, lines, and isolated
points. Guan [80] introduced an algorithm based on saliency map construction, which de-
tected defects on steel surface products by performing a Gaussian pyramid decomposition
on the discrete frequency information of steel surfaces. Additionally, Alkapov et al. [81]
developed a prototype for automatic visible defect detection and classification in metallur-
gical plants, utilizing the Sobel operator to identify gradients along two axes, achieving an
accuracy of 98.10%.

3.3. Texture Segmentation-Based Methods

Spectral-based methods inherently lack local information and struggle to effectively
represent various defects, while statistical-based methods tend to be more noise-sensitive.
Table 3 provides an overview of the strengths and limitations of model-based methods for
detecting steel surface defects.

Table 3. Strengths and limitations of texture segmentation-based Methods for steel surface defects.

Methods Advantages Limitations Applications

Markov random field It can be easily combined with statistical and
spectral methods for the segmentation task

Incapable of identifying small defects and
unsuitable for global texture analysis [100,101]

Autoregressive model It can forecast any recurring patterns in the data;
high performance for texture-related problems

Only appropriate for low-resolution images due to
increasing memory and computation demands as
the image size grows

[102–105]

Weibull model Has superiority in describing the contrast, shape
of textures, and scale

Difficult to detect defects with low contrast or
gradual intensity [106,107]

Active contour model
Demonstrates strong performance in detecting
both steel pit defects and spot defects; easy to
follow an object on subsequent similar images

Difficult to calculate the convergence position due
to a lack of constraints; when the image size is too
large, this method works slowly

[108]
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3.3.1. Markov Random Field Model

The Markov random field (MRF) model, initially used as a texture model by Cross et al. [109],
primarily captures the statistical properties of images through non-directional graphs. This
model finds applications across various problems in image processing [110]. The Markov
random field equation is defined as

P(W|S) = −P(S|W)P(W)

P(S)
(8)

where P(S|W) represents the conditional probability distribution based on observations,
P(S) denotes the fixed value based on observed values, and P(W) signifies the prior
probability. Unsalan [100] applied the GLCM and MRF as a texture analysis method to
detect and classify six types of steel surfaces using the k-nearest neighbors (KNN) classifier,
achieving a higher classification result with an MRF of 91.36%. Ozdemir [101] investigated
a novel method based on Karhunen–Loeve Transforms and a model-based approach with
an MRF as the texture model for textile fabric defect detection.

3.3.2. Autoregressive Model

The autoregressive (AR) model discerns correlations between values within a time
series and their preceding and succeeding values, enabling the linear prediction of future be-
havior based on past observations [29]. This method offers notable time savings compared
to nonlinear approaches [111]. Hajimowlana et al. [102] introduced a one-dimensional
autoregressive method for texture modeling and defect detection in web inspection sys-
tems, although its application to two-dimensional textures was limited. Basu and Lin [103]
investigated using the autoregressive (AR) process for tree texture modeling, employing a
multi-scale AR texture model for fabric samples. Serafim [104,105] utilized multiresolution
pyramids with 2D autoregressive models for leather defect segmentation in natural images,
albeit without providing quantitative results.

3.3.3. Weibull Model

The Weibull distribution, commonly employed in life data analysis, offers distinct
advantages in detecting defects that may be challenging to identify with an MRF. Its
comprehensive descriptive capabilities regarding texture contrast, shape characteristics,
and scale contribute to its efficacy [112]. Timma et al. [106] introduced a novel approach to
defect detection in textures, leveraging two distinct features. Liu et al. [107] presented a
method based on an unsupervised approach. Their study proposed a novel HWV model
for defect detection on steel surfaces, achieving a detection rate of 96.20%. However, the
Weibull distribution may struggle to detect defects in samples characterized by a low
contrast or gradual intensity variations.

3.3.4. Active Contour Model

The active contour model, also known as snakes, is a computer vision framework
introduced by Kass et al. [113], designed to delineate object outlines from potentially noisy
two-dimensional images. This model finds widespread application in various domains
including segmentation, shape recognition, object tracking, and edge detection, addressing
various segmentation challenges [108]. Notably, it has been observed that this method is
adept at detecting nearly all microdefects without generating false objects, even amidst
cluttered backgrounds. However, the absence of constraints makes determining the conver-
gence position challenging for the active contour model.
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3.4. Machine Learning-Based Methods
3.4.1. Artificial Neural Networks

Artificial neural networks (ANN) represent an information processing model inspired
by the functionality of biological nervous systems, such as the brain or central nervous
system [114]. The multilayer perceptron (MLP) is widely used among various ANN
architectures. A simple MLP architecture comprises one input layer, one output layer,
and one hidden layer, as illustrated in Figure 6. The classifier based on an MLP for defect
classification in steel surfaces is structured as follows: the input layer’s size corresponds
to the number of components (m) in the feature vectors representing the steel surface
(X = (xi)i=1,2,...,m), while the output layer’s size represents the number of defect types to be
detected (Y = (yi)i=1,2,...,n). The size and number of hidden layers depend on the specific
application. Equations (9) and (10) are employed to compute the value of the ith neuron in
the lth layer, ul

i , by summing the products of values from the previous layer l − 1 and their
corresponding weight parameters W = (W1, W2, . . . , WL), where Wi = (wi1, wi2, . . . , wiSi ),
and Si represents the size of the ith layer.

u1
i = xi, i = 1, 2, . . . , S1, S1 = m (9)

ul
i =

Sl−1

∑
j=0

wl−1jul−1
j , i = 1, 2, . . . , Sl , l = 2, 3, . . . , L (10)

where wi0 denotes the bias term, Sl represents the size of the lth layer, and SL = n.
In Equation (11), the activation function g compresses outputs to the range from zero

to one, yielding probabilities that a given feature vector for a road segment belongs to a
particular class.

vi(X, W) = g(uL
i ), i = 1, 2, . . . , m (11)

Equation (11) determines the predicted class label for each steel surface input fea-
ture vector X. Training the MLP classifier involves obtaining predicted class labels,
v1(Xk, W), v2(Xk, W), . . . , vn(Xk, W), based on randomly initialized weight parameters
W for steel surface feature vector Xk, given a training sample representation (Xk, Yk),
k = 1, 2, . . . N, where Yk denotes the class of Xk, and N is the training sample size.

Several attempts have been made to utilize ANNs to control steel surface quality.
Zhang [115] proposed an improved backpropagation (BP) algorithm for quality inspection
of cold-rolled strips, emphasizing a modification that accelerated convergence. Caleb [116]
discussed two adaptive computing techniques, based on supervised and unsupervised
learning, to establish a foundation for building a reliable decision support system for
classifying steel surface defects. Redmon [117] introduced YOLO9000 for detecting over
9000 object categories. Li et al. [118] proposed a system to detect surface defects in cold-
rolled steel, achieving an accuracy of 98.57%.
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Figure 6. Architecture of an artificial neural network (3-layer).

3.4.2. Moving Center Hypersphere

The Moving Center Hypersphere (MCH) technique, introduced as a method for
sample compression [119], operates on the principle of using hyperspheres to represent
clusters of points, thereby approximating each sample with a number of hyperspheres. This
approach enables the representation of each class of patterns in n-dimensional space using
a series of n hyperspheres. In contrast to traditional methods such as K-NN and neural
networks, MCH methods offer the advantage of representing patterns from each class in
n-dimensional space using a series of n hyperspheres, whereas traditional approaches treat
patterns from one class as a set of points [120]. Chu et al. [121] introduced a novel multi-
class classification technique, quantile hypersphere based on machine learning (QH-ML),
to identify six types of steel surface defects. However, determining the optimal parameters
for the MCH presents challenges. Recently, hyperspheres have gained attention from
researchers for detecting defects on steel surfaces [122].

3.4.3. Sparse Coding

Sparse coding refers to a set of algorithms designed to learn a valuable sparse repre-
sentation of given data. These algorithms require only input data to acquire the sparse
representation, making them particularly useful as they can directly process raw data
and automatically uncover the representation without sacrificing essential information.
It is worth noting that sparse coding operates as an unsupervised learning method. The
mathematical expression for sparse coding is represented as follows:

x =
k

∑
i=1

aiϕi (12)

where, x denotes the input vector, and a represents the weight.
Huangpeng et al. [123] introduced a method for defect classification in images using

transfer learning and sparse coding, aiming to enhance the accuracy of defect classification.
Zhou et al. [124] proposed a class-specific and shared-dictionary learning approach to
achieve sparse representation, facilitating the classification of surface defects on steel sheets.
Furthermore, Liu et al. [125] presented a novel sparse-coding model for object recognition
and object feature representation. They also incorporated a flexible data selection mech-
anism within the photo-receptor layer to enhance the speed and accuracy of detecting
defects on steel plate surfaces. Despite these advancements, the computation time remains
a limiting factor for real-time defect detection.
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3.4.4. Deep Learning-Based Steel Surface Defect Detection Methods

Deep Learning is a specific subset of machine learning techniques concerned with
algorithms inspired by the structure and function of the brain. It utilizes multiple lay-
ers of artificial neural networks for the machine learning process. Some of the popular
deep learning models, like CNNs, generative adversarial networks (GANs), and convo-
lutional autoencoder (CAE), are widely used in the process of extracting features from
images of steel surfaces. This section provides an overview of current research on detecting
defects on steel surfaces. The methods employed for this task using deep learning tech-
niques can be categorized into three main approaches: supervised, semi-supervised, and
unsupervised methods.

Supervised

Supervised deep learning methods leverage labeled training data to learn complex
patterns and characteristics of steel surface defects. Supervised learning enables the neural
network to learn discriminative features and make accurate predictions automatically by
providing the model with pairs of input images and corresponding defect annotations. By
harnessing the power of labeled training data and sophisticated neural network architec-
tures, these methods pave the way for more reliable quality control systems in industrial
settings. For enhancing defect detection accuracy, Zhao et al. [126] integrated a feature
pyramid network into the You Look Only Once Network Version 4 (YOLOv4) architec-
ture, achieving an average detection accuracy of 92.50%. Semantic segmentation-based
methods have also been explored, with Zhou et al. [127] utilizing semantic segmenta-
tion for steel defect detection and Dong et al. [128] introducing the PGA-Net method for
pixelwise defect detection, achieving an 82.25% accuracy. Gao et al. [129] proposed a
hierarchical training CNN with feature alignment to improve the recognition accuracy of
steel surface defects. Recent advancements include transfer learning-based approaches,
such as Abu et al. [130] using MobileNet, ResNet, and Visual Geometry Group (VGG)
models for steel defect detection, achieving an 80.41% detection rate with MobileNet.
Additionally, kateb et al. [131] utilized a pre-trained ResNet-50 network for steel defect
classification. Furthermore, Chen et al. [132] proposed an aluminum profile surface defect
detection method based on a deep self-attention mechanism, achieving a 98.70% accuracy
using a ResNet model. Litvintseva et al. [133] compared E-Net, DeepLabV3, and U-Net
models for metal surface defect recognition, with DeepLabV3 achieving the highest accu-
racy. Fadli et al. [134] employed VGG-16 and VGG-19 models for image recognition of
steel surface defects, achieving performance values of 97.20% and 93.30%, respectively.
Gao et al. [135] proposed a lightweight inspection network for multi-class steel plate surface
defect detection. Lian et al. [136] utilized an adversarial network to generate numerous
exaggerated defect samples, thereby improving the classification accuracy for identifying
tiny flaws within single images.

Unsupervised

Unsupervised deep learning methods are advantageous when there is a scarcity
or high cost associated with acquiring labeled training data, as they do not necessitate
such data. Alternatively, these techniques use the organization and recurring patterns
within the data to obtain significant representations through self-regulation or clustering.
Mujeeb et al. [137] introduced a method based on unsupervised learning utilizing a deep
autoencoder network for detecting surface-level defects. Meanwhile, Zhao et al. [138]
proposed a combined approach integrating an autoencoder (AE), a generative adversarial
network (GAN), and LBP to detect defects on textured surfaces. Notably, labeled samples
were not required in these approaches due to their unsupervised nature. Mei et al. [139]
proposed an unsupervised learning method involving the construction of a convolutional
denoising autoencoder architecture based on a Gaussian pyramid to discern defective
and defect-free regions. Additionally, Youkachen et al. [140] presented a model based on
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unsupervised learning using CAE and image processing for defect segmentation in various
steel surface forms.

Semi-Supervised

Semi-supervised learning techniques combine the benefits of supervised learning,
which uses labeled training data, with the scalability and flexibility of unsupervised learn-
ing, which utilizes unlabeled data to acquire meaningful representations. Yiping et al. [141]
proposed a semi-supervised learning technique employing a CNN, with the CNN enhanced
by pseudo-labeling, to recognize defects on steel surfaces. Meanwhile, Zhang et al. [142]
developed a semi-supervised generative adversarial network (SSGAN) for image defect
detection. The SSGAN comprised two key sub-networks: a segmentation network and a
fully convolutional discriminator (FCD) network. The segmentation network employed a
dual attention mechanism to precisely segment defects from both labeled and unlabeled
images. In contrast, the FCD network utilized adversarial and cross-entropy loss functions
to generate confidence density maps for unlabeled images in a semi-supervised learning
fashion. Additionally, Zheng et al. [143] introduced a deep learning method based on a
generic semi-supervised approach, which required only a small quantity of labeled data
for surface defect inspection. Table 4 summarizes the strengths and weaknesses of various
machine learning methods for detecting steel defects.

Table 4. Strengths and weaknesses of different machine learning methods for steel surface defects’
detection.

Methods Advantages Weaknesses Applications

Artificial neural networks

Have numerical strength and can
perform more than one job at the
same time; real-time performance is
suitable for industrial use

The training duration of the
network is unknown; large-scale
feature vectors lead to high
calculation cost

[115–118]

Moving center hypersphere
High accuracy and efficiency in
classification (93–96%); not sensitive
to noise

Difficult to determine the best
parameter [121,122]

Sparse coding It can be used in both input and
output phases

The computation time exceeds
45.6 s, rendering it unsuitable for
real-time detection

[123–125]

Deep learning
Effective at producing high-quality
results and the quality of work
never deteriorates

For better performance, a large
quantity of data is required; some
DL models that perform well on
benchmarked datasets may struggle
when they are applied to real-world
datasets.

[8,126–128,130,132–134,136,139–
142,144–161]

4. Comparison of Some Defect Detection Methods

Many studies on the detection of steel surface defects have been conducted in the
literature, and some defect detection methods are listed in Table 5. This table focuses on the
detection methods, their relevant references, the type of steel used, the types of defects, the
size of the dataset, the reported accuracy of detection, and the advantages and limitations
of each method.
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Table 5. Comparison of some defects detection methods.

Detection Methods Reference Type of Steel Type of Defects Size of Dataset Accuracy
% Advantages Disadvantages

CNN [162] Hot-rolled
Crazing, scratches,
rolled in scale, pitted
surface, patches

6531 images 95.63 Simple computation
The accuracy of outcomes
is heavily dependent on the
scale of the training dataset

Improved YOLO [163] Cold-rolled
Scar, scratches, inclu-
sions, burr seams, iron
scale defects

4655 images 99.00 High detection rate Large datasets are required

Gradient filter, double
thresholding [164] Rod/bar Vertical, scratch 2444 images 96.90

Appropriate for high-
dimensional feature
space

Complicated to determine the
optimal filter parameters

HOG, PCA [165] Hot-rolled

Inclusion, rolled-in
scale, patches, pitted
surface, scratches,
crazing

1200 images 91.12

PCA needs a small
storage space, KNN
does not need to create
a hypothesis

Many calculations and weak-
ness in distinguishing healthy
and defective areas

Gabor filter [59] Slab surfaces Pinholes 968 images 98.69
High speed in search-
ing defects with the
lowest cost

Much time needed for feature
extraction

Multifractal [33] Cold strip
Dirty surface stain,
rust under pickled,
sticking, emulsion

2300 images 97.90

It implies a continuous
spectrum of exponents
for the pattern charac-
terization

Most real textures are not
ideal fractals

Wavelet, double
threshold [166] Billet Corner crack. 220 images 97.80 Very fast computation Unable to get the information

in all directions



Informatics 2024, 11, 25 17 of 38

5. Defects Classification Methods

The classification of steel surface defects is the process of categorizing these defects
into various classes, such as crazing, patches, scratches, etc., either automatically or manu-
ally. Various factors, including grease, dirt, impurities, temperature changes, high humidity,
and more, can cause defects on the steel surface. These defects can cover only small regions
of the image, a comparatively larger area of the image, or be whole-area defects. Different
descriptors are used to describe these defects, requiring different feature extraction tech-
niques and classification methods. Steel surface defect classification aims to ensure the
quality of steel products by accurately identifying the type of defect. This requires high effi-
ciency and accuracy from the classification methods, making it challenging for researchers.
Three main categories of classifiers are used for this task: supervised, unsupervised, and
semi-supervised.

5.1. Supervised Classifiers

In supervised classification, the user can specify which pixels in an image represent
certain classes by labeling the data. That means the user does the data labeling, so the
labeled data of steel surface images would tell the model which image includes the scratch,
hole, scarring, etc. When presented with a new steel surface image, the model uses
the labeled training data to model its class and later make a prediction of the class to
which a new item belongs. Various supervised classification methods have been proposed,
including KNN, ANN, SVM, discriminant function (DF), and fuzzy logic (FL).

5.1.1. K-nearest Neighbors Classifiers

The k-nearest neighbors classifier (K-NN) is a machine learning algorithm that operates
based on the distance between observations. In the K-NN method, an object is classified by
a majority vote among its neighbors. Specifically, the object is assigned to the most common
class among its k nearest neighbors. During the training stage, the algorithm stores feature
values and target vectors of training data instances [167]. Various researchers in the steel
surface defect inspection field have employed the k-nearest neighbors classifier [65,168]. For
instance, in their work [165], Boudiaf et al. developed an automatic system to detect surface
defects in hot-rolled flat steel. Their method used the HOG for image feature extraction and
a k-nearest neighbors classifier for defect classification, achieving a recognition accuracy of
91.12%. Similarly, Cem et al. [100] utilized the nearest neighbor classifier to classify grades
on steel surfaces. However, that method failed to meet real-time requirements.

5.1.2. Artificial Neural Network

An artificial neural network (ANN) is an information processing system designed
to emulate the functioning principles of the human brain [114]. Neural networks consist
of interconnected neurons capable of performing complex computations. In the structure
of an artificial neural cell, inputs represent external data, while weights indicate the sig-
nificance of incoming data and their impact on the cell. The transfer function calculates
the net input to a cell, with the weighted sum function being commonly used. Activation
functions determine the output generated by the cell based on its input and process the
net input. Various activation functions like sigmoid, threshold, and hyperbolic tangent can
be employed. The output represents the value sent to the external world or another cell,
and the activation function influences its calculation. ANNs can mainly be categorized into
feedforward neural networks (FFNNs) and backpropagation or feedback neural networks
(FBNNs) [169]. FFNNs are made of interconnected layers, where information flows only
from input to output; Examples of FFNNs are single-layer perceptron and multilayer per-
ceptron. FBNNs are neural networks in which a specific algorithm is used for training, such
that the error is propagated backward through the network to adjust the weights, thereby
optimizing the networks’ performance. Examples of FBNNs are Kohonen’s self-organizing
map and recurrent neural networks (RNNs). They find wide applications across domains
like system diagnostics, pattern recognition, robotics, nonlinear control, and signal pro-
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cessing. Khalifa et al. [35] proposed a method for detecting and classifying surface defects
on hot-rolled steel strips. The approach involved using histogram and edge detection for
feature extraction while employing two classifiers for defect classification: an ANN as a
supervised classifier and a DAN as an unsupervised classifier. Sarma et al. [170] proposed
a method for detecting surface defects on hot-rolled steel sheets, employing a three-level
2D Haar wavelet transform and training an ANN classifier for texture feature extraction.
The approach achieved promising results when tested on 45 defect-free and 55 defective
images. Similarly, Popat et al. [171] established general guidelines for developing a neural
network model for automatically detecting and classifying defects in hot strips, achieving
a classification accuracy of 98.75%. In the steel surface defect inspection realm, ANN has
been widely utilized by various researchers [172,173].

5.1.3. Support Vector Machines

Support vector machines (SVMs), also known as support vector networks, are super-
vised machine learning algorithms capable of classification and regression tasks [174]. The
SVM model was introduced in 1995 by Vapnik et al. [175]. Deep learning models often face
the challenge of overfitting due to the many parameters involved. SVMs offer a solution
to this issue. Their promising empirical performance and appealing characteristics have
attracted significant attention from researchers. In recent years, SVMs have been widely
employed in classifying steel surface defects, yielding excellent performance [176–178].
An adaptive classifier with a Bayes kernel (BYEC) was proposed in [179]. That approach
involved the introduction of five types of features for the loss problem, followed by the
proposal of a series of SVMs. Subsequently, a Bayes classifier was trained as an evolution-
ary kernel to fuse the results from the base SVMs. Additionally, in [180], an evolutionary
classifier with a Bayes kernel (BTEC) was developed for classifying steel surface defects.
Furthermore, twin support vector machines with multi-information (MTSVMs) were intro-
duced in [181] for classifying defects in steel surfaces. Chu proposed a multi-class classifier
called ELSGTWSVM in [182] for classifying surface defects in strip steel. The classifier was
designed to categorize six classes of strip steel surface defects, including cracks, scarring,
holes, wrinkles, scratches, and scales. Moreover, Hu et al. [183] proposed an SVM-based
model to categorize surface defects on steel strips using grayscale, geometric, and shape
features extracted by combining the defect target image and its corresponding binary image.
Additionally, Song et al. [184] applied a scattering operator to extract features for defect
recognition, enhancing the tolerance ability of local deformations. The improved scattering
convolution network achieved a best average recognition accuracy of 98.60% using the
SVM classifier. Furthermore, Hu et al. [185] constructed a classification model based on a
hybrid chromosome genetic algorithm to classify surface defects on steel strips using shape,
geometric, grayscale, and texture features extracted from defect target images and their
corresponding binary images. The SVM classifier achieved an average prediction accuracy
of 95.04%.

5.1.4. Discriminant Function

The discriminant function (DF) is a classification method used to discriminate between
two or more naturally occurring groups [186,187]. The discriminant function procedure can
be divided into two phases. First, it tests the significance of a set of discriminant functions,
then it performs classification [188]. Generally, discriminant analysis is a highly beneficial
technique that involves two key steps. Firstly, detecting the variables, and secondly, ac-
curately classifying cases into different classes. It has been applied widely in many fields.
Two notable studies on the theory behind discriminant functions have been conducted [1,2].
These studies are valuable resources for researchers interested in the discriminant func-
tion theory. Weiwei et al. [189] demonstrated that the discriminant function model was
appropriate for feature components extracted from steel surface defects. A classification
approach was described in Cord [190] that was based on textural information for metallic
surfaces exhibiting intricate random patterns.



Informatics 2024, 11, 25 19 of 38

5.1.5. Fuzzy Logic

The concept of fuzzy logic, pioneered by Zadeh in 1956 [191,192], offers a unique
approach to problem-solving by incorporating linguistic expressions rather than solely
relying on numerical values. Neural networks, with their capacity to process intricate
and imprecise data, excel at detecting and extracting patterns that may be too intricate for
conventional systems. Shitole et al. conducted a study [193] where they developed a neural-
fuzzy classifier specifically for detecting, classifying, and interpreting weld defects. This
classifier was compared against two other classification methods: a fuzzy logic classifier
and an artificial neural network classifier.

5.1.6. Deep Learning

Deep learning has revolutionized the steel surface defect inspection field by enabling
computers to learn from large numbers of images without explicitly programmed instruc-
tions [194–196]. It involves training artificial neural networks with multiple layers to
recognize patterns on the steel surfaces and make decisions. Guan et al. [197] proposed an
advanced deep learning algorithm for classifying steel surface defects by incorporating fea-
ture visualization and quality evaluation techniques. They utilized the pre-trained VGG19
model for defect classification and employed DVGG19 to extract image features. Decision
trees and the Structural Similarity Index (SSIM) were employed to adjust VGG19’s param-
eters and structure and evaluate the feature image quality. Their VSD network achieved
an impressive total accuracy of 93.70%. Kostenetskiy et al. [198] developed a prototype
system for Iron-and-Steel Works in the Russian Federation, leveraging convolutional neural
networks (CNNs) to automatically detect and classify defects with a classification accuracy
of 98.10% on test data comprising six defect types. Additionally, a defect detection system
based on deep learning was proposed in [5], achieving an mAP of 82.30 for detection and a
99.70% accuracy for classification tasks by fusing multilevel features. Konovalenko and
Maruschak [199] utilized the ResNet50 neural network classifier to detect and classify three
types of technical defects in rolled-metal products, achieving a total accuracy of 95.80%.
Wu et al. [200] proposed a method that combined feature transformation, extraction, and
nearest neighbors to classify steel surface defects using Residual Net, MobileNet, and Dense
Net networks, achieving a classification accuracy of 92.33%. Fu et al. [201] introduced a
deep neural network for recognizing and classifying new defect classes on steel surfaces,
utilizing a Siamese network and achieving classification accuracies of 85.80% and 100% on
the NEU and Xsteel datasets, respectively. They employed a pre-trained SqueezeNet model
with a multi-receptive field module to emphasize low-level feature learning. Additionally,
Zhou et al. [202] proposed a novel method for surface defect detection based on a bilinear
model using the Double-Visual Geometry Group16 feature function, achieving an accurate
classification and localization of surface defects. Furthermore, Fu et al. [203] proposed an
approach that combined a pre-trained VGG16 model for feature extraction and a CNN for
classification, while Wang et al. [204] combined object detection and binary classification
models to enhance the accuracy and speed of steel plate surface defect detection, achieving
an accuracy of 98.20%. Lastly, Nagy et al. [205] addressed the challenges of adapting
existing models to new artifact classes by combining EfficientNet deep neural networks
with randomized classifiers. Masci et al. [206] introduced the Max-Pooling Convolutional
Neural Network (MPCNN), which achieved a 7% error rate in classifying seven defects in
cold strips, outperforming SVM. Similarly, Yi et al. [207] presented a simple CNN model
for classifying steel sheet surface defects. Meanwhile, Deshpande et al. [208] proposed
a Siamese CNN for one-shot defect recognition on steel surfaces. Prihatno et al. [209]
employed CNNs to detect defects in steel sheets, achieving 96.00% and 73.00% accuracy
in training and testing, respectively. Ibrahim and Tapamo [210] combined a pre-trained
VGG16 model as a feature extractor with a newly designed CNN classifier to address the
challenges of diversity and similarity among defect types. He et al. [211] introduced a novel
framework leveraging multi-scale receptive field to extract multi-scale features. In their
approach, a set of autoencoders were trained to reduce the dimensionality of the extracted
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multi-scale features, achieving a classification rate of 97.20%. Niu et al. [212] introduced
the surface defect-generation adversarial network (SDGAN), a novel method based on
GANs for defect image generation using a large number of defect-free images collected
from industrial sites.

5.2. Unsupervised Classifiers

Unsupervised classifiers are techniques used to select which pixels are related and
group them into classes. The computer model receives unlabeled data without explicit
instructions on what to do with it, and the model can learn to form its own classifications
of the training data without external help. Recently, unsupervised methods have been used
in many studies for surface defects’ inspection [213].

5.2.1. Self-Organizing Map

The self-organizing map (SOM), invented by Kohonen [214], is an artificial neural
network extensively employed for clustering and visualization in exploratory data anal-
ysis [215,216]. SOMs serve the purpose of reducing a complex, high-dimensional input
space into a simpler, low-dimensional representation [217], finding applications across
various fields [218]. In [219], an inspection system for rolled steel was proposed, using PCA
for feature extraction and SOMs for defect classification. The study targeted three defects:
exfoliation, oxidation, and waveform defect, achieving an overall accuracy of 87.00%. In
another effort by Luo and He [220], an automatic optical inspection system for hot-rolled
flat steel was developed to enhance inspection speed, implemented on an FPGA and reach-
ing an accuracy of 92.11%. Additionally, Caleb [116] discussed two adaptive computing
techniques based on supervised and unsupervised learning to establish a reliable decision
support system for classifying surface defects on hot-rolled steel.

5.2.2. Learning Vector Quantizer

Learning Vector Quantization (LVQ) is an artificial neural network algorithm versa-
tilely applicable in both supervised and unsupervised learning scenarios for classification
tasks [221]. It proves effective for handling variable-length and warped feature sequences
and is capable of fine-tuning prototype sequences to achieve optimal class separation.
Guifang [75] proposed a method for defect recognition in hot-rolled strips, employing the
LVQ neural network fed with 54 features to accomplish surface defect recognition.

5.2.3. Deep Autoencoder Network

A deep autoencoder (DAN) is a type of unsupervised neural network characterized
by its three-layer structure, where the output target of the autoencoder matches the input
data. Consisting of two main components, namely the encoder network and the decoder
network, it operates by transforming input data from a high-dimensional space into codes
in a lower-dimensional space through the encoder network, and then reconstructing the
inputs from the corresponding codes via the decoder network.

5.3. Semi-Supervised Classifier

Semi-supervised models are the mixing of supervised and unsupervised learning
processes that can use fairly small datasets, and the training dataset can include both
labeled and unlabeled data for training. It enhances classification performance when not
requiring sample-labeled samples for training. Di et al. [222] introduced a novel approach
combining CAE with semi-supervised generative adversarial networks (SGANs) for steel
surface defect detection and classification. Initially, CAE-SGAN leverages a stacked CAE
trained on a vast quantity of unlabeled data, utilizing intermediate layers to enhance
feature extraction for fine-grained features. Subsequently, the encoder network of the
CAE is retained as a feature extractor and connected to a softmax layer to establish a new
classifier. SGAN is then employed for semi-supervised learning to refine the classification
further. Odena et al. [223] proposed a semi-supervised approach based on GANs, which
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coerces the discriminator network to output class labels. Moreover, He et al. [224] presented
a defect classification method based on semi-supervised learning using two networks: a
residual network and a categorized generative adversarial network. By employing GANs
to generate many unlabeled samples, they achieved a classification accuracy of 99.56%.
Additionally, semi-supervised learning was utilized as a feature extraction method in
another study [225]. The strengths and limitations of classification methods for steel surface
defects are summarized in Table 6.

Table 6. Strengths and limitations of classification methods of steel surface defects.

Methods Advantages Limitations References

Supervised classifiers

Quite simple, and
robust; has a good and
reliable effect; very
helpful in classification
problems

A large dataset needs a
long computation time
to train; dependent on
labeled samples; hard to
label large steel surface
defects.

[1,5,9,11,13,31,65,88,100,
165,168,170,172,176–
185,190,197–212,226–
232]

Unsupervised classifiers

Dimensionality
reduction can be easily
achieved; solve
problems by learning
from the data and
classifying them without
any labels

Sensitive to noise and
significantly impacted
by initial values

[75,116,137,138,173,219,
220,233]

Semi-supervised
classifiers

Stability are achieved
with just a few labeled
samples

Training requires
massive interaction and
is of low efficiency

[222–225,232]

6. Comparison of Some Defect Classification Methods

Numerous studies have focused on classifying surface defects in steel. Tables 7–9
present comparisons of various methods in the realms of supervised, unsupervised, and
semi-supervised learning, respectively.
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Table 7. Comparison of some defect classification methods (supervised classifiers).

Classification
Methods

Reference Type of
Steel

Type of Defects Size of Dataset Accuracy
%

Advantages Disadvantages

INSVHs [162] Hot-rolled Hole, scratch bruise, wave
scarring, scale

3320 images 97.26 Suitable for strengthening
the effect of important
samples

Calculation time was slow;
sample was unbalanced

SVM [234] Hot-rolled DFBL, DFLS LSBL, LSS 71 images 94.74 A lot of feature vectors
from a few images

The performance was not good
for all defect samples

BYEC [179] Hot-rolled Rolled-in scale, crazing, in-
clusion patches, scratches,
pitted surface

1800 images 97.42 Adaptive to change in
steel surface defects’
dataset

Low accuracy when used on a
large dataset

MHSVM [235] Hot-rolled Scratch, hole scarring, wave
scale, bruise

4120 images 97.33 It can learn additional in-
formation hidden in de-
fect dataset

In order to achieve a satisfac-
tory result, you have to exper-
iment with a number of differ-
ent parameter settings.

CNN [236] Hot-rolled Pitted surface, inclusion,
crazing, rolled-in scale,
patches, scratches

6531 images 95.63 The sample size for the in-
spection of the lot can be
increased by the proposed
algorithm

For the model training, a sig-
nificantly large dataset is re-
quired.

DST-KLPP [4] Hot-rolled Transverse scratches,
transverse cracks, scar,
pockmarks, chaps, scales,
roll imprints, longitudinal
scratches, longitudinal
cracks

1273 images 90.42 Suitable for image process-
ing of intense noise

Irregular method

ARW-NNC [31] Hot-rolled 18 types 4320 images 97.62 Classification algorithm is
better

More runtime overheads
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Table 7. Cont.

Classification
Methods

Reference Type of
Steel

Type of Defects Size of Dataset Accuracy
%

Advantages Disadvantages

DCNN [237] Hot-rolled Inclusion, crazing, rolled-in
scale, patches, scratches pit-
ted surface

1800 images 99.89 The ensemble strategy im-
proved the recognition
rate from the single mod-
els

Computation was still too
large; noise and low-quality
data were ignored

KNN [165] Hot-rolled Pitted surface, inclusion,
crazing, rolled-in scale,
patches, scratches

1800 images 91.12 The method is simple,
easy to achieve, and clear

The recognition accuracy is un-
satisfactory

ANN [81] Hot-rolled Rolled-in scale, pitted
surface, inclusion, crazing
patches, scratches.

1800 images 98.16 When the layers become
too many, the network is
prone to overfitting

The network requires a large
diversity in training for its op-
eration

CPN [238] Hot-rolled
strip, hot-
rolled
plates

Water drops, scales, seams,
water strains, vertical cracks,
horizontal cracks, rolling
marks

7050 images 94.00 and
96.10

More sparse and reason-
able feature maps can be
obtained.

One defect has different mor-
phological characteristics

MDTWSVM [227] Hot-rolled Dent, scarring scratch, dirt
hole, damaged edge crack.

2330 images 96.92 Defect feature extraction
with rotation invariance
and scale

It is not suitable when the
dataset includes more noise

SDC-SN-
ELF+MRF

[228] Hot-rolled Inclusion, crazing patches,
scratches, pitted surface,
rolled-in scale.

1800 images 97.50 Light-weight model. Large dataset and a lot of com-
putational power are required
for pre-trained model learning.
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Table 8. Comparison of some defects classification methods (unsupervised classifiers).

Classification
Methods Reference Type of

Steel Type of Defects Size of Dataset Accuracy % Advantages Disadvantages

LVQ [75] Hot-rolled

Crack, pits scar,
roll-mark shell,
cross texture,
pseudo-defects

485 images 84.00 to 93.00 Simple structure
The information from ev-
ery dimension of the input
sample is not fully used

SOM [116] Hot-rolled

Bruise, scratch,
rolled-in scale,
rolled-in bruise,
skin lamination, no
defect

1084 images 97.00

Integrating SOM into a real-time in-
spection system could be valuable
for generating new class labels di-
rectly correlated to the features

Slow processing time

HWV [107] Hot-rolled
strips

Massive rupture,
drops, tar, oil stain,
roll marks, white-
dot mountain.

1200 images 96.20
Arbitrary type of defect on the ho-
mogeneously textured surface can be
identified

low contrast, miscella-
neous patterns, pseudo-
noise interference

Table 9. Comparison of some defects classification methods (semi-supervised classifiers).

Classification
Methods Reference Type of

Steel Type of Defects Size of
Dataset

Accuracy
% Advantages Disadvantages

cDCGAN,
Resnet18 [224] Hot-rolled

Crazing, patches, pitted sur-
face, inclusion rolled-in scale,
scratches.

1800 images 99.56 Require fewer labeled
samples

The GAN samples looked
slightly fuzzy

CAE-SGAN [222] Hot-rolled

Longitudinal crack, transverse
crack, scar, wrinkle, water mark,
scale seam, edge crack, rolling
mark

10,800 images 98.60
Full use of steel surface
images (labeled and unla-
beled images)

Rates of convergence and
asymptotic analyses may
not capture the complete
image

PLCNN [141] Hot-rolled Inclusion, patches, pitted surface,
rolled-in scale, scratches 1800 images 90.70 Unlabeled data can be

used

The scale of the training set
is limited in early produc-
tion
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7. Evaluation Metrics of Defect Detection and Classification Methods

Evaluation metrics play a crucial role in assessing the performance of defect detection
methods. Commonly used evaluation metrics in steel surface defect detection include
accuracy, precision, recall, and F1-score [239–243]. These metrics provide valuable insights
into the effectiveness of the proposed methods by quantifying their ability to identify and
classify defects on steel surfaces accurately. This paper summarizes some of the evaluation
metrics commonly used in steel surface defect detection. Their formulas are given in
Equations (13)–(16).

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

Recall =
TP

TP + FN
(14)

Precision =
TP

TP + FP
(15)

F1 − score =
2 × Precision.Recall
Precision + Recall

(16)

where TP represents the number of positive samples correctly detected or classified, while
TN indicates negative samples correctly identified as negative. FP occurs when negative
samples are erroneously detected or classified as positive, and FN occurs when positive
samples are incorrectly detected or classified as negative.

8. Trend Analysis of the Literature
8.1. Literature Analysis of Detection Methods

Based on the review of steel surface defect detection methods, we can observe that
there has been a consistent increase in the number of papers focusing on defect detection
methods over the years.

There is a general trend of decrease in statistical methods over time. This could be
attributed to the recent popularity of more sophisticated machine learning techniques. As
for spectral methods, they experienced fluctuation over the years, with a peak around
2006–2010 before gradually declining in usage. Similarly, the texture segmentation based
methods show a peak around 2006–2010 before declining in usage. As shown in Figure 7,
the most notable trend is the significant increase in methods based on learning, particularly
in the most recent period 2021–2024. This suggests a growing interest in and adoption
of machine learning techniques for steel surface defect detection. Therefore, the analysis
suggests a shift from traditional statistical and texture segmentation based methods towards
more advanced machine learning-based approaches for steel surface defect detection in
recent years. This shift is likely driven by the increasing data availability, advancements in
machine learning algorithms, and the desire for more accurate and efficient defect detection
systems in industrial settings.

8.2. Literature Analysis of Classification Methods

From Figure 8, it can be seen that there has been a clear upward trend in the usage of
supervised methods over the years, with a notable increase in the number of papers from
2016 to 2020. Unsupervised methods have been less common than supervised methods,
with sporadic utilization over the years.

The number of papers focusing on unsupervised methods is relatively low across
all periods. Semi-supervised methods have seen some adoption, particularly from 2016
to 2020, where there is a notable increase in the number of papers compared to previous
years. However, there was also a notable increase in the exploration of unsupervised and
semi-supervised methods during that period. The analysis suggests a current focus on
supervised methods for steel surface defect classification, with a smaller proportion of
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papers focusing on unsupervised and semi-supervised methods. This trend indicates a
preference for methods that depend on labeled data.

Figure 7. Statistical distribution of detection methods.

Figure 8. Statistical distribution of classification methods.

9. Conclusions and Future Directions

This work provided a comprehensive overview of techniques employed in detecting
and classifying defects on steel surfaces based on more than 200 studies. The study
examined existing methods, particularly machine learning approaches, to discover the
latest advancements and progress in automating steel surface inspection. Various factors,
including grease, dirt, impurities, temperature changes, and high humidity, can cause
defects on steel surfaces. Additionally, these defect categories have some diversity and
similarities, presenting challenges for their accurate classification. It was noted that recent
methods in detecting and classifying steel surface defects emphasized supervised learning
due to its superior performance, resulting in a relative neglect of statistical and spectral
methods. Nevertheless, there are observations from previous research that contribute to
drawing justifiable conclusions in the process of detecting and classifying. Therefore, we
emphasize these observations by presenting key points that we consider highly significant:
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• A standard image dataset must be used to conduct a performance evaluation of
detection and classification algorithms and carry out a fair comparative analysis.

• Although requiring fewer labeled datasets, semi-supervised learning methods have
exhibited lower accuracies than supervised learning methods.

• The significant diversity and similarity of various classes of defects make defect
classification difficult.

• Augmenting data enhances the performance of defect detection and classification
models, particularly on unevenly distributed datasets that are not too large.

This paper also discussed evaluation metrics commonly used in steel surface defect
detection, including accuracy, precision, recall, and F1-score, which play a crucial role in
assessing the performance of defect detection methods by quantifying their ability to detect
and accurately classify defects on steel surfaces. There are several encouraging future
research studies that could enhance the performance of defect detection and classification
methods. Among them are the following:

1. There is a need for curating large-scale benchmark datasets comprising diverse steel
product types and defect categories and standardized evaluation metrics, including
accuracy, precision, recall, and F1-score metrics.

2. Exploring the integration of advanced machine learning models, such as transformer-
based models, graph neural networks, and reinforcement learning, to further improve
the accuracy and efficiency of defect detection systems.

3. Ensuring the robustness and generalization of machine learning models across dif-
ferent production environments and steel product types remains a challenge. Future
research could investigate methods for enhancing defect detection systems’ robust-
ness and generalization capabilities, such as transfer learning and data augmentation
strategies.

4. Much expectation for future findings for steel surface defect detection and classifica-
tion points to investigating models based on supervised learning, specifically deep
learning techniques and semi-supervised learning methods, to overcome the challenge
of limited training data. This shift toward deep learning techniques is expected to
improve outcomes in detecting steel-strip defects in the near future.

5. One of the problems that can be encountered when designing a steel surface defect
detection model is the eventuality of small datasets that often lack diversity. The
consequence is the design of biased models that fail to appropriately generalize well
to unseen data. This is due to the fact that there is not enough variation in the types,
sizes, shapes, and locations of defects present in the dataset. Some of the directions
that could be explored to resolve these problems are:

• Augmenting the dataset through usual techniques such as rotation, flipping,
cropping, and color adjustments might not be sufficient to increase dataset
size and diversity. It is then crucial to find novel data augmentation strategies
particularly adapted to steel surface defect detection.

• Designing effective feature representations that capture the relevant characteris-
tics of defects on steel surfaces is crucial. It is a challenge to find suitable features
that generalize well and are robust to noise and variations.

• Exploring models that can generalize well from small datasets to unseen data is
a significant challenge. Regularization techniques, transfer learning, and domain
adaptation methods can help improve generalization performance but require
careful adaptation and tuning.

• It will be worth investigating the integration of human expertise into the training
and validation process to help improve model performance in the presence of
small datasets, where human feedback is leveraged to refine and validate defect
detection models.

• The development of benchmark datasets specifically tailored to defect detec-
tion on steel surfaces can facilitate the evaluation and comparison of different
algorithms and methodologies.
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It is observed that supervised learning algorithms have a high likelihood to emerge as
the mainstream approaches for steel defect detection and classification, coupled with the
challenge of enhancing model accuracy with limited datasets, most future works should
focus on designing an accurate supervised learning-based model with low computational
complexity for steel surface defect detection and classification.
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Notations Description
ANN Artificial neural networks
BP Backpropagation
CAE Convolutional autoencoder
CCD Charge-coupled device
CNN Convolution neural networks
CPN Classification priority network
DAN Deep autoencoder network
DF Discriminant function
FBNN Feedback neural networks
FFNN Feedforward neural network
FIR Finite impulse response
FL Fuzzy logic
GAN Generative adversarial network
GLCM Gray-level co-occurrence matrix
HOG Histogram of Oriented Gradients
KNN k-Nearest neighbors
LBP Local binary pattern
LVQ Learning Vector Quantization
MCH Moving Center Hypersphere
MGA Multiscale geometric analysis
MLP Multilayer perceptron
MRF Markov random field
PCA Principal component analysis
R-CNN Region convolutional neural network
SOM Self-organizing map
SVM Support vector machine
VGG Visual Geometry Group
YOLOv4 You Look Only Once Network Version 4
TN True Negative
TP True Positive
FP False Positive
FN False Negative
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