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Abstract: Structured Query Language (SQL) injections pose a constant threat to web services, high-
lighting the need for efficient detection to address this vulnerability. This study compares machine
learning algorithms for detecting SQL injections in web microservices trained using a public dataset
of 22,764 records. Additionally, a software architecture based on the microservices approach was
implemented, in which trained models and the web application were deployed to validate requests
and detect attacks. A literature review was conducted to identify types of SQL injections and machine
learning algorithms. The results of random forest, decision tree, and support vector machine were
compared for detecting SQL injections. The findings show that random forest outperforms with a
precision and accuracy of 99%, a recall of 97%, and an F1 score of 98%. In contrast, decision tree
achieved a precision of 92%, a recall of 86%, and an F1 score of 97%. Support Vector Machine (SVM)
presented an accuracy, precision, and F1 score of 98%, with a recall of 97%.

Keywords: SQL injection; machine learning; web applications; microservices; detection

1. Introduction

Microservices is a software development style that has gained importance in recent
years. It is based on decomposing an application into independent services, each responsi-
ble for a specific function, providing scalability, flexibility, and ease of implementation [1];
however, it presents challenges in terms of data management, particularly in databases that
contain the important and confidential information of an organization, facing threats such
as SQL injections (SQLI) [2]. This type of attack, which occurs in various organizations, is
caused by users who intend to obtain sensitive information related to the database. They
manipulate the data, generating harmful effects that affect organizations worldwide [3].
Preventing these types of attacks has become a priority for organizations and software de-
velopment industries. Early and accurate detection is crucial to avoid harmful effects [4,5].
Historically, preventing these types of attacks involved validating data entry and exam-
ining it for special characters associated with common attacks. While this practice still
persists today, it is no longer effective in countering other types of attacks [6]. Due to
constant technological advancements, organizations and developers are actively seeking
new solutions to address this problem, which continues to emerge.

The aim of this study is to compare machine learning algorithms for detecting SQL
injections in web microservices using public SQLI datasets. The effectiveness of the machine
learning algorithms in detecting this type of vulnerability in web microservices will be
evaluated. The research question that arises from this is: what is the most effective machine
learning algorithm for detecting SQLI in web microservices?

Machine learning-based tools for detecting SQLI attacks are impacting software de-
velopment industries and organizations. Various machine learning methods have been
developed to detect SQLI. In the study conducted by [7], security auditing tools were
utilized to detect SQL injections (SQLIs) and identify common patterns and attack vectors.
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The collected data were used to develop two classifier systems: one based on naive Bayes
(NB) and another on decision tree (DT). The results showed that the NB classifier achieved
a performance of 97% with an accuracy of 98%. In reference [8], a text vectorization model
was employed to detect SQLI. The model employed an algorithm called ITFIDF and was
improved by using support vector machine (SVM), K-nearest neighbors (KNNs), and DT.
The results of the first algorithm showed a precision of 99.08% and a recall of 99%, while
the results show that the combination of term frequency–inverse document frequency
(TF-IDF) and support vector machines (SVMs) yields the best results, with K-nearest
neighbors (KNNs) and decision trees (DTs) achieving slightly lower scores. Specifically,
TF-IDF + SVM achieved a precision of 98.22%, a recall of 98.12%, and an F score of 98.17%,
while KNN achieved a precision of 98.18%, a recall of 97.98%, and an F1 score of 98.08%;
the overall accuracy was 34% with an F score of 99.21%. In reference [9], authentic SQLI
data were collected at the enterprise level and combined with an equal number of normal
queries, these data were used to train a neural network based on multi-layer perceptron
(MLP) and long short term memory (LSTM). The results indicate that the MLP model with
a hidden layer is the most optimal, achieving a precision of 96.24%, a recall of 100%, an
accuracy of 99.67%, and a false positive rate of 0.36%; the processing time was 84.1 millisec-
onds. The study [10] constructed a dataset by extracting labeled samples from the web and
incorporating an sql-injection-payloadlist. A Keras sequential MLP neural network model
was trained using this dataset and designed to exploit the WHERE clause in databases.
This approach yielded remarkable results, with a precision of 85%, a recall of 100%, an F1
score of 92%, and an accuracy of 94.4%. In the work [11], researchers collected malicious
SQL queries using approaches such as bag-of-words (BOW) and word2vec, queries that
were used as a training set for multi-layer perceptron (MLP) models, convolutional neural
networks (CNNs), and long short-term memory (LSTM); when using BOW, the precision
levels achieved were 91.0%, 95.4%, and 91.9%, with word2vec, the percentages were 76.3%,
76.7%, and 81.6%, respectively. In reference [12], Ku-bAnomaly, a system that utilizes
neural network and supervised learning techniques, was developed to detect multiple
anomalies in websites; the results showed an exceptional accuracy rate of 99.6%, a recall
rate of 99.6%, and an F1 score of 99.6% for SQL injections (SQLI).

The present research chose the machine learning approach due to its demonstrated
capacity to address complex database attack problems. Different machine learning tech-
niques were implemented to train a model capable of accurately detecting SQLI. The aim is
to provide a reliable and effective algorithm for the software development industry.

2. Data and Materials
2.1. Characterization of SQLI Attacks

The purpose of characterizing SQLI attacks on databases was initially to understand
their types and execution methods. Eight types of SQL injections were identified as being
widely used by attackers. Subsequently, the specific characteristics of each type of attack
were analyzed to obtain a greater understanding of its structure and application. Table 1
presents eight injection types, their definitions, normal and abnormal queries, injectable
parameters, and associated descriptions.

Table 1. Properties of SQLI Types.

Attack Type Definition Normal Consultation Injectable
Parameter Abnormal Query Description

Tautology
SQLI

This type of attack attempts to use
a conditional question argument

to test the validity of the SQL
query, this is achieved by using
the WHERE clause where the

attacker injects the condition and
transforms it into a tautology that

is always valid [13,14].

SELECT * FROM users
WHERE name = ‘user’ AND

password = ‘password’;

OR
‘1’ = ‘1’;

SELECT * FROM users
WHERE

name = ‘user’ AND
password = ‘password’

OR
‘1’ = ‘1’;

It becomes an anomalous query
by adding the statement ‘OR

‘1’ = ‘1’;’ to the SQL query. This
causes the table fields to always

evaluate to true, resulting in data
being returned from the table,

regardless of the actual conditions
[14,15].
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Table 1. Cont.

Attack Type Definition Normal Consultation Injectable
Parameter Abnormal Query Description

Ilegal/Logically
incorrect

query SQLI

Injection of this type occurs due to
errors, lack of validations or the
inputs are invalid from a logical
point of view, since during the
development period it helps
programmers to correct their

programs [16].

SELECT * FROM products
WHERE product_name =

‘name’;

; SELECT *
FROM users;

--’;

SELECT * FROM
products WHERE
product_name = ‘;

SELECT * FROM users;
--’;

This injection attempts to execute
two SQL queries at the same time,

the first closes prematurely and
the second selects all records in

the users table, potentially
revealing sensitive information.
The “;” indicates the completion

of a query in SQL. The “--”
initiates a comment, which means
that everything after it in the line

is considered descriptive text.

Union query
SQLI

The injection of this type consists
mainly of the word UNION,

which simulates a single query
consisting of the SELECT clause.
For this query to be applied, the
tables must be related and the

correct names of the tables along
with their fields should be known

[13,17].

SELECT * FROM
accountTable WHERE

user_login = ‘user’;
UNION

SELECT * FROM
accountTable WHERE

user_login = ‘user’
UNION SELECT *

FROM accountTable
WHERE No = 10,232

The query can point to an SQL
injection from a login because it

attempts to join two tables with a
single query, thus attempting to

return all users who have the
queried username or the value

10,232 in the query column [13].

Piggy-
Backed

Query SQLI

This type of injection executes two
requests simultaneously, the first
should be correct and the second

should be controlled for data
extraction, addition, modification,

remote execution, or denial of
service [16,18].

SELECT book_name FROM
booktable WHERE book_id =

‘book1’ AND
book_name = 0

;

SELECT book_name
FROM booktable

WHERE
book_id = ‘book1’ AND
book_name = 0; DROP

booktable;

This query is characterized by the
fact that a real query, which is

executed normally, is added with
malicious queries [17].

Blind SQLI

It consists of the formation of a
series of true/false queries, thus

collecting valuable data by
inferring from the responses of
the consulted website [13,18]

SELECT 5 WHERE username
= :username

1/0 ELSE
SELECT 5

‘admin’; IF
SYSTEM_USER = ‘sa’

SELECT 1/0 ELSE
SELECT 5

The query consists of two parts,
before and after the semicolon, if
the value is correct it will return
an error message or a shortcut,

but if the answer is not obtained
one will arrive at ‘5’ as the answer.

Timing SQLI

This injection manages response
times in which the attacker

records the responses generated
by the database, based on the
incoming and outgoing data

transfer technique [16].

SELECT price FROM
products WHERE id = 1;

or 1 = 1 --’;
sleep (1)

SELECT price FROM
products WHERE id = ‘

or 1 = 1 --’; sleep (1);

In this type of injection, the
success of the attack is evaluated
by entering an input, where the

first statement corresponds to the
ID. If the injection is successful,

the response time will be
observed within the period

programmed in the malicious
query.

Store
Procedure

SQLI

A type of database vulnerability
that allows an attacker to inject

malicious code into a cached SQL
query. This type of attack can lead

to the execution of arbitrary
commands in the database, which

can compromise the entire
database and its records [13,14].

SELECT * FROM
accountTable WHERE

user = ‘user’ AND
passwd = ‘pass’;

SHUTDOWN;-
-;

SELECT * FROM
accountTable WHERE

user login = ‘user’ AND
passwd = ‘pass’;
SHUTDOWN;--;

The query has the last part that is
considered injectable, this being a

forced way of stopping or
shutting down the database

management system, plus the last
signs indicate that everything

after that is considered a query.

Alternate
Encoding

SQLI

This type of injection is applied to
bypass special character

validations, thus using alternative
encodings such as hexadecimal,

ASCII or Unicode [18].

SELECT * FROM
accountTable WHERE

user = ‘user’ AND
pin = ‘pass’;

44524f50204
44154414241

534520

SELECT * FROM
accountTable WHERE

user = ‘user’ AND
pin = ‘pass’;

EXEC(‘44524f50204
44154414241534520’);

SHUTDOWN;

This injection seeks to hide certain
characters or reserved words from

the databases in order to make
them pass the validations and be
executed, in this case there is an

encryption based on
HEXADECIMAL.

The “*” in a SELECT clause indicates that all columns in the table specified in the query will be selected.
A “:username” parameter is referenced. The “:” indicates a placeholder for a value to be provided at query
execution time.

2.2. Dataset

In order to implement the machine learning algorithms, it was crucial to identify the
appropriate dataset. A search was conducted on various sources, including Kaggle and
Github, resulting in the identification of approximately 30 datasets. The most suitable
dataset was then selected, taking into consideration the following criteria:

• To effectively train machine learning algorithms aimed at detecting SQL injections,
research suggests that a dataset ranging between 20,000 and 40,000 registers is re-
quired [9,11,19];

• The dataset must come from a reliable source and be found in known repositories;
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• Precise labeling and classification are necessary, with values assigned to indicate
whether a query is abnormal or normal;

• Normal data should also be included for better training;
• The selected dataset must be legally permitted for use in research.

Thus, we selected a dataset that meets the aforementioned criteria, specifically the
‘SQL Injection Detection by Machine Learning’ dataset [20], for this study.

To ensure a fair ratio between abnormal and normal queries, we performed balancing
through subsampling, which involves removing data. The original dataset contained
30,905 records, with 19,537 anomalous and 11,382 normal queries. To enhance the training
process of machine learning algorithms, subsampling was performed, resulting in a final
dataset of 22,764 records, with 11,382 data points for both anomalous and normal queries.
This procedure ensures more robust and fair results during algorithm training.

2.3. Algorithm Selection

To select the machine learning algorithms, a systematic literature review was per-
formed following the guidelines of the international PRISMA statement. For the selection
of scientific and academic articles addressing machine learning uses for SQLI detection,
we chose to use the Web of Science (WOS), Scopus, and IEEE Xplore databases. A total of
320 articles related to the topic were extracted, but after applying inclusion and exclu-
sion criteria, 29 relevant articles were identified that provided substantial information on
machine learning algorithms used to detect SQL injections. Subsequently, the algorithms
with the best performance were selected based on precision, accuracy, recall, and F1 score
criteria. The decision tree, SVM, and random forest algorithms were found to have the best
results. Table 2 provides further details on the criteria implemented by various authors.

Table 2. Top 10 algorithms with the best performance.

Algorithm Accuracy Precision Recall F1-Score

Light Gradient Boosting Machine (LGBM) [17] 0.9933 0.9933 0.9933 0.9933
Gradient Boosting Machine (GBM) [17] 0.9904 0.9898 0.9903 0.991

Artificial Neural Network (ANN) [13,18] 0.9893 0.9870 0.9913 0.99
AdaBoost (AB) [17,21] 0.9808 0.9559 0.9592 0.9561

Decision Tree (DT) [16,18,22,23] 0.9668 0.9315 0.88955 0.9164
Random Forest (RF) [18,22,23] 0.9634 0.9247 0.8947 0.9149

Support Vector Machine (SVM) [18,22,23] 0.9546 0.9706 0.9085 0.9395
Logistic Regression (LR) [4] 0.9503 0.9737 0.9089 0.9653

Naive Bayes (NB) [18,24] 0.9074 0.8966 0.7985 0.9010
KNN (K-Nearest Neighbors) [21] 0.8920 0.9143 0.8931 0.8853

Furthermore, the choice of these algorithms is justified for the following reasons.
The decision tree (DT) algorithm is simple to interpret and allows for the identification
of characteristics relevant to the detection of SQL injections. Random forest (RF), being
an ensemble of decision trees, offers robustness and resistance to overfitting by using
multiple models to make predictions, making it easier to detect injections, and it can also
handle unbalanced datasets more effectively. Finally, support vector machines (SVMs) are
effective in high-dimensional feature spaces and are less prone to overfitting compared
to other machine learning algorithms. In the context of SQL injection detection, SVMs
can separate legitimate SQL queries from malicious ones in a feature space defined by
relevant characteristics.

Similarly, when selecting the DT, RF, and SVM algorithms, it was deemed essential to
evaluate their applicability in scientific research. The systematic review revealed that the
DT algorithm was used in 9 studies, SVM in 10, and RF in 9, indicating their relevance and
adoption in the scientific and industry fields.



Informatics 2024, 11, 15 5 of 14

3. Method

After analyzing SQL injections to identify their various types, we selected a dataset
that included both normal and anomalous injections. Next, we implemented three machine
learning algorithms known for their high performance. These algorithms were trained
using the selected dataset to detect SQL injections in requests directed to an application
developed under the microservices approach.

3.1. Machine Learning for SQLI Detection

The Google Collaboratory work environment implemented SVM, decision tree, and
random forest algorithms using the Python programming language.

3.1.1. Support Vector Machine

The Support Vector Machine (SVM) algorithm is a type of supervised learning used
for data classification. Its objective is to identify an optimal hyperplane that maximizes
the separation between classes [25]. In order to detect SQL injections, the algorithm
identifies SQLI patterns in the input data, learning to distinguish between normal and
abnormal queries.

The objective of the SVM algorithm is to maximize the margin by minimizing clas-
sification errors. The margin is defined as the distance between the decision boundary
(hyperplane) and the closest data points of each class [25]. Additionally, support vectors
have a significant impact on the classification accuracy of the SVM. They are the points
that are closest to the hyperplane limit and determine the position and orientation of
the decision.

The algorithm procedure spans from the initial data preparation phase to the prediction
stage. Initially, load the set of SQL queries (dataset) and assign labels, where the value ‘1’
represents an abnormal query, while ‘0’ indicates a normal query. This is represented in
class 1 and 2, respectively, as shown in Figure 1. Next, preprocess the data by eliminating
rows that contain null values. Subsequently, the data are divided using the 80/20 Pareto
rule, allocating 80% for algorithm training and 20% for testing. The SVM algorithm utilizes
8-bit unicode transformation format (UTF-8) encoding to handle natural language texts
that may include special characters. To ensure the integrity of the dataset, the dropna()
function was used during data processing to remove rows with missing or null values.
The algorithm utilizes the TF-IDF technique for vectorization, which assigns weights to
words based on their importance in the text content. This approach enables a weighted
count of words in queries, facilitating the determination of an SQL injection. Additionally,
a linear kernel is used to classify queries as an SQL injection or not, without requiring the
non-linear separation of classes.

3.1.2. Decision Tree

The decision tree algorithm is a supervised learning model used in the field of artificial
intelligence and machine learning. Its structure is reflected in a sequence of decisions and
their respective branches [26]. The setting can be adjusted depending on the desired depth
for the task or the optimal scan level. The decision tree consists of a root node from which
child nodes emerge, making up the branches, and leaves that contain the final predictions.

In the context of detecting SQL injection, the algorithm processes labeled data from the
root node and uses information gain to generate additional branches (see Figure 2). Each
branch divides the dataset into smaller subsets, creating child nodes. Feature selection is
performed after each split, and the process is repeated iteratively until a stopping criterion is
reached, such as the maximum depth of the tree or information gain that does not exceed a
predetermined threshold. In addition, the algorithm generates terminal nodes (leaves) that
represent final predictions. These predictions are either the most common class in the subset
for classification problems or the mean for regression problems. This approach is notable
for its capacity to adapt to new data and its interpretability, which is essential in security
applications such as SQL injection detection. The decision tree architecture is modified by
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adjusting its depth. The shapes of the branches and the creation of leaves are determined
internally based on whether the processed data are recognized as SQL injections. The
algorithm uses UTF-8 encoding to ensure the integrity of special character handling. The
dropna() function is used to discard rows with null values, thus maintaining the quality of
the data used to train the model. Regarding text processing, the natural language toolkit
(NLTK) library was used to apply lemmatization and tokenization techniques. This resulted
in effective normalization and cleaning of SQL queries, which improved the accuracy of the
model in detecting SQL injections. The pre-processed text was transformed into numerical
vectors using the CountVectorizer method, making it interpretable by the machine learning
algorithm. This facilitated the representation of the text characteristics and their use in the
decision tree model. Additionally, the model underwent specific adjustments, including
setting a maximum tree depth of 30 (max_depth = 30) and utilizing the ccp_alpha parameter
to prevent overfitting by penalizing and pruning the tree. These adjustments facilitated
effective generalization of the model on unseen data and improved its predictive capacity.

Informatics 2024, 11, x 6 of 15 
 

 

utilizes 8-bit unicode transformation format (UTF-8) encoding to handle natural language 
texts that may include special characters. To ensure the integrity of the dataset, the 
dropna() function was used during data processing to remove rows with missing or null 
values. The algorithm utilizes the TF-IDF technique for vectorization, which assigns 
weights to words based on their importance in the text content. This approach enables a 
weighted count of words in queries, facilitating the determination of an SQL injection. 
Additionally, a linear kernel is used to classify queries as an SQL injection or not, without 
requiring the non-linear separation of classes. 

 
Figure 1. SVM architecture. 

3.1.2. Decision Tree 
The decision tree algorithm is a supervised learning model used in the field of artifi-

cial intelligence and machine learning. Its structure is reflected in a sequence of decisions 
and their respective branches [26]. The setting can be adjusted depending on the desired 
depth for the task or the optimal scan level. The decision tree consists of a root node from 
which child nodes emerge, making up the branches, and leaves that contain the final pre-
dictions. 

In the context of detecting SQL injection, the algorithm processes labeled data from 
the root node and uses information gain to generate additional branches (see Figure 2). 
Each branch divides the dataset into smaller subsets, creating child nodes. Feature selec-
tion is performed after each split, and the process is repeated iteratively until a stopping 
criterion is reached, such as the maximum depth of the tree or information gain that does 
not exceed a predetermined threshold. In addition, the algorithm generates terminal 
nodes (leaves) that represent final predictions. These predictions are either the most com-
mon class in the subset for classification problems or the mean for regression problems. 
This approach is notable for its capacity to adapt to new data and its interpretability, 
which is essential in security applications such as SQL injection detection. The decision 
tree architecture is modified by adjusting its depth. The shapes of the branches and the 
creation of leaves are determined internally based on whether the processed data are rec-
ognized as SQL injections. The algorithm uses UTF-8 encoding to ensure the integrity of 
special character handling. The dropna() function is used to discard rows with null values, 
thus maintaining the quality of the data used to train the model. Regarding text pro-
cessing, the natural language toolkit (NLTK) library was used to apply lemmatization and 
tokenization techniques. This resulted in effective normalization and cleaning of SQL 

Figure 1. SVM architecture.

Informatics 2024, 11, x 7 of 15 
 

 

queries, which improved the accuracy of the model in detecting SQL injections. The pre-
processed text was transformed into numerical vectors using the CountVectorizer 
method, making it interpretable by the machine learning algorithm. This facilitated the 
representation of the text characteristics and their use in the decision tree model. Addi-
tionally, the model underwent specific adjustments, including setting a maximum tree 
depth of 30 (max_depth = 30) and utilizing the ccp_alpha parameter to prevent overfitting 
by penalizing and pruning the tree. These adjustments facilitated effective generalization 
of the model on unseen data and improved its predictive capacity. 

 
Figure 2. Algorithm architecture of decision tree. 

3.1.3. Random Forest 
The random forest algorithm is a type of supervised learning that constructs multiple 

decision trees and combines their results to improve precision and mitigate overfitting. 
This algorithm creates a set of decision trees, each trained on a random subsample of the 
training dataset [27]. In SQL injection detection, the random forest algorithm captures 
more complex patterns and improves model generalization (Figure 3). 

 
Figure 3. Algorithm architecture of random forest. 

The process starts with data preparation, which involves removing null values, di-
viding the data according to Pareto’s law (80/20), and vectorizing the queries using TF-
IDF. The algorithm is trained using specific criteria, such as the number of estimators 
(n_estimators), the maximum tree depth (max_depth), the weight of the classes 
(class_weight), and the random state (random_state). 

  

Figure 2. Algorithm architecture of decision tree.

3.1.3. Random Forest

The random forest algorithm is a type of supervised learning that constructs multiple
decision trees and combines their results to improve precision and mitigate overfitting.
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This algorithm creates a set of decision trees, each trained on a random subsample of the
training dataset [27]. In SQL injection detection, the random forest algorithm captures more
complex patterns and improves model generalization (Figure 3).
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Figure 3. Algorithm architecture of random forest.

The process starts with data preparation, which involves removing null values, divid-
ing the data according to Pareto’s law (80/20), and vectorizing the queries using TF-IDF. The
algorithm is trained using specific criteria, such as the number of estimators (n_estimators),
the maximum tree depth (max_depth), the weight of the classes (class_weight), and the
random state (random_state).

3.1.4. Performance Evaluations

SQLI detection can be classified as either true positive (TP) or true negative (TN) when
accurate detections are made in attacks. Conversely, it is classified as false positive (FP) or
false negative (FN) when detections are incorrect.

Precision (P) is a metric used to measure the quality of predictions, minimizing false
positives and maximizing the number of correctly classified true positives. It can be
calculated using Formula (1).

P =
TP

TP + FP
(1)

Recall (R): Assesses the classification accuracy of all elements within a given class.

R =
TP

TP + FN
(2)

F1 Score (F): This indicator provides a balance between precision and recall, allowing for a
better comparison of combined performance.

F = 2 ∗ (P ∗ R)
(P + R)

(3)

Accuracy (Acc): Evaluate the prediction that the algorithm makes correctly and have an
accurate classification.

Acc =
TP + TN

TP + TN + FP + FN
(4)

3.2. Microservices-Based Software Architecture

The system developed for the detection of SQL injection attacks is based on a soft-
ware architecture based on microservices, an approach recognized for its modular and
distributed structure, made up of multiple interrelated and scalable components. The
software architecture developed in this research is composed of three independent services
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with specific functionalities that communicate with each other through a well-defined
application programming interface (API).

One service was developed with a front-end application that exposed the necessary
interface for the user to make requests in the information system. This application was de-
veloped using Angular, a framework based on TypeScript, which facilitates user interaction
and sends requests to the service where the business logic is located.

Another service that makes up the software architecture contains the business logic;
this service was developed using the Spring Framework in Java. This component, which
exposes its communication API, also acts as an intermediary between the user interface
and the SQLI recognition service. Its main task is to manage incoming requests, validate
them and forward them to the appropriate service for processing. The MySQL database
management system has been used to store the information relevant to the operation of the
application, and it is the component that receives the SQL query if it is not considered a
SQLI attack.

To handle SQL injections, a dedicated service was created to host machine learning
models trained for SQLI detection. This service, developed in Python, exposes an API
developed with the FastAPI framework that allows interaction with models based on the
SVM, decision tree, and random forest algorithms. These models have the capacity to
analyze the received queries and determine if they exhibit patterns associated with SQL
injection attacks.

Figure 4 shows the workflow diagram of the application based on the microservices
architecture. The process begins when a user submits a request through the web interface,
which is received by the business logic for initial validation. The request is then sent to
the SQLI detection service, where the machine learning model is applied to analyze its
content. If a SQL injection attack is detected, the user receives a notification that a possible
SQLI has been detected; otherwise, the request follows its normal processing flow, is sent
to the database, and the response is processed and presented to the user through the
user interface.
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4. Results
4.1. Training Time

To execute the algorithms, Google Collaboratory service was utilized and worked in
an environment with two Intel(R) Xeon(R) 2.20 GHz processors, 12 Gi of RAM.
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Table 3 shows the training time (in seconds) and the RAM memory usage of the
algorithms used, random forest, SVM, and decision tree, in the execution environment. The
times varied depending on the specific structure and architecture of each algorithm. In the
case of random forest, it uses a set of 200 decision trees with 15 branches each, achieving
an estimated training time of 24 s. On the other hand, the SVM model requires a longer
training time, reaching 33 s, due to the complexity of its architecture and the processing
necessary to address the injections. Similarly, decision tree, an algorithm composed of a
single tree to generate predictions, has a training time of 6 s.

Table 3. Training time and RAM memory usage of the evaluated machine learning algorithms.

Machine Learning Algorithms Training Time (s) RAM Memory Usage

Random forest 24 1.5 Gi
SVM 33 1.7 Gi

Decision tree 6 1.4 Gi

4.2. Performance

To train the SQL injection detection algorithms, a dataset of 22,764 records was used,
with 11,382 records of normal queries and the same number of anomalous queries. A
strategy based on the Pareto law was used, where 80% of the data was used for training
and 20%, or 4553 records, were used for testing.

Figure 5 shows the confusion matrix of the SVM algorithm for SQL injection detection,
which shows that there were 2298 cases of true positives (TP), 2176 cases of true negatives
(TN), 57 cases of false positives (FP), and 22 cases of false negatives (FN). In comparison,
the false negative rate was 0.48%, meaning that 0.48% of cases were incorrectly identified
as negative.
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The confusion matrix of the random forest algorithm training is shown in Figure 6; it
can be seen that 2313 cases of true positives (TP), 2168 cases of true negatives (TN), 65 cases
of false positives (FP) and 7 cases of false negatives (FN) were identified. In comparison, the
false negative rate was 0.15%, which would be the percentage of cases that were incorrectly
identified as negative.
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Figure 7 shows the confusion matrix of the decision tree algorithm for detecting SQL
injections, which shows that there were 2276 true positives (TP), 1932 true negatives (TN),
301 false positives (FP), and 44 false negatives (FN). In comparison, the false negative rate
was 0.48%, indicating that 0.97% of cases were falsely identified as negative.
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Table 4 shows the performance indicators of the three algorithms selected during the
training phase to detect SQLI in the web microservice. In this context, the algorithms were
trained using different tokenization and vectorization models, which allowed to effectively
process the chains that make up both injections and non-injections. The results show that
the random forest algorithm stands out for its excellent performance in the detection of
SQLI, achieving a precision and accuracy of 99%, a recall of 97%, and an F1 score of 98%.
Similarly, the SVM algorithm shows excellent performance with a precision, accuracy, and
F1 score of 98% and a recall of 97%. Conversely, the decision tree algorithm does not show
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optimal results for the detection of SQLI, with a precision of 97%, a recall of 86%, an F1
score of 91%, and an accuracy of 92%.

Table 4. Performance of evaluated machine learning algorithms.

Algorithm Accuracy Precision Recall F1-Score

Random Forest 99% 97% 98% 99%
SVM 98% 97% 98% 98%

Decision tree 97% 86% 91% 92%

5. Discussion

The results obtained in this study, which focuses on the comparison of machine learn-
ing algorithms for the detection of different types of SQL injections in web microservices
using a set of data classified as injections and non-injections, have significant implications
for the field of cybersecurity. It is important to clarify that, unlike previous studies that
report on the detection of SQLI in web applications based on monolithic architectures, the
present research focuses on the specific context of web microservices [28], where the existing
literature has not yet delved deeper. The software architecture based on the microservices
approach is composed of three independent services with specific functionalities: a service
that provides a user interface to make SQL requests, which can be normal requests or
attacks; a service that receives these requests and sends them to the processing service that
evaluates the request using models trained with three machine learning algorithms (SVM,
RF, and DT).

In the SVM and RF algorithms, vectorization using TF-IDF was used to detect anoma-
lous patterns and handle high query loads, taking advantage of the versatility of the
vectorizer. However, in the third algorithm, the vectorizer CountVectorizer was used, a
choice that differs from the approaches presented in previous studies [22]. CountVectorizer
generates a term count matrix, where each row stores a term uniquely extracted from the
dataset, which facilitates the effective identification of SQL injections. Furthermore, it is cru-
cial to highlight that gradient boosting (GB) [29] was implemented in the RF algorithm; this
strategy has not been addressed in previous studies; it is used to improve the performance
of the model and achieve a more accurate detection of SQL injections.

However, some limitations were identified during the development of this study. In
particular, the lack of detailed information on attacks on web microservices was highlighted,
an architecture that companies are currently evaluating and considering to improve their
information systems due to its benefits in terms of redundancy, scalability and flexibility,
this may be because currently this type of attack is mitigated since the data access layers of
web systems are developed using object-relational mapper (ORM) frameworks. However,
the databases work by receiving SQL requests as well, so that it is still possible to carry
out these types of attacks. In addition, it has been found that the processing of SQL and
SQLI queries presents significant challenges due to the composition of these queries, which
involve aspects of natural language processing (NLP), special characters, signs, letters,
and other elements. The complexity inherent in these elements has added difficulties to
the efficient handling of queries and, therefore, represents an important consideration for
future research and improvements in the implementation of solutions. So, we propose the
use of parameterized queries and the development of more advanced techniques to handle
the inherent complexity of these queries.

The evaluated metrics, including precision, recall, F1 score, and accuracy, reflect
encouraging results in terms of effectiveness in detecting SQLI in web microservices.
Among the machine learning models applied, the analysis shows that the random forest
algorithm, with an average performance of 98% based on the evaluated metrics, positions
itself as the most feasible and efficient option for the detection of SQLI in web microservices,
whose use could represent a significant contribution to the field of cybersecurity. The
random forest algorithm has proven to obtain superior metrics thanks to the characteristics
and structure it has for classifying injections, allowing specific patterns to be identified and
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accurate predictions to be made, consolidating itself as a key tool in the prevention and
detection of security threats in web microservices environments.

Comparing the results with other studies, it can be observed that they focus on the
detection of SQLI in web applications based on monolithic architectures. In this context, the
present research stands out by applying machine learning algorithms specifically to web
applications based on architectures composed of independent services, an approach known
as microservices. Thus, in the research of [30], it is observed that conversions of input data
(dataset) were performed, converting them into numerical values and data verification was
performed to avoid empty columns or rows in the training, reaching six algorithms, among
which linear regression and perceptron + SGD stand out, obtaining a precision greater than
96%, results somewhat similar to the values obtained in the models used in the present
study. On the other hand, in [31], a model for the detection of SQL injection attacks based
on semantic learning and deep learning is proposed and applied using natural language
processing NLP techniques (TF-IDF and Word2Vec); techniques also used here. The results
obtained in this study show that the synBERT model reached 99.74% accuracy, 99.68%
precision, a recall of 99.52%, and an F1 score of 99.60%. On the other hand, in [32], the RNN
automatic encoder is proposed, which manages to achieve a precision of 95%, an accuracy
of 94%, a recall of 90%, and an F1 score of 92%.

The results obtained suggest that machine learning algorithms could be highly ef-
fective in detecting SQL injections in applications based on web microservices. This
perspective aims to significantly improve the level of security by enabling early detection
of possible computer attacks. However, it is important to mention that the possibility
of applying algorithms in web microservices is challenging due to the complexity of the
architecture and data request components. The demonstrated effectiveness of the random
forest algorithm can make a significant contribution to the field of cybersecurity, open-
ing opportunities for future research and development in the detection of SQLI in web
microservice environments.

6. Conclusions

The characterization of the types of SQL attacks has made it possible to identify
the eight types most commonly used by attackers. This analysis has provided a detailed
understanding of their definitions and the structure of the anomalous queries corresponding
to each type, which in turn has allowed specific defensive measures to be taken against
these attacks.

The selection of the dataset from recognized public repositories, such as Kaggle and
Github, and the application of subsampling for data balancing, has allowed us to obtain
an optimized dataset to strengthen the training and execution of the machine learning
algorithms for detection of SQLI in web microservices.

For the selection of the machine learning algorithms, a systematic review of the
literature was carried out; the result was that the decision tree, SVM and random forest
algorithms presented better results considering the precision criteria: accuracy, recall and
F1 score.

The entire software architecture was developed based on the microservices approach,
considering three services: a service that exposes the user interface to capture SQL requests,
a service that receives web requests and forwards them to the evaluation of the request to
determine if it is an attack. In addition, the MySQL database management system has been
used to store the relevant information for the operation of the application, and this is the
component that receives the SQL query if it is not considered a SQLI attack.

To train the selected algorithms, the process was carried out using Python in the
Google Collaboratory virtual environment. The dataset consisted of 22,764 records, with
11,382 records of normal queries and the same number of anomalous queries. Pareto’s law
was applied to divide the dataset into 80% for training and 20% for testing.
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The analysis of the results confirms that the algorithm with the best performance to
detect SQLI in web microservices is the random forest algorithm with a precision and
accuracy of 99%, a recall of 97%, and an F1 score of 98%.
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