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Abstract: Cysteine dioxygenase type 1 (Cdo1) is a tumor suppressor gene. It regulates the metabolism
of cysteine, thereby influencing the cellular antioxidative capacity. This function puts Cdo1 in a
prominent position to promote ferroptosis and apoptosis. Cdo1 promotes ferroptosis mainly by
decreasing the amounts of antioxidants, leading to autoperoxidation of the cell membrane through
Fenton reaction. Cdo1 promotes apoptosis mainly through the product of cysteine metabolism,
taurine, and low level of antioxidants. Many cancers exhibit altered function of Cdo1, underscoring
its crucial role in cancer cell survival. Genetic and epigenetic alterations have been found, with
methylation of Cdo1 promoter as the most common mutation. The fact that no cancer was found to
be caused by altered Cdo1 function alone indicates that the tumor suppressor role of Cdo1 is mild.
By compiling the current knowledge about apoptosis, ferroptosis, and the role of Cdo1, this review
suggests possibilities for how the mild anticancer role of Cdo1 could be harnessed in new cancer
therapies. Here, developing drugs targeting Cdo1 is considered meaningful in neoadjuvant therapies,
for example, helping against the development of anti-cancer drug resistance in tumor cells.
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1. Introduction

Cell death is an essential biological process found in all living organisms, serving
various functions such as embryonic development, organ maintenance, aging, immune
response coordination, and autoimmunity [1]. There exist alterations in cellular pathways
either promoting or suppressing the pathways of cell death, which may result in cell
immortality [1]. Cells proliferating uncontrollably and not dying are hallmarks of cancer [2].
In total, 18 million new cancer cases are diagnosed every year, and the most frequent cancer
type is lung cancer followed by breast cancer, both of which amount to approximately
2.1 million cases [3]. One effector of cell death is cysteine dioxygenase type 1 (Cdo1), an
enzyme that catalyzes the oxidation of cysteine. It plays roles in two different pathways
of cell death, apoptosis and ferroptosis. In this review, we elaborate on how studying the
anticancer role of Cdo1 in apoptosis and ferroptosis will open new avenues to treat cancer.

1.1. Apoptosis and p53

Apoptosis is a programmed cell death that results in the orderly and efficient removal
of cells. In normal cells, apoptosis occurs when there is severe damage or protein misfolding,
including genetic mutation and imbalance in apoptotic factors. However, in cancer cells,
the genetic variations lead to the misfunction of factors that inhibit cell division or induce
apoptosis, enabling unlimited cell division and evasion of cell death [4]. Apoptosis occurs
when the caspases are activated by pro-apoptotic factors [5]. Caspases refer to a group of
enzymes of the cysteine protease family. The mitochondrion plays a critical role in apoptosis,
as it releases pro-apoptotic factors. There are three pathways involved in apoptosis: the
extrinsic pathway, intrinsic pathway, and intrinsic endoplasmic reticulum pathway [5]. p53
is a prominent tumor suppressor and nuclear transcription factor that induces expression
of genes of the extrinsic and intrinsic pathways [6].
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The extrinsic pathway is triggered once the death ligands are bound, for example, Fas
ligand [7] to the Fas cell surface receptor, which is under transcriptional control by p53.
Caspase 8 is involved in this pathway [7].

The intrinsic pathway, also known as the mitochondrial pathway, is triggered by
irreparable genetic damage, hypoxia, severe oxidative stress, and high cellular Ca2+ levels,
which are factors causing mitochondrial intrinsic damage [8]. These factors activate the
pro-apoptotic factors Bax and Bac, which form pores in the mitochondrial membrane [5,9].
Bax and a subset of pro-survival genes of the Bcl2 family contain p53-binding elements [6].
Moreover, p53 exercises this function mainly by promoting the transcription of BH3-only
proteins and the APAF-1 gene [10–13]. BH3-only proteins inhibit the Bcl2 family from
blocking the formation of channels on the mitochondrial membrane and promote mitochon-
drial outer membrane permeabilization (MOMP), which in turn promotes apoptosis [5,14].
APAF-1 acts as a scaffolding protein to allow the activation of caspase-9 [15].

1.2. Ferroptosis

Ferroptosis is a type of regulated cell death marked by the accumulation of iron as
well as iron-dependent lipid peroxides [16]. In some situations, ferroptosis also displays
shedding and rounding up of cells, together with increased autophagosomes [17]. Iron
promotes ferroptosis as a coactivator of lipoxygenases and a generator of reactive oxygen
species (ROS) [17,18]. Without abundant antioxidants, ferroptosis is triggered as the radicals
produced by the reaction of phospholipid hydroperoxide (PLOOH), a product of lipid
peroxidation, and iron continue with the peroxidation of membrane lipids in a process
called autoperoxidation [15], a positive feedback loop. In autoperoxidation, PLOOH reacts
with both ferrous (Fe2+) and ferric (Fe3+) ions, resulting in the formation of the free radicals
PLO• and PLOO•, respectively [17], in the so-called Fenton reaction [19]. These free radicals
then engage with polyunsaturated fatty acid–phospholipids (PUFA-PLs), promoting the
continued production of PLOOH [17]. So far, three pathways with protecting roles against
elevation of PLOOH have been studied.

The most well-known pathway protecting cells from ferroptosis involves GPX4 as the
key element [17]. The cystine/glutamate antiporters transport cystine into cells. Cystine
can be reduced to cysteine, an antioxidant [20]. Additionally, cysteine is essential for the
production of glutathione (GSH), a powerful antioxidant [21]. Glutathione peroxidase 4
(GPX4) inhibits the Fenton reaction, by catalyzing the reduction of PLOOH to its alcoholic
form PLOH, thereby protecting cells from lipid peroxidation and ferroptosis. In this process,
GSH is involved as a cofactor of GPX4 (Figure 1).

There are two other newly discovered protecting pathways. Apoptosis-inducing fac-
tor mitochondria-associated 2 (AIFM2, also known as FSP1) and GTP cyclohydrolase-1
(GCH1) participate in these two pathways, respectively. Ferroptosis suppressing protein
1 (FSP1) inhibits lipid peroxidation and ferroptosis by converting ubiquinone (CoQ10)/
semihydroquinone into ubiquinol, which can directly reduce lipid radicals, similar to
GPX4 [22,23]. FSP1 catalyzes the protection process with the help of NADPH [22,23].
GCH1 is an enzyme that controls the rate of tetrahydrobiopterin (BH4) synthesis, which
is essential for the production of neurotransmitters such as dopamine and nitric oxide
(NO) [24]. BH4 acts as a cofactor for important enzymes involved in neurotransmitter
and NO production [24]. Some types of phospholipids have polyunsaturated fatty acyl
tails, such as phosphatidylserine and phosphatidylcholine, which are involved in regu-
lating the fluidity and flexibility of the membrane [25]. Through GCH1-mediated BH4
production, ferroptosis is inhibited by selectively preventing the oxidation of lipids with
two polyunsaturated fatty acyl tails [24] (Figure 1).

The pathway containing GPX4 is regulated by p53 [18]. p53 plays a vital role in inhibit-
ing cell proliferation together with promoting apoptosis and ferroptosis [26]. In ferroptosis,
p53 inhibits the expression of SLC755A, a subunit of the cystine/glutamate antiporter,
which reduces the synthesis of the antiporter and inhibits the uptake of cysteine by the
cells, thus depleting cells of antioxidants [27]. As result of this inhibition, cells develop
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ferroptosis [28]. Moreover, GPX4 is inhibited by a high level of Ca2+ [28]. Consequently,
any ion channel eventually increasing intracellular Ca2+ facilitates ferroptosis. Piezo1, a
mechanosensitive ion channel commonly produced in cancer cells, is essentially a calcium
ion channel [28,29]. Therefore, cancer cells are more likely to undergo ferroptosis than ordi-
nary cells in response to mechanical stimuli [29]. Chloride channels have also been found
to have an effect on ferroptosis [30]. Transmembrane member 16A (TMEM16A) is a compo-
nent of the Ca2+-activated chloride channel [30]. This channel allows Cl− to enter the cell,
and the abundance of anions in the cell encourages the cell to take up cations to maintain
electric homeostasis, including Ca2+ [30]. The uptake of Ca2+ promotes ferroptosis [28].
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phospholipid hydroperoxide, PLOH: the corresponding alcohol of PLOOH, FSP1: ferroptosis sup-
pressing protein 1, GCH1: GTP cyclohydrolase-1, BH4: tetrahydrobiopterin). 
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roptosis is observed in various neurological disorders, including neurodegenerative dis-
eases, brain injuries, multiple sclerosis, aging, and neuroinflammation [32]. 

1.3. Cysteine Dioxygenase Type 1 
Cysteine dioxygenase type 1 (Cdo1) is an enzyme that catalyzes the oxidation of cys-

teine; hence, it plays a pivotal role in cysteine metabolism by regulating the amount of 
cellular cysteine [20]. Cdo1 catalyzes the conversion of cysteine to its sulfinic acid, which 
is further metabolized in the body [33]. Cysteine is essential for the production of 

Figure 1. Known pathways protecting cells from ferroptosis. The 3 known pathways involve GPX4
( 1⃝), FSP1 ( 2⃝), and BH4 generated from GCH1 ( 3⃝), respectively. The 3 pathways have the same effect:
protecting the cells from further lipid peroxidation by reducing PLOOH levels. Iron [II/III] reacts
with PLOOH via the Fenton reaction to produce free radicals, which can induce the peroxidation of
polyunsaturated fatty acids (PUFAs), promoting the loss of membrane integrity and cell death. (GSH:
glutathione, GSSG: oxidized glutathione, GPX4: glutathione peroxidase 4, PLOOH: phospholipid
hydroperoxide, PLOH: the corresponding alcohol of PLOOH, FSP1: ferroptosis suppressing protein
1, GCH1: GTP cyclohydrolase-1, BH4: tetrahydrobiopterin).

Ferroptosis can be observed in both healthy tissues and tumors. Ferroptosis demon-
strates toxic effects in healthy tissues. In the cardiovascular system, ferroptosis has been
implicated in heart failure and atherosclerosis [31]. Similarly, in the nervous system, ferrop-
tosis is observed in various neurological disorders, including neurodegenerative diseases,
brain injuries, multiple sclerosis, aging, and neuroinflammation [32].

1.3. Cysteine Dioxygenase Type 1

Cysteine dioxygenase type 1 (Cdo1) is an enzyme that catalyzes the oxidation of
cysteine; hence, it plays a pivotal role in cysteine metabolism by regulating the amount of
cellular cysteine [20]. Cdo1 catalyzes the conversion of cysteine to its sulfinic acid, which is
further metabolized in the body [33]. Cysteine is essential for the production of glutathione
(GSH), a vital cellular antioxidant [34]. Since the amount of available cysteine affects the
sensitivity to oxidative stress in cells, the gene Cdo1 plays a key role here [20]. Furthermore,
oxidative stress is vital in inducing cell death, e.g., by apoptosis and ferroptosis. Induced
cell death as an important direction in cancer chemotherapy [20], where Cdo1 has been
shown to increase the vulnerability of cells [35,36]. Moreover, and importantly, a decrease
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in the active Cdo1 enzyme by mutation or downregulation can be seen in various types of
cancers.

2. Ferroptosis and Apoptosis in Cancer
2.1. Ferroptosis in Cancer
2.1.1. Two-Sided Role of Ferroptosis in Cancer

Ferroptosis, a type of programmed cell death, is initiated by cysteine deprivation and
carried out through lipid peroxidation [18,37]. In cancer cells, metabolism is heightened,
leading to elevated reactive oxygen species (ROS), and subsequently, increased oxidative
stress [38]. Additionally, it has been demonstrated that cancer cells have a greater need for
iron, which serves as a co-factor for numerous enzymes involved in ferroptosis and impacts
lipid peroxidation [16]. Consequently, cancer cells are theoretically more vulnerable to
ferroptosis, and indeed, this form of cell death has been frequently observed in various
cancers, including fibroblastoma, lung cancer, osteosarcoma, kidney cancer, and prostate
cancer [18].

Ferroptosis participates in eliminating unhealthy cancer cells, thereby promoting tu-
mor growth to a limited extent [17]. However, in most cells within a tumor, ferroptosis pre-
dominantly hinders tumor growth or metastasis, highlighting its anticancer function [17].

2.1.2. Inducing Ferroptosis to Combat Cancer

The human immune system is capable of inducing ferroptosis in tumor cells [39];
CD8+ T cells demonstrate their anticancer effects by releasing the cytokine IFN-γ, which
triggers ferroptosis [39]. IFN-γ significantly reduces the expression of two subunits of the
cystine/glutamate antiporter, SLC755A and SLC3A2, in tumor cells through activating the
JAK-STAT signaling pathway [39]. This action decreases the antiporter and an inhibition
of cellular uptake of cysteine, resulting in uncontrolled lipid peroxidation and ultimately
ferroptosis [39]. Some tumor cells express PD-L1 on their surface, which binds to PD-1 on
CD8+ T cells’ surface. As a result, these T cells fail to release cytokines, including IFN-γ, and
do not exert cytotoxicity, allowing the bound tumor cell to evade the immune response [40].
Blocking this pivotal escape route has been pursued in immunotherapy; drugs that block
the binding of PD-1 to PD-L1 allow CD8+ T cells not to be interfered with by PD-L1 on the
tumor cell membrane, so that these CD8+ T cells can still exert cytotoxic effects to kill the
cancer cell and release cytotoxic factors, including IFN-γ [41].

There are several drugs targeting ferroptosis directly. Among them, Erastin and RSL3
((1S,3R)-RSL3) are representative [42]. Erastin has the ability to enhance the susceptibility
of cancer cells to other anti-cancer drugs. Its mechanism of action involves inhibiting the
expression of the subunit of the cysteine-glutamate antiporter SLC755A. This inhibition
hinders the function of the antiporter, limiting the cells’ ability to uptake cysteine [43].
RSL3 binds directly to GPX4, inhibiting the action of GPX4, thus blocking the pathway that
protects cancer cells from ferroptosis [44].

2.2. Apoptosis in Cancer
2.2.1. Apoptosis and Carcinogenesis

Apoptosis presents tumor-suppressing roles in cancer [45]. Under physiological con-
ditions, the mutated cancerous cells are detected by the immune system and killed [46].
By these means, apoptosis can prevent the formation of cancer through cell death [46].
However, one crucial change among the malignant genetic transformation of cells toward
cancer is the ability to evade cell death, including apoptosis [46]. Therefore, when cells
evade apoptosis, carcinogenesis develops. Cancer cells evade apoptosis mainly through
three kinds of pathways: losing balance between pro-apoptotic and anti-apoptotic pro-
teins, inhibiting caspases’ functions, as well as death receptor signaling [5]. For instance,
p53 is involved in death signaling as well as inhibiting cell division, and its mutation
induces cancer [47]. p53 mutation is associated with over 54% of cancer types, such as
melanoma [47].
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2.2.2. Apoptosis in the Treatment of Cancer

Chemotherapeutic drugs induce apoptosis in cancer cells. For instance, Phikan088, a
small molecule and carbazole derivative, has been proved to attach to mutated p53, thereby
restoring the normal role of p53 in promoting apoptosis [48]. Therefore, developing drugs
targeting molecules involved in apoptosis, such as BCL and p53, and regulating apoptosis,
for example, Cdo1, is meaningful [49].

3. Ferroptosis and Cdo1

Cdo1 promotes ferroptosis. Experiments inhibiting Cdo1 production in mice indicate
that Cdo1 promotes ferroptosis by increasing the oxidative stress as well as inhibiting the
production of GPX4 [36,50]. Upregulation of Cdo1 in ferroptosis is thought to be regulated
by c-Myb (c-Myb proto-oncogene transcription factor) by an unknown mechanism [36].
C-Myb encodes a transcription factor that directly interacts with the promoter of Cdo1 [51].
C-Myb is thought to upregulate Cdo1 in ferroptosis as cysteine enhances its DNA binding
state, thereby upregulating the transcription of Cdo1 [36]. In addition, both the expression
of c-Myb and Cdo1 are decreased in Erastin-induced ferroptosis in a dose-related fashion,
meaning that the expressions of c-Myb and Cdo1 are positively correlated [36]. Therefore, it
is reasonable to infer that c-Myb upregulated Cdo1 during ferroptosis [36].

High expression of Cdo1 leads to significant ferroptosis, reducing the number of
tumor cells in many cases, and plays a role in suppressing cancer rather than targeting
healthy cancer cells [18]. Cdo1 is part of the larger ferroptosis network that includes the
cystine/glutamate antiporter and GPX4; therefore, the activity of each network member
contributes to the activation or inhibition of ferroptosis (Figure 2). For example, the
promotion of ferroptosis by Cdo1 can be influenced by ion channels that increase Ca2+

influx, thereby inhibiting GPX4. If, in cancer, the expression of these ion channels is reduced
or dysfunctional, intracellular Ca2+ can be reduced, and GPX4 function is preserved [29],
which counteracts GSH depletion by Cdo1 [18,20]. Moreover, dietary cystine availability
should affect the concentration of cellular cysteine and thereby the amount that can be
transformed by Cdo1. How nutrient availability is not only influenced by the diet, but also
by the gut microbiome, is a current research question. Interestingly, it has been shown that
traditional Chinese medicine (TCM) can elevate cysteine and methionine metabolism in
the rat microbiome [52].

The off-target effects of Cdo1 upregulation should be considered. Cdo1 can promote
ferroptosis based on the current study, but ferroptosis has negative aspects to the body
other than cancer. For normal tissues, ferroptosis can easily cause diseases, for example, in
the cardiovascular system, ferroptosis can lead to cardiomyopathy, myocardial infarction,
and a series of cardiomyopathies, even heart failure [53,54]. In terms of metabolism, the
off-target effect of Cdo1 upregulation is still unclear and needs further study. In addition
to drugs that specifically target ferroptosis, there are also a variety of agents that unex-
pectedly cause ferroptosis and are already in clinical use, such as cisplatin, sorafenib, and
statin [55,56]. These drugs can lead to an off-target effect. Cisplatin promotes ferroptosis by
inhibiting GPX4, and its off-target effect is mainly reflected in its nephrotoxicity [55–57].
Sorafenib induces ferroptosis by increasing intracellular iron levels and inhibiting the cys-
tine/glutamate antiporter, and its off-target effect is mainly due to skin toxicity and causes
diarrhea and arterial hypertension in patients [55,57,58]. Statin induces ferroptosis mainly
by inhibiting two protective pathways containing GPX4 and FSP1, and its off-target effect is
mainly to increase the Hemorrhagic Stroke Risk, as well as the myopathic effect [55,57,59].
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Figure 2. Function of Cdo1 in ferroptosis and targets of Erastin and RSL3 for inducing ferroptosis.
Erastin inhibits the cystine/glutamate antiporter by binding to the subunit SLC755A, leading to
cysteine deprivation by suppressing cystine uptake and triggering ferroptosis. Similarly, p53 inhibits
the synthesis of SLC755A, the subunit of the cystine-glutamate antiporter, suppressing the uptake of
cysteine. RSL3 directly binds to GPX4, inhibiting its function. Calcium ions inhibit GPX4 function, too.
C-Myb is supposed to regulate Cdo1 expression in ferroptosis by an unknown mechanism. Enzymatic
conversion by Cdo1 lowers the cysteine concentration, thereby depleting the pool available for the
formation of GSH. Consequently, the autoperoxidation of lipids by the Fenton reaction and PLOOH
cannot be inhibited, leading to ferroptosis. (GPX4: glutathione peroxidase 4, PLOOH: phospholipid
hydroperoxide, PLOH: the corresponding alcohol of PLOOH, Cdo1: cysteine dioxygenase type 1, GSR:
glutathione-disulfide reductase, GSSG: oxidized glutathione, GSH: glutathione, NADPH: triphos-
phopyridine nucleotide, c-Myb: c-Myb proto-oncogene transcription factor, RSL3: Ras-selective
lethal 3).

4. Apoptosis and Cdo1
4.1. Detailed Tumor-Suppressing Role of Cdo1 in Cancer

Yang et al. found that in Cdo1-overexpressing breast cancer cells, the expression levels
of tumor suppressors such as PTEN and BAX were increased, whereas the expression levels
of proto-oncogenes such as PI3K and AKT, which promote cell division, were decreased [60].
In general, the gene expression analysis showed that Cdo1-overexpressing breast cancer cells
had lower expression of metastatic and aggressiveness-related genes [60]. In cell culture,
Cdo1-overexpressing cells divide much slower and form many fewer tribes than other
tumor cells [60]. In breast cancer patients, those with Cdo1 promoter hypermethylation
showed a worse prognosis. This experiment illustrates the tumor-suppressing role of Cdo1
both in terms of inhibiting cell division (PTEN, p53, PI3K, AKT) and promoting apoptosis
(p53, BAX) [60].

4.2. Cdo1 Influences Lipid Peroxidation during Apoptosis

With Cdo1 decreasing the cytosolic antioxidants cysteine and GSH, lipid peroxidation
is more likely to happen [34]. It has been shown that lipid peroxidation is able to trigger
and enhance apoptosis [18,61].

The products of lipid peroxidation affect the expression of elements involved in apop-
totic signaling and cause DNA damage [62–64]. The inhibitor of kappa B kinase (IKK), a
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product of lipid peroxidation, is able to phosphorylate BCL proteins, enhancing apopto-
sis [65]. In addition, products of lipid peroxidation were found to form adducts with Jun
N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), p38, and molecules
activating mitogen-activated protein kinases (MAPKs), thereby activating these enzymes
in apoptosis. Activated MAPKs are required for activating caspases, the executioners of
apoptosis [66,67]. Furthermore, it is speculated that the lipid peroxidation product activates
protein kinase C-delta (PKCδ) [68]. When PKCδ is cleaved by caspase-3, an activated
catalytic fragment can be generated, amplifying apoptosis cascades [69].

4.3. Taurine, a Product of Cysteine Oxidation, Promotes p53 Activity

Taurine is the end product of cysteine oxidation catalyzed by Cdo1 [20]. It was pre-
viously thought that taurine could only be produced in the liver, but it is now evident
that taurine can also be produced in cells other than hepatocytes [70,71]. Taurine has an
anti-tumor function, which promotes the production of p53, so that p53 can better perform
its anti-oncogenic function [72,73].

Recent studies have found that elevated Cdo1 expression can also enhance the tumor
suppressor effects of p53 [35]. Given that the production of taurine requires the catalysis
of Cdo1, it is appropriate to speculate that Cdo1 enhances the tumor-suppressing effect of
p53 by promoting the production of taurine. By increasing taurine expression of p53, Cdo1
indirectly exerts a tumor-suppressing effect [20,35].

5. Mild Tumor-Suppressing Role of Cdo1 in Cancer

Currently, a large number of studies have confirmed that increasing the expression
level of Cdo1 is able to inhibit cancer development by promoting cancer cell death, particu-
larly by ferroptosis [60]. However, no study has found that silencing mutations in Cdo1
alone can cause cancer.

In some cancer cells, Cdo1 expression is promoted, but this promotion still fails to
prevent carcinogenesis. This phenomenon implies that the anti-oncogenic effect of Cdo1
is not strong [74]. Instead, Cdo1 has a stronger effect on inhibiting malignancy than
carcinogenesis [60]. The mild tumor-suppressing effect is illustrated for cells harboring
mutation in the transcription factor Nrf2 [75]. Nrf2 promotes the role of Cdo1 and facilitates
taurine production. Both Cdo1 and taurine have apoptosis-promoting properties, and
Cdo1 also has ferroptosis-promoting properties. Therefore, from the perspective of Cdo1,
this mutation is favorable for the tumor-suppressing effect of Cdo1 [75]. However, the
overexpression of Nrf2 simultaneously promotes the uptake of cysteine, which is involved
in the pathway that protects cells from ferroptosis [76]. This counteracts the anti-oncogenic
effect of promoting Cdo1 expression. The fact that cells remained cancerous in the presence
of these two opposing effects suggests that the enhancement of the tumor-suppressing
effect of Cdo1 was not weaker than the promotion of cysteine uptake by Nrf2, and that cells
were protected from ferroptosis [75].

6. Cdo1 Alterations in Cancer Cells

Although Cdo1 mutation is common in cancer (Figure 3, downloaded from cBioportal
(April 2024)) [77], it must be clarified that mutations in the Cdo1 gene are not driver
mutations of cancer [77]. Furthermore, it is worth mentioning that due to the role of Cdo1
in enhancing apoptosis and cell cycle arrest, but not inducing apoptosis or cell cycle arrest,
it is suggested that Cdo1 mutation cannot be the driver mutation leading to cancer [78].



Biomedicines 2024, 12, 918 8 of 15

Biomedicines 2024, 12, x FOR PEER REVIEW 8 of 15 
 

 
Figure 3. Percentage of Cdo1 mutations and structural variants in cancers. Overview of cancer types 
that contain Cdo1 mutations and structural variants. Copy number alterations means the change in 
the number of copies of a particular region of DNA in the genome, involving either a gain or a loss 
of copies of a specific DNA segment. Cdo1 mutations appear in nearly every kind of cancer; the 
figure displays only cancers with a relatively high percentage of Cdo1 genetic variation. Source: CBi-
oportal (2024). Cancers with Cdo1 mutation [Pancancer database] (https://www.cbioportal.org/). 

6.1. Genetic Mutations and Structural Variations 
Observed genetic mutations comprise missense mutation, splicing mutation, and 

truncating mutation (Figure 4, downloaded from cBioportal (April 2024)) [78]. Missense 
mutation is the most common type, accounting for about 82% of all genetic alterations of 
Cdo1 (Figure 4) [78]. Splicing mutations and missense mutations have similar outcomes: 
the production of non-functional Cdo1 [78]. Structural variation is even less common than 
genetic mutation [78]. Moreover, Cdo1 mutation can be seen in every cancer type, but only 
in a low percentage [78], with the highest percentage in lung cancer being still less than 
10% (Figure 4). Cancer types in which Cdo1 mutation and structural variation are rela-
tively common are melanoma, breast cancer, and pancreatic cancer [77]. Since Cdo1 muta-
tion is not the driver mutation leading to tumorigenesis, it is understandable that Cdo1 
genetic alterations occur at low frequency. Figure 3 demonstrates that missense mutations 
have occurred at nearly every position of the Cdo1 gene. The most common splice muta-
tion usually occurs at the beginning and the end of exon 2. There exist truncations in the 
middle of exon 1 and the middle of exon 2. 

 

Figure 3. Percentage of Cdo1 mutations and structural variants in cancers. Overview of cancer types
that contain Cdo1 mutations and structural variants. Copy number alterations means the change in
the number of copies of a particular region of DNA in the genome, involving either a gain or a loss of
copies of a specific DNA segment. Cdo1 mutations appear in nearly every kind of cancer; the figure
displays only cancers with a relatively high percentage of Cdo1 genetic variation. Source: CBioportal
(2024). Cancers with Cdo1 mutation [Pancancer database] (https://www.cbioportal.org/).

6.1. Genetic Mutations and Structural Variations

Observed genetic mutations comprise missense mutation, splicing mutation, and
truncating mutation (Figure 4, downloaded from cBioportal (April 2024)) [78]. Missense
mutation is the most common type, accounting for about 82% of all genetic alterations of
Cdo1 (Figure 4) [78]. Splicing mutations and missense mutations have similar outcomes:
the production of non-functional Cdo1 [78]. Structural variation is even less common than
genetic mutation [78]. Moreover, Cdo1 mutation can be seen in every cancer type, but only
in a low percentage [78], with the highest percentage in lung cancer being still less than
10% (Figure 4). Cancer types in which Cdo1 mutation and structural variation are relatively
common are melanoma, breast cancer, and pancreatic cancer [77]. Since Cdo1 mutation is
not the driver mutation leading to tumorigenesis, it is understandable that Cdo1 genetic
alterations occur at low frequency. Figure 3 demonstrates that missense mutations have
occurred at nearly every position of the Cdo1 gene. The most common splice mutation
usually occurs at the beginning and the end of exon 2. There exist truncations in the middle
of exon 1 and the middle of exon 2.
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6.2. Epigenetic Silencing of Cdo1

Epigenetic silencing is cancer-specific, and the most obvious form is methylation of
the Cdo1 promoter [78]; generally, methylation of a gene’s promoter inhibits its transcrip-
tion [79]. Methylation of the Cdo1 promoter can be observed in various cancers, including
colorectal cancer, breast cancer, and gastric cancer [80–82]. Owing to its frequent occurrence
in cancers, Cdo1 methylation has become a biomarker for various types of cancers [83], and
blood testing for the methylated Cdo1 promoter offers useful information in detecting can-
cer in patients [83]. It is reasonable to assume that Cdo1 expression can be regulated through
histone modification [84]. However, the effect of histone modification on Cdo1 expression
is not clear. Therefore, this section will focus on the mechanism of DNA methylation.

Currently, the mechanism of methylation of the Cdo1 promoter is not fully under-
stood. There are two theories. 1⃝ The methylation of the targeted CpG sequence by DNA
methyltransferase (DNMT) is enhanced [85]; DNA methyltransferase adds methyl groups
to the nucleotides, especially the CpG nucleotide [86]. 2⃝ This specific gene methylation
is just a consequence of cell proliferation, especially in acute mononuclear leukemia [87].
Two possible mechanisms supporting the first theory are introduced (Figure 5).

The first theory suggests that a methylated tumor suppressor gene makes the cell
cancerous [88]. The methylation of the Cdo1 promoter is induced by Chd4/NuRD chromatin
remodeling factors in tumor cells [88,89]. In normal cells, the Chd4/NuRD chromatin
remodeling factors appear to cue the DNMT site of action only after DNA damage to
Cdo1 [90]. Such methylation in a tumor suppressor gene can directly make the cell cancerous,
leaving the tumor suppressor gene promotor methylated and non-functional [88]. The exact
mechanism of this phenomenon has not been investigated [88]. However, regarding the
mild tumor-suppressing effect of Cdo1, it could be possible that this epigenetic methylation
is generated after carcinogenesis because cancer induced by Cdo1 silencing has not been
found.

Another possible mechanism supporting the first theory is the ten-eleven translocation
(TET)-mediated pathway dysregulation [88]. TET-dependent 5-hydroxymethylation is
crucial in preserving the unmethylated state of normal cells’ CpG islands, thus exhibiting
the opposite function to DNMT [90,91]. The most recent study found that hypermethy-
lation is relevant to a bivalent promoter [92]. This study illustrated that some promoters
showed partial methylation of the CpG island edges, resulting in the formation of smaller,
unmethylated CpG islands [88]. The adjacent borders of these smaller unmethylated CpG
islands are targeted by DNMT3A and TET. 5hmC (5-hydroxymethylcytosine) and DNA
methylation inhibits binding, maintaining the length of the island [93,94]. The protein
recruiting DNMT4 and TET in this process is H3K4me1 [92]. This protein marks the TET-
mediated 5hmC at the borders of the unmethylated CpG islands [95]. In cancer cells, the
activity of TET is lost, and the 5hmC level is low, indicating that there is no competition
with DNMT and the binding of DNMT is allowed. This mechanism is seen in acute myeloid
leukemia (AML), where CpG island methylation contributes to the upregulated prolifer-
ation of cancer cells in AML [95]. Considering the mechanism of epigenetic silencing of
tumor-suppressing genes in cancer, targeting DNMTs in cancer therapy is supposed to be a
powerful direction in chemotherapy [88].

Since the expression of Cdo1 is inhibited by methylation, its tumor-suppressing effects,
including the promotion of apoptosis and ferroptosis, are limited [60]. Therefore, epigenetic
methylation has an important inhibitory effect on the function of Cdo1. In cancer cells,
methylation is the most common variant of Cdo1, and although it is not sufficient to make
cells cancerous, the presence of this variant can exacerbate the progression of cancer.
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Figure 5. Theories explaining the methylation of the Cdo1 promoter in cancer. (a) When DNA
damage occurs to a tumor suppressor gene, the methylation of the promoter occurs to inhibit the
expression of the damaged gene while repairing. When the damaged gene is an anticancer gene, this
inhibition can be related to carcinogenesis. In this case, by an unknown mechanism, the methylation
of this promoter is not re-exposed in cancer cells for removal. (b) Alternative mechanism for Cdo1
methylation in cancer cells. Cancer cells contain low levels of 5hmC, an element that inhibits the
binding of TET and DNMT to the adjacent shore of the unmethylated CpG island. The binding is
guided by H3K4me1. In normal cells, the binding of DNMT and TET is largely inhibited by the
methylated DNA and 5hmC. Therefore, the unmethylated CpG island is maintained. However, in
cancer cells, the 5hmC level is low, H3K4me1 appears at the border directing the binding of DNMT,
and TET activity is lost. Only DNMT works on the shore of the island, and the shore is methylated,
shortening the island. With a larger portion of the promoter methylated, the expression of Cdo1 is
downregulated.
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7. Conclusions and Outlook

Cdo1 is considered a tumor suppressor as it enhances ferroptosis and apoptosis in
cancer cells. Mechanistically, Cdo1 enhances ferroptosis by promoting cysteine starvation,
thereby also reducing GSH levels [17]. GSH is the cofactor of GPX4, the enzyme protecting
a cell from autoperoxidation of membranes [17] (Figure 6). In conclusion, Cdo1 conducts
its tumor-suppressing role by reducing the antioxidants protecting cells from ferropto-
sis [20]. Moreover, Cdo1 promotes apoptosis by aggravating lipid peroxidation as well as
upregulating the activity of p53 [60,61] (Figure 6).
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Figure 6. Cdo1 partakes in pathways of ferroptosis and apoptosis. Cdo1 is involved in converting
cysteine to taurine, thereby decreasing the cysteine pool for the production of GSH. GSH is a required
cofactor of GPX4 that prevents lipid peroxidation. The reduced function of GPX4 allows lipid
peroxidation on the cell membrane, ultimately leading to cell death. Upregulated taurine can increase
the level of p53, a vital tumor suppressor. Additionally, p53 can induce cell cycle arrest. Lipid
peroxidation increases the likelihood of apoptosis and ferroptosis. p53 contributes to ferroptosis
by inhibiting the production of the SLC755A, a subunit in the cystine-glutamate antiporter that
uptakes cystine.

Although the tumor-suppressing effect of Cdo1 is mild, it plays important roles in
assisting anticancer agents in overcoming drug resistance. For instance, Cdo1 plays a
significant role in mediating Erastin-induced ferroptosis in gastric cancer cells [36]. When
the Cdo1 gene is silenced, ferroptosis does not occur even though Erastin is applied [36].
Furthermore, epigenetic silencing of Cdo1 contributes to resistance against ROS-generating
chemotherapeutic drugs, including anthracycline [96]. Therefore, upregulating Cdo1 in
cancer cells is likely to assist the effect of major chemotherapeutic agents.

In conclusion, Cdo1 conducts the tumor-suppressing role in cancer cells by contributing
to ferroptosis as well as enhancing the anti-tumor effects of p53, thereby mediating apopto-
sis and cell cycle arrest. Furthermore, p53 enhances ferroptosis (Figure 6). Therefore, Cdo1
is a useful cancer drug target. Based on the current literature, combined anticancer therapy
ensuring high Cdo1 activity should be a powerful approach to ensure and enhance the effect
of anti-cancer drugs and to impede the development of drug resistance in cancer cells.
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