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1. Introduction

Let H(D) denote the set of analytic functions on the open unit disk D in the complex
plane C, and let S(D) represent the set of analytic self-maps of D.

For φ ∈ S(D), the composition operator Cφ acting on H(D) is defined as follows:

Cφ f = f ◦ φ. (1)

In recent years, a growing focus has emerged on examining composition operators and
their actions across various spaces of analytic functions. Particularly, significant attention
has been devoted to exploring the intricate connections between Cφ and the properties of
φ. This area of research has been extensively investigated and discussed in works such
as [1–8], along with the references cited therein.

Given g ∈ H(D), the integral operator Ig is defined as

(Ig f )(z) =
∫ z

0
f ′(w)g(w)dw. (2)

Assuming that g ∈ H(D) and φ ∈ S(D), a linear operator is defined as follows:

(Cg
φ f )(z) =

∫ z

0
f ′(φ(w))g(w)dw. (3)

This operator is referred to as the generalized composition operator. If φ(z) = z,
Cg

φ reduces to the integral operator Ig. In the case where g = φ′, it is observed that the

operator Cg
φ becomes a composition operator since Cφ′

φ − Cφ is constant. Thus, Cg
φ serves as

a generalization of the composition operator introduced in [9].
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The study of the boundedness and compactness of generalized composition operators
on Bloch-type spaces and Zygmund spaces has been explored in [9]. In [10], a new char-
acterization of the generalized composition operator on Zygmund spaces was presented.
Additional insights into the generalized composition operator on various spaces can be
found in related works such as [11–14].

Consider g ∈ H(D), φ ∈ S(D), and t ∈ N0 := N∪ {0}. Building upon the motivation
provided by (1)–(3), Kamal, Abd-Elhafeez, and Eissa [15] introduced a new operator known
as the t-generalized composition operator, defined as

(Cg,t
φ f )(z) =

∫ z

0
f ′(φ(w))g(t)(w)dw.

This operator is an extension of the generalized composition operator. Specifically,
when t = 0, Cg,0

φ coincides with Cg
φ. Unlike the generalized composition operator, the

t-generalized composition operator accommodates varying degrees of differentiability,
governed by the parameter t. This parameterization opens up new avenues for analyzing
the interplay between operator properties and function space characteristics.

Let µ be a positive continuous function on D, which we refer to as a weight, and k ∈ N0.
In [16], Stević introduced the iterated weighted-type Banach space Vµ,k as follows:

Vµ,k =

{
f ∈ H(D) : sup

z∈D
µ(z)| f (k)(z)| < ∞

}
,

with the norm

∥ f ∥Vµ,k :=
k−1

∑
m=0

| f (m)(0)|+ sup
z∈D

µ(z)| f (k)(z)|.

The little iterated weighted-type space V0
µ,k is the closed subspace of Vµ,k such that

lim
|z|→1

µ(z)| f (k)(z)| = 0.

For k = 0, 1, 2, the space Vµ,k is the weighted-type space H∞
µ , the weighted Bloch-type

space Bµ, and the weighted Zygmund-type space Zµ, respectively.
Consider α > 0 and µ(z) = (1 − |z|2)α. When n = 1, 2, Vµ,k coincides with the Bloch-

type space Bα and the Zygmund-type space Zα, respectively. In particular, for α = 1, we
obtain the classical Bloch space B and the Zygmund space Z, respectively. Moreover, when
µ(z) = 1 − |z|2, as proven in Theorem 1 of [17], Vµ,k serves as the dual of the Hardy space

H
1
k for all k ≥ 2. For further details on these spaces, please refer to [18,19].

The iterated weighted-type Banach spaces have a significant role in the field of ap-
proximation theory and numerical analysis. They are particularly useful for measuring the
precision of different numerical methods used to approximate functions with nth-order
derivatives, like finite difference and finite element methods. Additionally, these spaces
can be employed to determine the rates at which various approximation schemes converge
and to calculate error limits for numerical solutions of differential equations. Additionally,
they have applications in machine learning, where they are used to model complex data
structures and make predictions based on them. More details can be found in [20–22].

Let p > 0, s ≥ 0, and q > −2 such that q + s > −1. The general family space F(p, q, s)
is the set of all analytic functions that satisfy

∥ f ∥F(p,q,s) := | f (0)|+
(

sup
a∈D

∫
D
| f ′(w)|p(1 − |w|2)q(1 − |αa(w)|2)sdm(w)

)1/p

< ∞,
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where dm denotes the Lebesgue area measure such that m(D) = 1, and

αa(z) =
a − z

1 − az
.

The little space F0(p, q, s) is the closed subspace of F(p, q, s) such that

lim
|a|→1

∫
D
| f ′(w)|p(1 − |w|2)q(1 − |αa(w)|2)sdm(w) = 0.

These spaces were introduced by Zhao [23]. Equipped with the above norm, the
general family space F(p, q, s) becomes a Banach space. It is well known in [24] that there
is a positve constant C such that

(1 − |z|2)m−1+ q+2
p | f (m)(z)| ≤ C∥ f ∥F(p,q,s) ∀m ∈ N, f ∈ F(p, q, s). (4)

Previous research efforts have made significant strides in characterizing the bounded-
ness and compactness properties of operators across a variety of function spaces, ranging
from F(p, q, s) to several iterated weighted-type Banach spaces. For instance, Yang, as de-
tailed in [25], provided a characterization of the boundedness and compactness of weighted
differentiation composition operators from the F(p, q, s) space to Bα. Similarly, Ye, in [26],
examined the boundedness and compactness of the weighted composition operator from
the general family space F(p, q, s) to the logarithmic Bloch space Blog. Another contribution
by Yang, discussed in [24], focused on investigating the boundedness and compactness
of composition operators from the general family space F(p, q, s) space to Vµ,k. Zhou
and Chen, in their work [27], conducted a study on the weighted composition operator
from the F(p, q, s) space to Bα on the unit ball. Additionally, in [28,29], Stević engaged in
discussions concerning the boundedness and compactness of integral operators between
F(p, q, s) spaces and Bloch-type spaces within the unit ball. These investigations contribute
significantly to our understanding of the behavior of various operators on different function
spaces, shedding light on the intricate interplay between operator-theoretic properties and
function-space characteristics.

Expanding upon this existing body of literature, our research introduces a novel
operator, the t-generalized composition operator. This operator extends the concept of
generalized composition operators to a new level of generality and flexibility, offering
insights into previously unexplored areas of operator theory. What sets t-generalized com-
position operators apart is their ability to capture and manipulate higher-order derivative
information, providing a richer framework for analyzing the composition of functions.
By incorporating tth-order derivatives of the function g into the composition process,
t-generalized composition operators offer a more nuanced understanding of how com-
positions interact with the underlying function spaces. This additional degree of control
over the composition process enables us to explore a broader range of phenomena and
derive more refined results. In particular, our study investigates the boundedness and
essential norm of t-generalized composition operators as they operate from F(p, q, s) spaces
to iterated type spaces, providing valuable contributions to the understanding of these
operators’ behaviors in diverse function-space settings. Furthermore, we discuss the special
cases of F(p, q, s) and the operator Cg,t

φ .
In this work, we will consistently use the symbol C to represent a positive constant

that remains independent of the variables or parameters involved, although its value may
vary with each instance. The notation A ⪯ B indicates that there exists a positive constant
c such that cA ≤ B. Furthermore, we employ the notation A ≍ B to signify that there exist
positive constants c1 and c2, with c1 ≤ c2, such that c1 A ≤ B ≤ c2 A.
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2. Boundedness

The main goal of this section is to characterize the boundedness of t-generalized
compostion operators from F(p, q, s) spaces to iterated weighted-type Banach spaces.

Lemma 1 (Lemma 4, [16]). Given f , g ∈ H(D) and φ ∈ S(D), for n ∈ N and z ∈ D,

(g( f ◦ φ))(n)(z) =
n

∑
ℓ=0

f (ℓ)(φ(z))
n

∑
j=ℓ

(
n
j

)
g(n−j)(z)Aj,ℓ(φ′(z), . . . , φ(j−ℓ+1)(z)),

where

Aj,ℓ(φ′(z), . . . , φ(j−ℓ+1)(z)) := ∑
ℓ1,ℓ2,...,ℓj

j!
ℓ1!ℓ2! · · · ℓj!

j

∏
m=1

(
φ(m)(z)

m!

)ℓm

,

and the sum is taken over all nonnegative integers ℓ1, . . . , ℓj such that ℓ = ℓ1 + · · · + ℓj, and
ℓ1 + 2ℓ2 + · · ·+ jℓj = j.

Then, for the t-generalized compostion operator case, we have

((Cg,t
φ ) f )(n)(z)

= (g(t)( f ′ ◦ φ))(n−1)(z)

=
n

∑
ℓ=1

f (ℓ)(φ(z))
n−1

∑
j=ℓ−1

(
n − 1

j

)
g(t+n−1−j)(z)Aj,ℓ−1(φ′(z), . . . , φ(j−ℓ+2)(z)). (5)

We set k ∈ N and t ∈ N0, as well as functions g and φ. For z ∈ D, ℓ ∈ {1, . . . , k}, we
define

Nℓ
t(z) :=

∣∣∣∣∣ k−1

∑
j=ℓ−1

(
k − 1

j

)
g(t+k−1−j)(z)Aj,ℓ−1(φ′(z), . . . , φ(j−ℓ+2)(z))

∣∣∣∣∣.
Theorem 1. We set k ∈ N and t ∈ N0 and let g ∈ H(D) and φ ∈ S(D). Then, the following
statements are equivalent.

(a) Cg,t
φ : F(p, q, s) → Vµ,k is bounded.

(b) M:=sup
z∈D

µ(z)∑k
ℓ=1

Nℓ
t(z)

(1−|φ(z)|2)
q+2

p +ℓ−1
< ∞.

Moreover, if Cg,t
φ is bounded, then

∥Cg,t
φ ∥ ≍ sup

z∈D
µ(z)

k

∑
ℓ=1

Nℓ
t(z)

(1 − |φ(z)|2)ℓ−1+ q+2
p

.

Proof. (b) =⇒ (a) Let f ∈ F(p, q, s) such that ∥ f ∥F(p,q,s) ≤ 1 and z ∈ D. By (4) and (5), we
have

µ(z)|(Cg,t
φ f )(k)(z)|

≤ µ(z)
k

∑
ℓ=1

| f (ℓ)(φ(z))|
∣∣∣∣∣ k−1

∑
j=ℓ−1

(
k − 1

j

)
g(t+k−1−j)(z)Aj,ℓ−1(φ′(z), . . . , φ(j−ℓ+2)(z))

∣∣∣∣∣ (6)

⪯ µ(z)
k

∑
ℓ=1

Nℓ
t(z)

(1 − |φ(z)|2)ℓ−1+ q+2
p

.
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Taking the supremum over all z in D, we obtain

sup
z∈D

µ(z)|(Cg,t
φ f )(k)(z)| ⪯ sup

z∈D
µ(z)

k

∑
ℓ=1

Nℓ
t(z)

(1 − |φ(z)|2)ℓ−1+ q+2
p

. (7)

Noting (Cg,t
φ f )(0) = 0 and again by (4), for each m ∈ {1, . . . , k − 1}, we have

|(Cg,t
φ f )(m)(0)|

≤
m

∑
ℓ=1

| f (ℓ)(φ(0))|
∣∣∣∣∣ m−1

∑
j=ℓ−1

(
m − 1

j

)
g(t+m−1−j)(0)Aj,ℓ−1(φ′(0), . . . , φ(j−ℓ+2)(0))

∣∣∣∣∣
⪯

m

∑
ℓ=1

Nℓ
t(0)

(1 − |φ(0)|2)ℓ−1+ q+2
p

⪯ sup
z∈D

µ(z)
k

∑
ℓ=1

Nℓ
t(z)

(1 − |φ(z)|2)ℓ−1+ q+2
p

. (8)

Combining (7) and (8), we obtain

∥Cg,t
φ f ∥Vµ,k ⪯ sup

z∈D
µ(z)

k

∑
ℓ=1

Nℓ
t(z)

(1 − |φ(z)|2)ℓ−1+ q+2
p

which proves that Cg,t
φ is bounded.

By taking the supremum over all f in the unit ball of F(p, q, s), we obtain the upper
estimate.

(a) =⇒ (b) Let k ∈ N and w, a ∈ D. By [30] and Lemma 3 in [16], for each l ∈ {0, . . . , k},
there exist unique real numbers c0, . . . , ck such that

fa(z) :=
k

∑
j=0

cj(1 − |a|2)j+1

(1 − az)j+ q+2
p

, z ∈ D, (9)

which satisfies the conditions

f (l)a (a) =
al

(1 − |a|2)l−1+ q+2
p

k

∑
j=0

cj

l−1

∏
r=0

(j + r +
q + 2

p
) =

al

(1 − |a|2)l−1+ q+2
p

,

f (t)a (a) = 0, for t ∈ {0, . . . , k} \ {l}.

Moreover, L := sup
a∈D

∥ fa∥F(p,q,s) < ∞.

Since Cg,t
φ is bounded, then by (5), we obtain

µ(w)

∣∣∣∣∣ k

∑
ℓ=1

f (ℓ)(φ(w))
k−1

∑
j=ℓ−1

(
k − 1

j

)
g(t+k−1−j)(w)Aj,ℓ−1(φ′(w), . . . , φ(j−ℓ+2)(w))

∣∣∣∣∣
= µ(w)|(Cg,t

φ fφ(w))
(k)(w)|

≤ L∥Cg,t
φ ∥ (10)

where for fixed ℓ = 0, . . . , k and m = 0, . . . , k,

| f (m)
φ(w)

(φ(w))| =


|φ(w)|ℓ

(1−|φ(w)|2)ℓ−1+ q+2
p

for m = ℓ

0 for m ̸= ℓ.
(11)
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Hence, by (10), we obtain

µ(w)|φ(w)|ℓNℓ
t(w)

(1 − |φ(w)|2)ℓ−1+ q+2
p

≤ L∥Cg,t
φ ∥.

Therefore, if |φ(w)| > 1/2, then

µ(w)Nℓ
t(w)

(1 − |φ(w)|2)ℓ−1+ q+2
p

≤ L
|φ(w)|ℓ

∥Cg,t
φ ∥ ≤ 2ℓL∥Cg,t

φ ∥. (12)

On the other hand, when |φ(w)| ≤ 1/2, it follows that for each ℓ ∈ {1, . . . , k}, we have

Nℓ
t(w)

(1 − |φ(w)|2)ℓ−1+ q+2
p

≤
(

4
3

)ℓ−1+ q+2
p

Nℓ
t(w). (13)

Combining (12) and (13), it follows that to prove that

µ(w)Nℓ
t(w)

(1 − |φ(w)|2)ℓ−1+ q+2
p

≤ C∥Cg,t
φ ∥, (14)

and it suffices to show that

µ(w)Nℓ
t(w) ≤ C∥Cg,t

φ ∥. (15)

For a non-negative integer n, let pn(z) = zn. By Proposition 2.13 in [23], pn ∈ F(p, q, s).
Moreover, for all n ∈ {0, . . . , k}, ∥pn∥F(p,q,s) is bounded by a constant C.

We establish (15) using an induction proof on ℓ ∈ {1, . . . , k}. For ℓ = 1, we have

µ(w)|((Cg,t
φ )p(ℓ)1 φ(w))(k)(w)|

= µ(w)

∣∣∣∣∣ k

∑
ℓ=1

p(ℓ)1 (φ(w))
k−1

∑
j=ℓ−1

(
k − 1

j

)
g(t+k−1−j)(w)Aj,ℓ−1(φ′(w), . . . , φ(j−ℓ+2)(w))

∣∣∣∣∣
= µ(w)Nt

1(w)

≤ C∥Cg,t
φ ∥.

Therefore, we have
µ(w)Nt

1(w) ≤ C∥Cg,t
φ ∥.

Assume that for n ∈ {1, ..., ℓ− 1}, we have

µ(w)Nt
n(w) ≤ C∥Cg,t

φ ∥.

Observe that

p(j)
ℓ (z) =

{
ℓ · · · (ℓ− j + 1)zℓ−j for j = 0, · · · ℓ
0 for j = ℓ+ 1, · · · , k.
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Therefore, we have

C∥Cg,t
φ ∥

≥ µ(w)|(Cg,t
φ pℓ)(k)(w)|

= µ(w)

∣∣∣∣∣ k

∑
n=1

p(n)ℓ (φ(w))
k−1

∑
j=n−1

(
k − 1

j

)
g(t+k−1−j)(z)Aj,n−1(φ′(w), . . . , φ(j−n+2)(w))

∣∣∣∣∣
= µ(w)

∣∣∣∣∣ ℓ

∑
n=1

p(n)ℓ (φ(w))
k−1

∑
j=n−1

(
k − 1

j

)
g(t+k−1−j)(z)Aj,n−1(φ′(w), . . . , φ(j−n+2)(w))

+
k

∑
n=ℓ+1

p(n)ℓ (φ(w))
k−1

∑
j=n−1

(
k − 1

j

)
g(t+k−1−j)(z)Aj,n−1(φ′(w), . . . , φ(j−n+2)(w))

∣∣∣∣∣
= µ(w)

∣∣∣∣∣ ℓ−1

∑
n=1

ℓ · · · (ℓ− n + 1)(φ(w))ℓ−n

×
k−1

∑
j=n−1

(
k − 1

j

)
g(t+k−1−j)(z)Aj,n−1(φ′(w), . . . , φ(j−n+2)(w))

+ ℓ!
k−1

∑
j=ℓ−1

(
k − 1

j

)
g(t+k−1−j)(z)Aj,n−1(φ′(w), . . . , φ(j−ℓ+2)(w))

∣∣∣∣∣.
Therefore, we have

ℓ!µ(w)Nℓ
t ≤ C∥Cg,t

φ ∥+ µ(w)
ℓ−1

∑
n=1

ℓ · · · (ℓ− n + 1)Nn ⪯ ∥Cg,t
φ ∥.

By (12) and (14), for each w ∈ D, we obtain

µ(w)Nℓ
t(w)

(1 − |φ(w)|2)ℓ−1+ q+2
p

⪯ ∥Cg,t
φ ∥. (16)

By summing over all ℓ ∈ {1, . . . , k} and taking the supremum over all w in D, we
obtain

sup
w∈D

µ(w)
k

∑
ℓ=1

Nℓ
t(w)

(1 − |φ(w)|2)ℓ−1+ q+2
p

⪯ ∥Cg,t
φ ∥,

which completes our proof.

Focusing on the component operators Cg
φ and Ig, we derive the following two results.

Corollary 1. Let k ∈ N, g ∈ H(D), and φ ∈ S(D). Then, the following statements are equivalent.
(a) Cg

φ : F(p, q, s) → Vµ,k is bounded.

(b) sup
z∈D

µ(z)∑k
ℓ=1

|∑k−1
j=ℓ−1 (

k−1
j )g(k−1−j)(z)Aj,ℓ−1(φ′(z),...,φ(j−ℓ+2)(z))|

(1−|φ(z)|2)ℓ−1+ q+2
p

< ∞.

Moreover, if Cg
φ is bounded, then

∥Cg
φ∥ ≍ sup

z∈D
µ(z)

k

∑
ℓ=1

|∑k−1
j=ℓ−1 (

k−1
j )g(k−1−j)(z)Aj,ℓ−1(φ′(z), . . . , φ(j−ℓ+2)(z))|

(1 − |φ(z)|2)ℓ−1+ q+2
p

.
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Corollary 2. Let k ∈ N, and let g ∈ H(D). Then, the following statements are equivalent.
(a) Ig : F(p, q, s) → Vµ,k is bounded.

(b) sup
z∈D

µ(z)∑k
ℓ=1

|g(k−ℓ−2)(z)|

(1−|φ(z)|2)ℓ−1+ q+2
p

< ∞.

Moreover, if Ig is bounded, then

∥Ig∥ ≍ sup
z∈D

µ(z)
k

∑
ℓ=1

|g(k−ℓ)(z)|

(1 − |z|2)ℓ−1+ q+2
p

.

3. Essential Norm

The result presented in [7] is crucial for characterizing the compactness of the operators
under investigation in this study.

Lemma 2 ([7], Lemma 3.7). Let X, Y be Banach spaces of analytic functions on D, and let
T : X → Y be a bounded linear operator. Suppose the following:

(i) The point evaluation functionals on X are continuous;
(ii) The closed unit ball of X is a compact subset of X in the topology of uniform convergence

on compact sets;
(iii) T is continuous when X and Y are given the topology of uniform convergence on compact

sets.

Then, T is a compact operator if and only if for any bounded sequence { fn} in X such that
fn converges uniformly to zero on compact sets, the sequence {T fn} converges to zero in the norm
of Y.

Recall that the essential norm of a bounded linear operator W : X → Y, where X and
Y are Banach spaces, is given by

∥W∥e := inf
{
∥W − T∥/ T : X → Y compact

}
.

Therefore, a bounded linear operator W is compact if and only ∥W∥e = 0.
The following lemma will be used to prove the main result of this section, and the

proof is similar to the one in Lemma 3.1 in [31].

Lemma 3. Let k ∈ N, and let 0 ≤ r < 1. For f ∈ F(p, q, s), the dilation function Wr in F(p, q, s)
is defined by Wr f (z) := f (rz) for all z ∈ D. Then, Wr is compact on F(p, q, s) and

τ := sup
0≤r<1

∥Wr∥ < ∞. (17)

Moreover, for ε > 0 and a ∈ (0, 1), there exists r ∈ (0, 1) such that

sup
∥ f ∥F(p,q,s)=1

sup
|z|≤a

∣∣((I − Wr) f ))(j)(z)
∣∣ < ε, for all j = 1, . . . , k. (18)

Now, we are ready to state the main result of this section.

Theorem 2. Let k ∈ N, t ∈ N0, g ∈ H(D), and φ ∈ S(D). If Cg,t
φ : F(p, q, s) → Vµ,k is bounded,

then

∥Cg,t
φ ∥e ≍ lim

a→1
sup

|φ(z)|>a
µ(z)

k

∑
ℓ=1

Nℓ
t(z)

(1 − |φ(z)|2)ℓ−1+ q+2
p

.
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Proof. To prove the upper estimate, let a ∈ (0, 1), ε > 0, and 0 ≤ r < 1. Cg,t
φ Wr is compact,

since Wr is compact and Cg,t
φ is bounded. Then, by (4), (6), (17), and (18), we have the

following:

∥Cg,t
φ ∥e ≤ ∥Cg,t

φ − Cg,t
φ Wr∥

= sup
∥ f ∥F(p,q,s)=1

∥(Cg,t
φ (I − Wr)) f ∥Vµ,k

= sup
∥ f ∥F(p,q,s)=1

( k−1

∑
j=1

∣∣(Cg,t
φ (I − Wr) f )(j)(0)

∣∣+ sup
z∈D

µ(z)
∣∣(Cg,t

φ (I − Wr) f )(k)(z)
∣∣)

≤ (k − 1)ε + sup
∥ f ∥F(p,q,s)=1

sup
|φ(z)|≤a

µ(z)
∣∣(Cg,t

φ (I − Wr) f )(k)(z)
∣∣

+ sup
∥ f ∥F(p,q,s)=1

sup
a<|φ(z)|<1

µ(z)
∣∣(Cg,t

φ (I − Wr) f )(k)(z)
∣∣

≤ (k − 1)ε + sup
∥ f ∥F(p,q,s)=1

sup
|φ(z)|≤a

µ(z)
k

∑
ℓ=1

|((I − Wr) f )(ℓ)(φ(z))|Nℓ
t(z)

+ sup
∥ f ∥F(p,q,s)=1

sup
a<|φ(z)|<1

µ(z)
k

∑
ℓ=1

|((I − Wr) f )(ℓ)(φ(z))|Nℓ
t(z).

≤ (k − 1)ε + ε sup
|φ(z)|≤a

µ(z)
k

∑
ℓ=1

Nℓ
t(z)

+C sup
∥ f ∥F(p,q,s)=1

sup
a<|φ(z)|<1

µ(z)
[
∥ f ∥F(p,q,s) + ∥Wr f ∥F(p,q,s)

]

×
k

∑
ℓ=1

Nℓ
t(z)

(1 − |φ(z)|2)ℓ−1+ q+2
p

≤ (k − 1 + M)ε + C(1 + τ) sup
a<|φ(z)|<1

µ(z)
k

∑
ℓ=1

Nℓ
t(z)

(1 − |φ(z)|2)ℓ−1+ q+2
p

.

For sufficiently small ε, we obtain

∥Cg,t
φ ∥e ⪯ lim

a→1
sup

|φ(z)|>a
µ(z)

k

∑
ℓ=1

Nℓ
t(z)

(1 − |φ(z)|2)ℓ−1+ q+2
p

.

To prove the lower estimate, let {wn} be a sequence in D such that |φ(wn)| → 1 and let
ℓ ∈ {1, . . . , k}. Then, the sequence fn := fφ(wn) defined in the proof of Theorem 1 converges
to 0 uniformly on compact subsets. Moreover, G := sup

n∈N
∥ fn∥F(p,q,s) < ∞.

Let W : F(p, q, s) → Vµ,k be a compact operator. Then, by Lemma 2, lim
n→∞

∥W fn∥Vµ,k =

0. Hence, by (5) and (11), we have

G∥Cg,t
φ − W∥ ≥ lim sup

n→∞
∥(Cg,t

φ − W) fn∥Vµ,k

≥ lim sup
n→∞

µ(wn)|(Cg,t
φ fn)

(k)(wn)|

= lim sup
n→∞

µ(wn)Nℓ
t(wn)

(1 − |φ(wn)|2)ℓ−1+ q+2
p

.
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Summing over all ℓ ∈ {1, . . . , k} and taking the infimum over all compact operators
W : F(p, q, s) → Vµ,k, we obtain

lim sup
n→∞

µ(wn)
k

∑
ℓ=1

Nℓ
t(wn)

(1 − |φ(wn)|2)ℓ−1+ q+2
p

⪯ ∥Cg,t
φ ∥e.

Focusing on the component operators Cg
φ and Ig, we derive the following results.

Corollary 3. Let k ∈ N, g ∈ H(D), and φ ∈ S(D). If Cg
φ : F(p, q, s) → Vµ,k is bounded, then

∥Cg
φ∥e ≍ lim

a→1
sup

|φ(z)|>a
µ(z)

k

∑
ℓ=1

∣∣∣∣∣∑k−1
j=ℓ−1 (

k−1
j )g(k−1−j)(z)Aj,ℓ−1(φ′(z), . . . , φ(j−ℓ+2)(z))

∣∣∣∣∣
(1 − |φ(z)|2)ℓ−1+ q+2

p

.

Corollary 4. Let k ∈ N and φ ∈ S(D). If Ig : F(p, q, s) → Vµ,k is bounded, then

∥Ig∥e ≍ lim
a→1

sup
|z|>a

µ(z)
k

∑
ℓ=1

|g(k−ℓ)(z)|

(1 − |z|2)ℓ−1+ q+2
p

.

4. The Special Cases of the Space of F(p, q, s) and the Operators Cg,t
φ

We conclude this paper by exploring several special cases of F(p, q, s) and Cg,t
φ . To

accomplish this, we begin by stating some fundamental definitions.
The space BMOA of analytic functions of bounded mean oscillation, defined as the

space of analytic functions on unit disk such that

∥ f ∥∗ = sup
a∈D

∥ f ◦ αa − f (a)∥H2 ,

where H2 is the Hilbert Hardy space. With the norm

∥ f ∥BMOA := | f (0)|+ ∥ f ∥∗,

BMOA is a Banach space.
For q > −1, the weighted Dirichlet Dq is the collection of all analytic functions

f (z) = ∑∞
n=0 anzn on D such that

∞

∑
n=0

n1−q|an|2 < ∞.

For p ≥ 1, the Bergman space Lp
a is defined as the space of all functions f ∈ H(D)

such that ∫
D
| f (z)|p dA(z) < ∞.

Lp
a is a Banach space with the norm

∥ f ∥Lp
a

:=

( ∫
D
| f (z)|p dA(z)

)1/p

< ∞.
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For p > 1, an analytic function f on D belongs to Besov space Bp if

∥ f ∥Bp = | f (0)|+
(∫

D
| f ′(z)|2

(
1 − |z|2

)p−2
dA(z)

) 1
p
< ∞.

In [23], Zhao proved that the above spaces coincide with F(p, q, s) as follows:

• F(p, q, s) = B q+2
p

for s > 1;

• F(p, p − 2, s) = B for s > 1;
• F(2, 1, 0) = H2;
• F(2, 0, 1) = BMOA;
• F(p, p, 0) = Lp

a for p ≥ 1;
• F(p, p − 2, 0) = Bp for p > 1;
• F(2, q, 0) = Dq for q > −1.

Therefore, using Theroems 1 and 2, we deduce the following:

Corollary 5. Let k ∈ N, t ∈ N0, p > 1 , g ∈ H(D), and φ ∈ S(D). Then, the following
statements are equivalent.

(a) Cg,t
φ : Bp → Vµ,k is bounded.

(b) Cg,t
φ : BMOA → Vµ,k is bounded.

(c) Cg,t
φ : B → Vµ,k is bounded.

(d) sup
z∈D

µ(z)∑k
ℓ=1

Nℓ
t(z)

(1−|φ(z)|2)ℓ < ∞.

Moreover, if Cg,t
φ is bounded, then

∥Cg,t
φ ∥ ≍ sup

z∈D
µ(z)

k

∑
ℓ=1

Nℓ
t(z)

(1 − |φ(z)|2)ℓ
,

∥Cg,t
φ ∥e ≍ lim

a→1
sup

|φ(z)|>a
µ(z)

k

∑
ℓ=1

Nℓ
t(z)

(1 − |φ(z)|2)ℓ
.

Corollary 6. Let k ∈ N, t ∈ N0, p > 0, and q > −2. Let g ∈ H(D) and φ ∈ S(D). Then, the
following statements are equivalent.

(a) Cg,t
φ : B q+2

p
→ Vµ,k is bounded.

(b) sup
z∈D

µ(z)∑k
ℓ=1

Nℓ
t(z)

(1−|φ(z)|2)ℓ−1+ q+2
p

< ∞.

Moreover, if Cg,t
φ is bounded, then

∥Cg,t
φ ∥ ≍ sup

z∈D
µ(z)

k

∑
ℓ=1

Nℓ
t(z)

(1 − |φ(z)|2)ℓ−1+ q+2
p

,

∥Cg,t
φ ∥e ≍ lim

a→1
sup

|φ(z)|>a
µ(z)

k

∑
ℓ=1

Nℓ
t(z)

(1 − |φ(z)|2)ℓ−1+ q+2
p

.

Corollary 7. Let k ∈ N, t ∈ N0, g ∈ H(D), and φ ∈ S(D). Then, the following statements are
equivalent.

(a) Cg,t
φ : H2 → Vµ,k is bounded.

(b) sup
z∈D

µ(z)∑k
ℓ=1

Nℓ
t(z)

(1−|φ(z)|2)ℓ+
1
2
< ∞.
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Moreover, if Cg,t
φ is bounded, then

∥Cg,t
φ ∥ ≍ sup

z∈D
µ(z)

k

∑
ℓ=1

Nℓ
t(z)

(1 − |φ(z)|2)ℓ+ 1
2

,

∥Cg,t
φ ∥e ≍ lim

a→1
sup

|φ(z)|>a
µ(z)

k

∑
ℓ=1

Nℓ
t(z)

(1 − |φ(z)|2)ℓ+ 1
2

.

Corollary 8. Let k ∈ N, t ∈ N0, and q > −1. Let g ∈ H(D) and φ ∈ S(D). Then, the following
statements are equivalent.

(a) Cg,t
φ : Dq → Vµ,k is bounded.

(b) sup
z∈D

µ(z)∑k
ℓ=1

Nℓ
t(z)

(1−|φ(z)|2)ℓ+
q
2
< ∞.

Moreover, if Cg,t
φ is bounded, then

∥Cg,t
φ ∥ ≍ sup

z∈D
µ(z)

k

∑
ℓ=1

Nℓ
t(z)

(1 − |φ(z)|2)ℓ+
q
2

,

∥Cg,t
φ ∥e ≍ lim

a→1
sup

|φ(z)|>a
µ(z)

k

∑
ℓ=1

Nℓ
t(z)

(1 − |φ(z)|2)ℓ+
q
2

.

Corollary 9. Let k ∈ N, t ∈ N0, and p ≥ 1. Let g ∈ H(D) and φ ∈ S(D). Then, the following
statements are equivalent.

(a) Cg,t
φ : Lp

a → Vµ,k is bounded.

(b) sup
z∈D

µ(z)∑k
ℓ=1

Nℓ
t(z)

(1−|φ(z)|2)ℓ+
2
p
< ∞.

Moreover, if Cg,t
φ is bounded, then

∥Cg,t
φ ∥ ≍ sup

z∈D
µ(z)

k

∑
ℓ=1

Nℓ
t(z)

(1 − |φ(z)|2)ℓ+
2
p

,

∥Cg,t
φ ∥e ≍ lim

a→1
sup

|φ(z)|>a
µ(z)

k

∑
ℓ=1

Nℓ
t(z)

(1 − |φ(z)|2)ℓ+
2
p

.
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