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Abstract: The timely and precise prediction of cardiovascular disease (CVD) risk is essential for
effective prevention and intervention. This study proposes a novel framework that integrates the
two-phase Taguchi method (TPTM), the hyperparameter artificial neural network (HANN), and a
genetic algorithm (GA) called TPTM-HANN-GA. This framework efficiently optimizes hyperparam-
eters for an artificial neural network (ANN) model during the training stage, significantly enhancing
prediction accuracy for cardiovascular disease (CVD) risk. The proposed TPTM-HANN-GA frame-
work requires far fewer experiments than a traditional grid search, making it highly suitable for
application in resource-constrained, low-power computers, and edge artificial intelligence (edge AI)
devices. Furthermore, the proposed TPTM-HANN-GA framework successfully identified the optimal
configurations for the ANN model’s hyperparameters, resulting in a hidden layer of 4 nodes, a tanh
activation function, an SGD optimizer, a learning rate of 0.23425849, a momentum rate of 0.75462782,
and seven hidden nodes. This optimized ANN model achieves 74.25% accuracy in predicting the
risk of cardiovascular disease, which exceeds the existing state-of-the-art GA-ANN and TSTO-ANN
models. The proposed TPTM-HANN-GA framework enables personalized CVD prediction to be effi-
ciently conducted on low-power computers and edge-AI devices, achieving the goal of point-of-care
testing (POCT) and empowering individuals to manage their heart health effectively.

Keywords: cardiovascular disease; two-phase Taguchi method; artificial neural network; genetic
algorithm; edge-AI; point-of-care testing

MSC: 68T07

1. Introduction

Cardiovascular disease (CVD) poses a significant public health challenge, with pro-
found implications for both individuals and communities, resulting in substantial mortality
rates and societal impact. A range of cardiovascular disorders, including coronary artery
disease, myocardial infarction (heart attacks), strokes, arrhythmias, heart failure, and
atherosclerosis, present a substantial menace to human health [1]. These conditions disrupt
the normal function of the heart and blood vessels, impairing blood and oxygen delivery
and causing significant damage to various bodily systems [2]. Consider the impact of
narrowed arteries depriving the heart of oxygen and nutrients in coronary artery disease,
the irregular electrical signals leading to arrhythmias, or the weakened pumping ability of
the heart in heart failure, leaving individuals struggling to breathe. A stroke, characterized
by a sudden interruption of blood flow to the brain, can strip individuals of language, move-
ment, and essential functions. Meanwhile, atherosclerosis, operating silently, accumulates
plaque in arteries, constricts blood flow, and increases the risk of events [3].
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Cardiovascular diseases (CVDs) do not arise from isolated factors but rather from a
complex network of interconnected risk elements. High blood pressure, cholesterol, and
diabetes often collaborate, intensifying each other’s adverse impacts [4]. We require a multi-
faceted strategy that addresses all contributing factors collectively rather than addressing
each risk element in isolation. Engaging in unhealthy behaviors, such as poor diet, smoking,
and excessive alcohol consumption, exacerbates the risk of CVD [5–7]. Individual choices
and behaviors play a pivotal role in determining cardiovascular health outcomes. The
solution rests in adopting healthier behaviors: consuming balanced diets, engaging in
regular physical activity, quitting smoking, and moderating alcohol intake. However,
prevention alone is insufficient. Detecting cardiovascular diseases (CVDs) at an early stage
allows for timely intervention to prevent their severe impact.

Early detection poses a significant challenge in combating cardiovascular diseases
(CVDs) [8–10]. Unlike diseases with clear and recognizable symptoms, CVDs often present
as subtle signs, such as fatigue, chest discomfort, or general stress—easily dismissed in
the hustle of daily life. These ambiguous indicators often fail to prompt proactive medical
intervention, leading to disease. Compounding this challenge, certain CVDs progress
gradually. Atherosclerosis, for example, deposits plaque in arteries, obstructing blood flow
and revealing its destructive consequences much later on. Effective screening tools do
exist but often require specialized equipment and trained professionals, resources that are
not readily available in regions with limited resources. This reality means that essential
examinations, such as electrocardiograms, blood tests, and cardiac ultrasounds, become
inaccessible, further reducing the likelihood of early detection.

The accurate prediction of cardiovascular diseases (CVDs) can help healthcare profes-
sionals identify high-risk individuals before the onset of clinical symptoms. By analyzing a
comprehensive set of CVD risk factors, predictive models can be constructed to estimate an
individual’s susceptibility to this often silent condition [11–14]. This method empowers
clinicians to prioritize patient monitoring and implement preventative measures. Tailored
medical interventions and personalized health management recommendations can then
be established for each patient. Early detection through such predictive models provides
a valuable opportunity for treatment, facilitating interventions such as targeted lifestyle
modifications (e.g., diet and exercise programs) and stress management strategies [15]. By
adopting these proactive measures, individuals identified as high-risk can significantly
reduce their CVD risk and take greater control of their overall well-being.

Additionally, pharmacological interventions become viable options, further lowering
the risk of cardiovascular events [16]. Ultimately, early prediction not only minimizes the
incidence and severity of CVD but also empowers individuals to become active participants
in their cardiovascular health. The effect of CVD prediction fosters public health aware-
ness, prompting individuals to take ownership of their heart health. Understanding their
susceptibility can prompt people to make positive changes, such as incorporating regular
exercise, choosing healthier diets, and scheduling preventive check-ups with their doctors.
This approach can significantly reduce their risk of developing health problems. This shift
in behavior translates to a healthier population, placing less strain on healthcare systems.
Predictive models empower healthcare professionals to become efficient stewards of limited
resources. By anticipating demand and developing targeted prevention and treatment
plans, we can optimize resource allocation, reduce hospitalization times, and minimize
healthcare costs [17]. The early identification of high-risk individuals coupled with effective
interventions alleviates the pressure on healthcare systems, creating a virtuous cycle of
improved health outcomes and reduced long-term financial burdens.

Despite the appeal of early CVD prediction, the potential for erroneous outcomes
cannot be overlooked. In the context of early CVD prediction, a misclassification of patients
as high-risk can trigger a sequence of unwarranted interventions, resource misallocation,
and psychological distress [18]. Considering the potential for undergoing extraneous medi-
cal procedures, the associated financial strain, and the consequent psychological burden,
a cautious approach to early CVD prediction is warranted [19]. The converse scenario
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presents an equally significant challenge: the missed identification of genuinely high-risk
individuals. This can lead to a critical delay in implementing essential interventions, poten-
tially allowing for the disease to progress unabated. Furthermore, inaccurate predictions
breed skepticism. This public distrust can hamper efforts to promote preventative measures
and ultimately weaken the entire system [20]. Therefore, the pursuit of highly accurate
CVD prediction is not just a scientific endeavor but an ethical imperative. We must strive
to minimize false positives and negatives, ensuring the benefits outweigh the risks and
upholding public trust in this invaluable tool.

Scholars such as Arroyo and Delima (2022) [21] have harnessed genetic algorithms
to fine-tune artificial intelligence, boosting prediction accuracy by 5.08%. Kim (2021) [22]
demonstrated the potential of smartwatch-derived data for CVD prevalence prediction,
achieving promising results with a machine-learning approach utilizing support vector
machines (SVMs). Khan et al. (2023) [23] investigated the efficacy of machine learning
algorithms, specifically random forest, for CVD prediction. Their findings demonstrated
promising performance in terms of both accuracy and sensitivity. Building on previous
work, Moon et al. (2023) [24] achieved a breakthrough in cardiovascular disease (CVD)
susceptibility prediction. Their approach, which combined advanced AI techniques such
as the literature embedding with machine learning, not only delivered 96% accuracy but
also shed light on the underlying genes and factors contributing to individual risk.

Cardiovascular disease (CVD) prediction has made significant strides in recent years,
but achieving high accuracy with limited resources remains a challenge. This study tackles
the critical barrier of computational costs in accurate cardiovascular disease (CVD) predic-
tion. The proposed method empowers individuals by significantly reducing computing
needs while maintaining high accuracy, thereby achieving the goal of real-time, individual-
ized CVD risk stratification that is readily accessible to users, enabling the optimization of
preventative interventions and transforming health surveillance. Moreover, the proposed
method, enabled by a resource-efficient artificial neural network model, allows for precise
individual risk assessment, facilitating timely interventions that improve quality of life and
overall cardiovascular health. Whether at the doctor’s office or even at home, this further
achieves the goal of accurate CVD prediction at the point of care.

2. Materials and Methods
2.1. TPTM-HANN-GA Framework

Enhancing the performance of CVD risk prediction algorithms is paramount. Tradi-
tionally, researchers rely on subjective judgment when choosing hyperparameter levels,
often leading to limited improvements and inefficient resource allocation. Hence, to fully
realize the capabilities of CVD prediction models, this study proposed an optimization
framework that breaks free from the limitations of trial and error. By combining two pow-
erful techniques, the two-phase Taguchi method (TPTM) and the hyperparameter artificial
neural network (HANN), this framework aimed to systematically and efficiently identify
the optimal hyperparameter configurations for CVD prediction models.

In lieu of an exhaustive grid search, TPTM prioritizes the identification of salient
relationships between hyperparameters and model accuracy. This is achieved by strategi-
cally evaluating multiple hyperparameter levels simultaneously, minimizing the required
number of experiments. This phase shines a light on how each hyperparameter influences
accuracy, revealing valuable insights, such as the potential benefit of a higher momentum
rate in artificial neural networks (ANNs). Leveraging the insights gleaned from TPTM, the
HANN algorithm assumes responsibility for the optimization process. This specialized
neural network acts to fine-tune the hyperparameters based on the discovered trends. Its
learning capabilities allow it to pinpoint the optimal configuration for maximizing predic-
tion accuracy. To further enhance the optimization process, the framework incorporates the
genetic algorithm (GA). This evolutionary approach explores the hyperparameter space,
leveraging the knowledge gained from the previous phase to identify even more promising
configurations. The genetic algorithm (GA) leverages a bio-inspired approach, emulat-
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ing natural selection to refine the hyperparameter search process. This iterative process
converges towards superior solutions, as detailed in Table 1.

Table 1. Algorithm table for related methods.

Algorithm Description and Explanation

Taguchi Method

1. Define Problem: determine the system or process to be optimized and identify the performance
characteristics to evaluate.

2. Design Experiment: select factors and levels and construct a Taguchi orthogonal array for
experimental design.

3. Conduct Experiment: execute experiments based on the design plan and collect data on
performance characteristics.

4. Analyze Experiment Results: evaluate experiment results using methods such as
signal-to-noise ratio and analysis of variance (ANOVA).

5. Optimize Design: adjust factor levels based on analysis results to optimize the system or
process design.

6. Validate Design: validate the optimized design to ensure the system or process meets
expected performance.

Artificial neural network

1. Initialization: initialize the network structure and parameters.
2. Forward Propagation: compute the outputs of each layer based on input data.
3. Calculate Loss: determine the difference between predicted and actual outputs.
4. Backward Propagation: update the network’s parameters based on the loss.
5. Training: repeat steps 2–4 using training data to optimize the network.
6. Prediction: use the trained network to predict outputs for new data.

Genetic algorithm

1. Initialize: initialize a population by randomly generating initial individuals.
2. Evaluate: calculate the fitness of each individual to assess the quality of their solutions.
3. Selection: choose individuals with higher fitness as parents for reproduction using roulette

wheel selection.
4. Crossover: perform a two-point crossover between selected parents to produce new offspring.
5. Mutation: mutation is applied to introduce randomness to the newly generated offspring.
6. Update: replace selected individuals in the population with the newly generated offspring to

form the next generation.
7. Termination: check if termination criteria are met (e.g., reaching maximum iterations).

This collaborative framework, harnessing the strengths of TPTM, HANN, and GA,
promises to revolutionize the optimization of CVD prediction models. This work tran-
scends heuristic optimization approaches, leveraging a data-driven methodology to achieve
enhanced accuracy and reliability in CVD prediction models. Consequently, this paves the
way for improved clinical decision-making and potentially superior patient outcomes.

The analytical process in this study can be delineated into six distinct steps, as illus-
trated in Figure 1.

(1) Problem Definition: The first step of this investigation delved into the heart of the
data itself. We began by identifying the source of the dataset and exploring its origin
and any inherent biases or limitations.

(2) Unveiling Hyperparameter Trends through Initial-Phase Taguchi Method: The initial
exploration of hyperparameter space utilized the Taguchi L18(21 × 37) design. This
powerful tool let us efficiently explore diverse combinations for our artificial neural
network (ANN) model used in cardiovascular disease (CVD) prediction. We employed
a combination of experimental and analytical techniques, including orthogonal arrays,
parameter response tables, graphs, and analysis of variance (ANOVA), to achieve two
key goals:

(i) Identify Improved Configurations: By analyzing accuracy data from various
configurations, we aimed to pinpoint settings that enhance CVD prediction
accuracy compared to the initial model.

(ii) Discern Preferred Trends: Beyond specific configurations, we sought to un-
cover broader trends within each hyperparameter. This involved identifying
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whether increasing or decreasing a hyperparameter’s value generally led to
better prediction results.
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Figure 1. Proposed method. The proposed method integrates the two-phase Taguchi method
(TPTM), hyperparameter artificial neural network (HANN), and genetic algorithm (GA) to optimize
hyperparameters for an ANN model used in predicting CVD risk.

By these trends, we gained valuable insights into the behavior of our ANN model and
could make informed decisions for further optimization in the next step.

(3) Refinement with the Second-phase Taguchi Method: Building upon the initial trends
identified, we launched a second-phase Taguchi method L9(34) to delve deeper into
the promising hyperparameter space. This focused exploration aimed to recollect an
enriched dataset that promisingly harbored the best hyperparameter configurations.
By strategically confining the hyperparameter range based on the insights from the
previous step, we increased the likelihood of capturing the optimal solution within
this refined search space. This iterative approach, characteristic of the Taguchi method,
allowed us to efficiently hone in on the most favorable parameter settings for our
model. To build a hyperparameter artificial neural network (HANN) model with a
diverse dataset, this study used the Monte Carlo method to enhance the accuracy. This
probabilistic model introduces uncertainty, resulting in varied outcomes during the
simulation and creating a more diverse dataset. A normal distribution probabilistic
model was applied for the Monte Carlo data augmentation in this study.

(4) Crafting the Hyperparameter Artificial Neural Network (HANN): The data harvested
in Step 3 served as the foundation for building our hyperparameter neural network
(HANN). This study proposed a streamlined HANN architecture with a single hidden
layer. To pinpoint the optimal configuration for this network, we employed a grid
search method. This strategy systematically evaluates numerous parameter combi-
nations, guided by the goal of minimizing the root mean square error (RMSE) on
the test set. Following the initial hyperparameter exploration via TPTM, the HANN
algorithm leverages the identified trends to converge on the optimal architecture.

(5) Using the Genetic Algorithm (GA) to Find the Best Hyperparameter Configurations
for Accurate Cardiovascular Disease Risk Prediction: This study took optimization
a step further by employing the genetic algorithm (GA) to determine the globally
optimal configurations for the HANN model’s input variables. In contrast to grid
search’s finite exploration, the genetic algorithm efficiently searches the hyperparame-
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ter space. This bio-inspired approach emulates natural selection, iteratively refining
the population towards configurations that yield progressively enhanced robustness
and accuracy in CVD risk prediction models. This broader search empowers the
model to perform at its peak by considering a wider range of potential configurations.

(6) Comparative Study: To validate the advancements achieved in this study, the highest
model accuracy obtained through the TPTM-HANN-GA method was benchmarked
against the accuracy of relevant models reported in the literature. This comparison
provided a rigorous assessment of our proposed approach and its potential contribu-
tions to the field.

2.2. Literature Review
2.2.1. Artificial Neural Network (ANN)

Artificial neural networks can effectively learn and represent intricate patterns within
data. These networks consist of interconnected nodes (neurons) arranged in layers. Each
neuron receives signals from previous layers, processes them, and sends its own signal
forward. This intricate web allows for ANNs to learn complex relationships [25–28].
However, two hyperparameters significantly impact their performance: learning rate
and momentum. The learning rate controls how much the network adjusts its internal
connections during training. If this rate is too high, the network becomes unstable, while a
rate that is too low slows down learning or gets stuck in suboptimal solutions [29,30]. The
momentum optimization technique accumulates historical gradient updates. This inertia
smooths out fluctuations in the learning landscape, which is particularly beneficial for
navigating complex problems with numerous local minima. By effectively utilizing this
momentum term, the optimization process converges more efficiently.

Artificial neural networks have emerged for various modeling and prediction tasks
across diverse fields. Katona T. et al. (2024) proposed an optimized deep learning model
utilizing pre-trained CNNs and novel optimization strategies for multi-label classification
of chest X-ray images, aiming to aid automated interpretation and support clinicians in their
diagnoses [31]. Franchini, G. (2024) proposed a green approach to hyperparameter tuning
in deep learning models, utilizing performance predictors to minimize computational costs
and environmental impact, thereby accelerating the neural architecture search process
and improving efficiency in tasks such as image denoising and classification [32]. Other
studies have explored their potential in medical image segmentation tasks (Malhotra et al.,
2022) [33], real-time classification of diversely packaged drugs (You et al., 2023) [34], tox-
icology research for predicting compound toxicity (Pantic et al., 2022) [35], classifying
liver cancer from histopathology images (Lin et al., 2021) [36], lung cancer recognition
(He et al., 2022) [37], and even predicting the outcome of diabetic foot ulcer treatments (Po-
radzka et al., 2023) [38]. Furthermore, research such as Krasteva et al. (2023) demonstrates
their optimization capabilities for specific tasks such as arrhythmia classification [39]. These
diverse applications showcase the wide-ranging potential of ANNs in various prediction
and modeling domains.

2.2.2. Taguchi Method

The Taguchi method, developed by Dr. Genichi Taguchi in the 1950s, revolutionized
quality management. Initially popular in Japan, it gained global recognition in the 1980s,
becoming a cornerstone of robust design [40]. Dr. Taguchi’s early work laid the foundation
for this approach, leading to significant improvements in product quality and cost [41,42].
The key innovation of the Taguchi method lies in its focus on “noise factors,” uncontrollable
variables impacting product performance. Unlike traditional methods that solely address
controllable factors, the Taguchi method seeks optimal parameter settings that minimize
the impact of noise, leading to more robust and consistent products by utilizing orthogonal
arrays. These special experimental designs allow researchers to gather comprehensive data
with fewer experiments, improving the efficiency and result reliability [43]. In contem-
porary high-complexity manufacturing systems, achieving such optimization efficiency
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is paramount. Traditional methodologies often exhibit limitations in terms of protracted
execution times and substantial resource requirements.

Traditional full factorial designs, where all possible combinations of factors are tested,
can become time-consuming as the number of variables increases. This exponential growth
in experiments poses a significant challenge for researchers seeking efficient solutions.
Orthogonal arrays, introduced by Dr. Taguchi, are a powerful tool for streamlining ex-
perimentation. These designs allow researchers to study the effects of multiple factors
with significantly fewer experiments, maintaining comprehensive and reliable data [43].
This efficiency is particularly valuable in today’s complex research environments, where
time and resources are often limited. Furthermore, orthogonal arrays ensure experimental
reproducibility. By ensuring specific properties in the experimental setup, these designs
guarantee that experiments can be easily replicated and their results verified, boosting the
overall reliability and validity of the findings.

Dr. Taguchi’s contribution involved applying the signal-to-noise ratio (SN), a well-
established concept in telecommunications typically quantified in decibels (dB), to the
domain of quality control. This innovative approach significantly reshaped quality man-
agement practices. This powerful metric exposed factors significantly affecting product
quality during production [40]. A high SN ratio signified a robust process and exceptional
quality, while a low one served as a red flag. Tailored to specific quality objectives, three
distinct SN ratio types were employed:

(1) Nominal-the-better (NTB): Preferring values closest to a target (m).

SNNTB = −10log

[
∑n

i=1
(
yi − m)2

n

]
= −10log

[
(y − m)2 + S

2]
. (1)

(2) Smaller-the-better (STB): Aiming for the smallest possible values.

SNSTB = −10log
∑n

i=1 y2
i

n
= −10log(y2 + S2). (2)

(3) Larger-the-better (LTB): Seeking the largest possible values.

SNLTB = −10log
∑n

i=1
1
y2

i

n
. (3)

Formulas (1)–(3) used specific calculations to assess quality based on average values
(y), target values (m), variances (S2), individual values (yi), and the number of treatments (n).

The Taguchi method’s versatility is gaining recognition as a powerful tool for opti-
mizing diverse engineering challenges. In biosensing, Kaziz et al. (2023) [44] employed
its L8(25) approach to significantly accelerate detection times under alternating current
electrothermal forces. For medical imaging, Tseng et al. (2022) [45] successfully optimized
brain tissue visualization using a custom PMMA slit gauge designed through the Taguchi
method. Karimipourfard et al. (2024) [46] used the Taguchi method to improve a deep
learning model for fast and accurate patient-specific internal dosimetry, achieving results
comparable to the gold-standard Monte Carlo but with much faster calculation speed.
Bayraktar et al. (2024) [47] applied the Taguchi method to optimize the production of
bacterial nano-cellulose from whey waste, a sustainable approach yielding biocompatible
and biodegradable nanomaterials with potential for biomedical applications. These diverse
applications demonstrate the Taguchi method’s adaptability and potential to contribute to
advancements across various engineering fields.

2.2.3. Genetic Algorithm

Introduced in 1975, the genetic algorithm (GA) has matured into a robust optimization
paradigm. Leveraging principles inspired by natural selection, GAs excel at navigating
intricate problem domains to identify optimal solutions. The GA iteratively refines a popu-
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lation of potential solutions, favoring those that perform well. This self-adapting approach
excels in high-dimensional optimization, making it ideal for tasks such as hyperparame-
ter tuning in machine learning and control variable refinement in engineering [48]. The
GA’s evolutionary process involves three phases: chromosome reproduction, crossover
(combining features), and mutation (introducing randomness). Within the solution space
of an engineering challenge, the GA iteratively identifies the most versatile solution that
meets all constraints, boasts the highest fitness function value, and represents the globally
optimal solution [49].

The genetic algorithm (GA) is an effective tool for iterative optimization. It orchestrates
a process that progressively refines candidate solutions towards achieving global optima
within the search space. This iterative refinement commences with population initialization,
where a collection of diverse candidate solutions is generated, constituting the initial
population. This variety sets the stage for exploration across the solution space. Next, the
evaluation stage assesses each solution’s performance through a fitness function, gauging
its effectiveness within the problem context. The optimization process intensifies with the
parent selection stage. During this stage, a selection mechanism prioritizes high-performing
individuals within the population to become parents for the next generation. Parent
selection mechanisms, such as roulette wheel selection or elite preservation, prioritize
solutions with superior fitness scores, ensuring these desirable traits are carried forward.
Subsequently, the crossover operation takes place. Here, genetic material from two selected
parents is exchanged, resulting in offspring chromosomes that inherit a blend of valuable
characteristics from both parents. This process of crossover is instrumental in maintaining
population diversity and fostering the exploration of novel solution spaces. However,
evolution needs variety, so mutation throws in controlled randomness, altering some
offspring to prevent stagnation in local optima. Following the reproduction phase, a
selection mechanism determines which individuals from the current generation (parents
and offspring) will be incorporated into the subsequent generation’s population. This
selection pressure ensures the population continuously evolves toward superior solutions.
This cyclical refinement propels the search for better solutions. This iterative process
continues until a predefined termination criterion is satisfied. This criterion can be based
on achieving a satisfactory fitness score or exceeding a maximum number of generations.
Each iteration facilitates the progressive refinement of the population towards superior
solution states within the search space.

This study employed a structured chromosome format to represent control variable
configurations. Each variable’s value was encoded as a binary gene, forming the building
blocks of the chromosome. This efficient encoding facilitated manipulation and analysis
within the experimental domain. To find optimal control settings, the GA leverages iterative
crossover and mutation operations. These operations guide the current population toward
the next generation, progressively approaching optimal settings or reaching a predefined
limit [49]. The chosen two-point crossover creates novel chromosomes by exchanging
genetic material between paired parents. Notably, crossover points remain consistent across
genes within a chromosome. During mutation, a designated portion of each chromosome’s
bits undergoes random changes (1 to 0 or vice versa). This systematic variation fosters
convergence towards optimal solutions. The study’s objective function was adapted and
transformed into a fitness function within the GA framework. Higher fitness values
are directly associated with superior solution quality. Chromosomes with high fitness
have a greater chance of generating offspring, promoting the propagation of promising
genetic traits. The roulette wheel method further biases selection towards high-fitness
chromosomes, accelerating the search for optimal solutions. This rewrite retained the key
information while avoiding direct copying, achieving the desired originality and clarity.

The versatility of the genetic algorithm (GA) is demonstrably evident across a mul-
titude of disciplines, as exemplified by the following contemporary applications. Neu-
mann et al. (2023) [50] explored GA’s role in ETO challenges. They analyzed key character-
istics, constraints, and objectives, delving into common encoding formats and genetic oper-
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ators, with a particular focus on multi-objective approaches. Altarabichi et al. (2023) [51]
tackled efficient feature selection in massive datasets by proposing a two-phase surrogate-
assisted evolutionary approach powered by GA. This innovative method demonstrated
effectiveness in sifting through large data volumes. Aziz et al. (2023) [52] introduced
a novel approach combining GA and deep learning for highly accurate fraud detection
in Ethereum smart contracts. Their method outperformed various popular techniques,
showcasing the algorithm’s potential for enhancing financial security. Ghezelbash et al.
(2023) [53] leveraged GA to improve mineral prospectivity mapping. They combined
unsupervised clustering and supervised machine learning methods, demonstrating the
algorithm’s adaptability to real-world geospatial applications.

3. Results
3.1. Dataset Description

This study employs the Kaggle Cardiovascular Disease dataset [54] to validate the
proposed method for predicting the risk of cardiovascular disease. The dataset encom-
passes 70,000 medical records, each containing 12 variables (11 input features and 1 target
variable). To optimize the training and testing of our ANN models, we implemented an
80% training and 20% testing split. Table 2 describes the comprehensive features of the
Kaggle Cardiovascular Disease dataset.

Table 2. Description of features in the Kaggle Cardiovascular Disease dataset [54].

Variable Data Type

#1: Age int (days)
#2: Height int (cm)
#3: Weight float (kg)
#4: Gender categorical code
#5: Systolic blood pressure int
#6: Diastolic blood pressure int

#7: Cholesterol 1: normal, 2: above normal, 3: well
above normal

#8: Glucose 1: normal, 2: above normal, 3: well
above normal

#9: Smoking binary
#10: Alcohol intake binary
#11: Physical activity binary
#12: Presence (or absence) of
cardiovascular disease binary

(a) An analysis of age distribution (measured in days) revealed distinct proportions across
age groups. The youngest group (under 16,000 days) comprised 8159 individuals
(11.66%). The 16,000–17,999-day range held 10,027 individuals (14.32%), followed by the
18,000–19,999-day group with 20,490 (29.27%). The 20,000–21,999-day range showed a
similar number at 20,011 (28.59%), while the oldest group (22,000–24,000 days) included
11,313 individuals (16.16%).

(b) An analysis of height distribution (in centimeters) showed a clear trend. The shortest
group (under 150 cm) accounted for 1537 individuals (2.20%). The most common
height range was 160–169 cm, with 33,463 individuals (47.80%). Heights between
150 and 159 cm and 170–179 cm were also well represented at 16,986 (24.27%) and
15,696 (22.42%), respectively. Taller individuals were less frequent, with 2213 (3.16%)
between 180 and 189 cm and only 105 (0.15%) exceeding 190 cm.

(c) An examination of weight distribution (in kilograms) uncovered a pattern. The lightest
weight category (below 50 kg) included 987 individuals (1.41%). Weights between
50 and 69 kg were the most prevalent, with 27,864 individuals (39.81%) falling within
this range (50–59 kg: 7174 at 10.25% and 60–69 kg: 20,690 at 29.56%). The 70–79 kg
range was also significant at 19,476 (27.82%). Heavier weights were progressively
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less common, with 11,989 individuals (17.13%) between 80 and 89 kg, 5831 (8.33%)
between 90 and 99 kg, and 3853 (5.50%) exceeding 100 kg.

(d) An analysis of gender distribution revealed a skew towards females. There were
45,530 females, representing approximately 65.4% of the 70,000 patients. Males ac-
counted for the remaining 34.96%, totaling 24,470 patients.

(e) An analysis of systolic blood pressure readings showed a majority of individuals
within a normal range. Specifically, 13,038 (18.63%) had readings below 120, while
37,561 (53.66%) fell between the healthy range of 120 and 139. Readings between
140 and 159, though considered elevated, were present in 14,436 individuals (20.62%).
Only a small portion, 5.57% (3901) and 1.52% (1064) had readings between 160 and
179 and above 180, respectively, which are categorized as hypertension.

(f) An analysis of diastolic blood pressure readings yielded a similar distribution to
systolic blood pressure. A significant portion, 35,450 individuals (50.64%), exhib-
ited readings within the normal range (80–89 mmHg). Similarly, a sizeable group,
14,116 (20.17%), had readings below 80 mmHg. While elevated diastolic pressure
readings (90–99 mmHg) were present in 14,612 individuals (20.87%), readings cate-
gorized as hypertension (100 mmHg and above) were less common, affecting 5.91%
(4139 individuals) between 100 and 109 mmHg and 2.40% (1683 individuals) above
110 mmHg.

(g) An analysis of cholesterol levels revealed a positive trend, with the majority (74.84%, or
52,385 patients) having normal levels. However, a notable portion of the population,
13.64% (approximately 9549 patients), has above-normal cholesterol, and 11.52%
(approximately 8066 patients) has well above-normal levels.

(h) Similar to cholesterol, an analysis of glucose levels showed a positive trend. The
majority of patients (84.97%, or 59,479 individuals) exhibited normal glucose levels.
However, a combined percentage of 15.03% (7.41% above normal and 7.62% well
above normal) had abnormal glucose levels.

(i) The analysis of smoking habits reveals a positive public health trend. A very high
proportion of patients (approximately 91.19%, or 63,831 individuals) are non-smokers.
This is encouraging news, as smoking is a major risk factor for various health condi-
tions. However, there is still a minority of patients (approximately 8.81%, or 6169 indi-
viduals) who smoke.

(j) The prevalence of alcohol consumption is low in this patient population. A vast
majority of patients (approximately 94.62%, or 66,236 individuals) reported no alcohol
consumption. This is positive, as excessive alcohol consumption can contribute
to various health problems. However, a small minority (approximately 5.38%, or
3764 individuals) do consume alcohol.

(k) Encouragingly, a large majority of patients (approximately 80.37%, or 56,261 individu-
als) reported being physically active. This is a positive finding, as regular physical
activity is associated with numerous health benefits, including a reduced risk of
cardiovascular disease. However, a significant minority (approximately 19.63%, or
13,739 individuals) were inactive.

(l) Nearly half (49.97%) of the patient population has cardiovascular disease (CVD). This
highlights the importance of continued monitoring and preventative measures for
this at-risk group.

Given the diverse nature of the input features, normalization is crucial to ensure
consistent analysis and prevent biases: imbalanced scales can skew the model towards
features with larger values. To address this, we adopted z-score normalization, a technique
that standardizes features by transforming them onto a common scale with a mean of 0
and a standard deviation of 1. This not only improves accuracy by giving each feature
equal weight during training but also enhances the robustness of our analytical evaluations
across the entire feature set.
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3.2. Unveiling Hyperparameter Trends through the Initial-Phase Taguchi Method

In Sections 3.2 and 3.3, we refer to the part of the experimental results of the two-stage
Taguchi optimization (TSTO) method (C. M. Lin and Y. S. Lin, 2023) [55]. This study follows
the steps of TSTO and adds the Monte Carlo method to the second-stage Taguchi method
of TSTO to expand the number of modeling data points. Therefore, this study refers to
the modified method as the two-phase Taguchi method (TPTM) to distinguish it from the
TSTO method.

To maximize the model’s predictive ability, we focused on six key hyperparameters
influencing the artificial neural network (ANN): hidden layers (HL), activation function
(AF), optimizer (OP), learning rate (LR), momentum rate (MR), and hidden nodes (HN).
Their potential impact on performance is outlined in Table 3, where “level 1” represents the
lower setting and “level 2” signifies the higher one. To identify optimal configurations and
uncover broader trends, we leveraged the Taguchi method’s initial phase L18(21 × 37). This
systematic approach evaluated various combinations of these hyperparameters (V1 through
V6) within the L18(21 × 37) orthogonal array. By analyzing the resulting accuracy data, we
aimed to pinpoint settings that lead to improved predictive performance compared to the
initial model and discern general trends within each hyperparameter, guiding us toward
more effective configurations in the next step.

Table 3. Hyperparameters’ levels for the L18(21 × 37) orthogonal array.

V1 V2 V3 V4 V5 V6

Level 1 = 4 Level 1 = logistic Level 1 = lbfgs Level 1 = 0.2 Level 1 = 0.7 Level 1 = 4
Level 2 = 8 Level 2 = tanh Level 2 = sgd Level 2 = 0.3 Level 2 = 0.8 Level 2 = 8
Level 3 = 12 Level 3 = relu Level 3 = adam Level 3 = 0.4 Level 3 = 0.9 Level 3 = 12

The Taguchi design addresses the inherent randomness present in ANN training by
incorporating noise as a controlled factor. This approach effectively improves the signal-
to-noise ratio, mitigating random variations and ensuring consistent performance across
training iterations. Employing a conventional grid search for six hyperparameters with
three discrete levels, replicated three times, yields 2187 (36 × 3) experiments. In contrast, the
initial-phase Taguchi method in this study achieved the same goal with only 54 experiments,
significantly reducing the computational burden. This efficiency allowed us to utilize
an ultra-low-cost personal computer, detailed below, eliminating the need for high-end
hardware or GPUs. This study used a low-power computer manufactured by Hewlett-
Packard Company (Palo Alto, CA, USA). It was equipped with an i5-1135G7 @ 2.40 GHz
processor, 8 GB RAM, 64-bit operating system. To perform our computations, we utilized
Python 3.9.13 software, developed by the Python Software Foundation, (Wilmington,
DE, USA).

By delving into the effects of each hyperparameter, we aimed to identify critical factors
and uncover recurring patterns within their different settings. The impact effect of each
hyperparameter is quantified by the maximum difference in the overall average SN ratio
across its different levels. To comprehensively communicate these findings, we constructed
both a table and a chart of hyperparameter responses, concisely summarizing the analysis
of each hyperparameter’s influence.

Since our goal is to maximize the ANN model’s average accuracy (following the
larger-the-better principle), we calculated the SN ratio for each experiment using Formula
(3). The resulting SN ratios are presented in the last row of Table 4. Next, we delve
further into the hyperparameter effects by examining the table of hyperparameter response
(Table 5) and the chart of the hyperparameter response (Figure 2). These visualization tools
help us understand how varying each hyperparameter level affects the model’s SN ratio.
Finally, to statistically assess the significance of these effects, we conducted an ANOVA
analysis (presented in Table 6). This statistical test provides valuable insights into which
hyperparameters have the most substantial impact on the model’s performance.
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Figure 2. Chart of hyperparameter response for the average of SN ratio in L18(21 × 37) array. In this
chart, we can find the higher SN ratios for each hyperparameter.

The analysis in Table 5 reveals a hierarchy of hyperparameter influence on the ANN’s
SN ratio, with V2 (AF) and V3 (OP) emerging as the most critical factors (p < 0.1 in Table 6).
Figure 2 visually confirms this, showcasing “tanh” for V2 (AF) and “sgd” for V3 (OP) as
optimal configurations alongside favorable settings for V4 (LR), V5 (MR), and V6 (HN).
Notably, the best configuration for V1 (HL) lies at level 1 (4 hidden layers), denoted as V1(1).
The optimized model architecture consists of six variables: V1(1), V2(2), V3(2), V4(2), V5(3),
and V6(2). This configuration translates to a four-hidden-layer network with eight hidden
nodes per layer, resulting in the 11-8-8-8-8-1 architecture shown in Figure 3.
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Figure 3. 11-8-8-8-8-1 architecture for ANN model of cardiovascular disease.
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Table 4. Results and application of the L18(21 × 37) orthogonal array.

Experiment 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Hyperparameter

V1 4 4 4 8 8 8 12 12 12 4 4 4 8 8 8 12 12 12
V2 logistic tanh relu logistic tanh relu logistic tanh relu logistic tanh relu logistic tanh relu logistic tanh relu
V3 lbfgs sgd adam lbfgs sgd adam sgd adam lbfgs adam lbfgs sgd sgd adam lbfgs adam lbfgs sgd
V4 0.2 0.3 0.4 0.3 0.4 0.2 0.2 0.3 0.4 0.4 0.2 0.3 0.4 0.2 0.3 0.3 0.4 0.2
V5 0.7 0.8 0.9 0.8 0.9 0.7 0.9 0.7 0.8 0.8 0.9 0.7 0.7 0.8 0.9 0.9 0.7 0.8
V6 4 8 12 12 4 8 8 12 4 8 12 4 12 4 8 4 8 12

Accuracy
N1 0.4951 0.7389 0.4951 0.4951 0.7404 0.4951 0.4951 0.4951 0.7341 0.4951 0.7361 0.7389 0.5049 0.4951 0.7416 0.4951 0.7441 0.7384
N2 0.4951 0.7382 0.5049 0.4951 0.7405 0.4951 0.5049 0.4951 0.7414 0.4951 0.7386 0.7381 0.4951 0.5049 0.7412 0.4951 0.7418 0.724
N3 0.4951 0.7262 0.4951 0.4951 0.7331 0.4951 0.5049 0.5136 0.4951 0.4951 0.7372 0.7404 0.4951 0.4951 0.7404 0.4951 0.7423 0.7431

Average Accuracy 0.4951 0.7345 0.4984 0.4951 0.738 0.4951 0.5016 0.5013 0.6569 0.4951 0.7373 0.7391 0.4984 0.4984 0.7411 0.4951 0.7427 0.7352
Standard Deviation 0.0000 0.0071 0.0056 0.0000 0.0043 0.0000 0.0056 0.0106 0.1401 0.0000 0.0013 0.0012 0.0056 0.0056 0.0007 0.0000 0.0012 0.01

Signal-to-Noise Ratio −6.105 −2.682 −6.050 −6.105 −2.639 −6.105 −5.994 −6.002 −4.124 −6.105 −2.647 −2.626 −6.050 −6.050 −2.603 −6.105 −2.584 −2.674
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Table 5. Table of hyperparameter response for the average of SN Ratio in L18(21 × 37) orthogonal array.

Hyperparameter V1 V2 V3 V4 V5 V6

Average of
signal-to-noise

ratio

Level 1 = −4.369 Level 1 = −6.078 Level 1 = −4.028 Level 1 = −4.929 Level 1 = −4.912 Level 1 = −4.608
Level 2 = −4.925 Level 2 = −3.767 Level 2 = −3.777 Level 2 = −4.354 Level 2 = −4.623 Level 2 = −4.345
Level 3 = −4.581 Level 3 = −4.030 Level 3 = −6.070 Level 3 = −4.592 Level 3 = −4.340 Level 3 = −4.921

Effect 0.556 2.311 2.293 0.575 0.572 0.576

Rank 6 1 2 4 5 3

The effect of each hyperparameter is quantified by the maximum difference in the overall average SN ratio across
its different levels.

Table 6. Hyperparameter ANOVA table for the SN ratio in L18(21 × 37) array.

Hyperparameter Degrees of Freedom Sum of Squares Mean of Squares F-Value p-Value

V1 2 0.946 0.473 0.35 0.718
V2 2 19.195 9.597 7.20 0.034
V3 2 18.972 9.486 7.12 0.034
V4 2 1.003 0.502 0.38 0.704
V5 2 0.983 0.491 0.37 0.709
V6 2 0.998 0.499 0.37 0.706

Error 5 6.665 1.333

Sum 17 48.761

R2 R2 (adjust)
86.33% 53.53%

ANOVA, analysis of variance.

3.3. Refinement with the Second-Phase Taguchi Method

Analyzing Figure 2 revealed that four hidden layers (V1) yielded the best SN ratio.
Prioritizing accuracy, we fixed V1 at four layers to avoid compromising the performance.
Additionally, the ANOVA identified V2 (AF) and V3 (OP) as key categorical variables, which
were set to tanh and sgd, respectively, for optimal results. Further insights from Figure 2
suggested that settings of 0.3, 0.9, and 8 for V4 (LR), V5 (MR), and V6 (HN), respectively, led
to improvements in both accuracy and SN ratio. Building upon these findings, the second-
phase Taguchi method aimed to refine these configurations and promisingly discover
even better configurations. We maintained the optimal setting V1 (HL) = 4 and assigned
the optimal values for categorical variables (V2 = tanh, V3 = sgd) identified earlier. For
the remaining hyperparameters (V4, V5, V6), we investigated a range of values around
their previously identified optimal settings, looking for potential improvements. Table 7
summarizes the hyperparameters and their exploration ranges for this step.

Table 7. Hyperparameters’ levels in the L9(34) orthogonal array.

V4 V5 V6

Level 1 = 0.25 Level 1 = 0.85 Level 1 = 6
Level 2 = 0.3 Level 2 = 0.9 Level 2 = 8

Level 3 = 0.35 Level 3 = 0.95 Level 3 = 10

The Taguchi method’s efficiency shines through its use of the orthogonal array L9(34).
As presented in Table 8, each hyperparameter was assigned to a column, enabling efficient
exploration with minimal experiments. This approach required only 27 experiments (9 runs
with three repeats), compared to the 81 experiments needed for a grid search with three
levels and three repeats per hyperparameter. Through this refined exploration, we gathered
valuable data with potential optimal solutions for our model hyperparameters.



Mathematics 2024, 12, 1303 15 of 22

Table 8. Results and application of the L9(34) orthogonal array.

Experiment 1 2 3 4 5 6 7 8 9

Hyperparameter
V4 0.25 0.25 0.25 0.3 0.3 0.3 0.35 0.35 0.35
V5 0.85 0.9 0.95 0.85 0.9 0.95 0.85 0.9 0.95
V6 6 8 10 8 10 6 10 6 8

Accuracy
N1 0.739 0.7392 0.7348 0.7348 0.7399 0.7357 0.7418 0.7376 0.742
N2 0.7379 0.7381 0.7414 0.7411 0.7341 0.736 0.7349 0.7301 0.7374
N3 0.7417 0.7376 0.7398 0.7399 0.74 0.7395 0.7388 0.7374 0.7291

Average Accuracy 0.7395 0.7383 0.7387 0.7386 0.738 0.7371 0.7385 0.735 0.7361
Standard Deviation 0.002 0.0008 0.0035 0.0033 0.0034 0.0021 0.0035 0.0043 0.0065

Signal-to-Noise Ratio −2.621 −2.635 −2.631 −2.632 −2.639 −2.650 −2.633 −2.675 −2.661

In order to construct a hyperparameter ANN model using a large and diverse dataset,
this study employed the Monte Carlo method [56] to enhance the accuracy of data from
Table 8. The Monte Carlo method is a probabilistic model that incorporates uncertainty or
stochastic elements in its predictions. Therefore, when using a probabilistic model to simu-
late outcomes, different results will be obtained each time, allowing for the generation of a
more diverse dataset. In this study, a normal distribution probabilistic model was utilized
for the Monte Carlo method data augmentation, and the results of the data augmentation
are presented in Table 9, rows P1 to P10.

Table 9. Results of Monte Carlo method.

Experiment 1 2 3 4 5 6 7 8 9

Hyperparameter
V4 0.25 0.25 0.25 0.3 0.3 0.3 0.35 0.35 0.35
V5 0.85 0.9 0.95 0.85 0.9 0.95 0.85 0.9 0.95
V6 6 8 10 8 10 6 10 6 8

Accuracy
N1 0.739 0.7392 0.7348 0.7348 0.7399 0.7357 0.7418 0.7376 0.742
N2 0.7379 0.7381 0.7414 0.7411 0.7341 0.736 0.7349 0.7301 0.7374
N3 0.7417 0.7376 0.7398 0.7399 0.74 0.7395 0.7388 0.7374 0.7291

Average Accuracy 0.7395 0.7383 0.7387 0.7386 0.738 0.7371 0.7385 0.735 0.7361
Standard Deviation 0.002 0.0008 0.0035 0.0033 0.0034 0.0021 0.0035 0.0043 0.0065

P1 0.7389 0.7387 0.7395 0.7357 0.7338 0.7376 0.7365 0.7402 0.7347
P2 0.7397 0.7378 0.7449 0.7343 0.7363 0.7363 0.7443 0.7396 0.7251
P3 0.74 0.7367 0.7394 0.7418 0.7416 0.737 0.7383 0.7314 0.7474
P4 0.7403 0.7384 0.7447 0.7383 0.7379 0.7381 0.7407 0.7387 0.7378
P5 0.7422 0.7361 0.7376 0.7354 0.7425 0.7356 0.7338 0.7422 0.7344
P6 0.7389 0.7383 0.7399 0.7439 0.7329 0.737 0.74 0.7345 0.7346
P7 0.7423 0.7381 0.7397 0.7398 0.7415 0.7386 0.7385 0.7318 0.7287
P8 0.7397 0.738 0.7428 0.7375 0.7372 0.7345 0.7397 0.7374 0.733
P9 0.7404 0.738 0.7366 0.7412 0.7394 0.7361 0.7354 0.735 0.7287
P10 0.7384 0.7366 0.7388 0.7316 0.7376 0.7361 0.7323 0.7339 0.7446

3.4. Crafting the Hyperparameter Artificial Neural Network (HANN)

The HANN model in Figure 4 uses learning rate (V4), momentum rate (V5), and hidden
nodes (V6) as input variables to predict cardiovascular disease accuracy. Its output variable
is the accuracy value from Table 9. The dataset for the HANN model is sourced from
Table 9. This study proposes a single-hidden-layer HANN model. The data are randomly
split into 80% for training and 20% for testing. The model uses the Relu activation function
and the Adam optimizer, and it is trained for 1000 iterations. A grid search identifies the
optimal hyperparameters of HANN for learning rate, momentum rate, and number of
hidden nodes. Learning rates of [0.1, 0.15, 0.2, 0.25, 0.3], momentum rates of [0.75, 0.8, 0.85,
0.9, 0.95], and hidden nodes between 1 and 20 are explored. The hyperparameter of HANN
at this time refers to the model parameters of HANN. It is distinct from the input variables
of HANN, which include the learning rate (V4), momentum rate (V5), and hidden nodes
(V6). The minimum RMSE is used to assess the performance of HANN and determine
the final weights. The grid search yields optimal hyperparameters of learning rate = 0.25,
momentum rate = 0.9, and seven hidden nodes. This translates to an optimal architecture
of 3-7-1 (Figure 4).
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3.5. Using the Genetic Algorithm (GA) to Find the Best Hyperparameter Configurations for
Accurate Cardiovascular Disease Risk Prediction

The genetic algorithm (GA) initiates by standardizing the HANN model’s input vari-
ables. This ensures all variables operate on a comparable scale, facilitating the optimization
process. The standardized values are then converted into binary code, forming a string
of each potential solution. The GA leverages genetic operations such as reproduction,
crossover, and mutation to evolve this code over successive generations. In this study, the
fitness function, which guides the evolutionary process, is directly tied to the accuracy of
cardiovascular disease prediction. As expressed in Formula (4), higher accuracy translates
to higher fitness, making it more likely for individuals with better predictive power to be
selected for reproduction and further evolution.

Fitness f unction = accuracy o f cardiovascular disease (4)

The genetic algorithm (GA) begins by generating 25 initial populations for reproduc-
tion. Each segment’s area is proportional to the fitness score (predictive accuracy) of a
solution. Solutions demonstrating superior cardiovascular disease prediction capabilities
are assigned larger segments, increasing their likelihood of selection for the next iteration.
In accordance with prior empirical findings, this work adopts a crossover rate of 0.9 and a
mutation rate of 0.05 for the genetic algorithm. These parameters have been demonstrated
to achieve successful results in past experiments. This balance allows for exploration
(mutation) while preserving good genes (crossover). The algorithm runs for 500 iterations,
ensuring sufficient exploration. Our goal is to find the best settings for V4, V5, and V6
in the HANN model. We defined their allowable ranges using “Level 1” and “Level 3”,
as detailed in Table 3. After its optimization run, the GA reveals the global champions:
V4 = 0.23425849, V5 = 0.75462782, and V6 = 7.

The GA used in this paper performed eight-digit and single-digit searches for LR
(learning rate), MR (moment rate), and HN (hidden nodes), respectively. A total of 25 initial
populations and 500 iterations were tested for a total of 12,500 tests. If a grid search is
used, 108 × 108 × 10 = 1017 tests are required, which can significantly reduce the number
of modeling tests.

Our quest for the best artificial neural network (ANN) model for cardiovascular
disease prediction culminated in a two-phase approach, combining the Taguchi method, hy-
perparameter artificial neural network (HANN), and genetic algorithm (GA). Through the
second-phase Taguchi method, we identified the winning hyperparameter configurations:
4 layers (V1: HL), tanh (V2: AF), sgd (V3: OP), 0.23425849 (V4: LR), 0.75462782 (V5: MR),
and 7 (V6: HN). These settings, depicted in Figure 5, represent the optimal architecture
(11-7-7-7-7-1) for our ANN model of cardiovascular disease. To bolster confidence in these
hyperparameters, we conducted five confirmation experiments (refer to Table 10). Across
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these confirmatory experiments, we achieved an average accuracy of 74.25%, highlighting
the effectiveness of our chosen configuration. By leveraging the strengths of various meth-
ods, this amalgamation of TPTM-HANN-GA has yielded an artificial neural network model
with exceptional potential for predicting cardiovascular disease risk. The hyperparameter
settings have been summarized in Table 11.
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Table 10. Confirmation results for TPTM-HANN-GA method.

Proposed Method No1 No2 No3 No4 No5 Average Accuracy Standard Deviation

TPTM-HANN-GA 0.74379 0.7425 0.7445 0.73971 0.74186 0.7425 0.00186

Table 11. Summarized table of hyperparameter settings for the relevant algorithm.

Algorithm Hyperparameter Settings

Initial-Phase Taguchi Method V1 (HL) = 4 hidden layers, V2 (AF) = tanh, V3 (OP) = sgd, V4 (LR) = 0.3, V5 (MR) = 0.9,
and V6 (HN) = 8 hidden nodes.

Hyperparameter artificial neural
network (HANN)

Hidden layer = 1, activation = relu, optimizer = adam, learning rate = 0.25, momentum
rate = 0.9, and hidden nodes = 7.

Genetic algorithm Population size = 25, crossover rate = 0.9, crossover type = two-point, mutation rate = 0.05,
and iteration = 500.

ANN for CVD prediction V1 (HL) = 4 hidden layers; V2 (AF) = tanh; V3 (OP) = sgd; V4 (LR) = 0.23425849;
V5 (MR) = 0.75462782; and V6 (HN) = 7 hidden nodes.

3.6. Comparative Study

To evaluate the effectiveness of the proposed TPTM-HANN-GA method for cardiovas-
cular disease prediction, we compared its accuracy to existing approaches. We specifically
focused on two methods: the GA-ANN model proposed by Arroyo and Delima (2022) [21]
and the TSTO-ANN method proposed by C. M. Lin and Y. S. Lin (2023) [55].

Using the same dataset and reported results from these studies, we conducted a direct
comparison with both GA-ANN and TSTO-ANN (Table 12). The results demonstrate that
the proposed TPTM-HANN-GA method outperformed other algorithms benchmarked in
the Arroyo and Delima study, solidifying its potential to improve accuracy in cardiovascular
disease prediction models.
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Table 12. Comparing the performance of the TPTM-HANN-GA method against several state-of-the-
art approaches [21].

Method Accuracy

ANN 68.35%
Logistic regression 72.35%

Decision tree 61.72%
Random forest 68.94%

Support vector machine 72.16%
K-Nearest Neighbor 68.34%

GA-ANN 73.43%
TSTO-ANN 74.14%

Proposed TPTM-HANN-GA 74.25%

Moreover, from Table 12, it is evident that the proposed TPTM-HANN-GA frame-
work exhibits a significant difference in accuracy compared to other existing algorithms,
excluding TSTO-ANN. Therefore, we further compare the overall performance of the pro-
posed TPTM-HANN-GA framework with the TSTO-ANN method, which demonstrates
closer accuracy levels. The comparison results are presented in Table 13. As shown in
Table 13, we conducted ten repeated experiments for each of these two methods to achieve
a fairer comparison. The average values of all performance measures for TPTM-HANN-GA
are better than those for the TSTO-ANN method. This head-to-head comparison pro-
vides strong evidence for the effectiveness of TPTM-HANN-GA in enhancing CVD risk
prediction accuracy.

Table 13. Comparing the overall performance measures of TPTM-HANN-GA against the TSTO-
ANN method.

Experiment
TPTM-HANN-GA TSTO-ANN

Precision Sensitivity F1 AUC Specificity Precision Sensitivity F1 AUC Specificity

#1 0.7457 0.7432 0.7422 0.7432 0.7956 0.7403 0.7403 0.7403 0.7403 0.7418
#2 0.7432 0.7427 0.7424 0.7427 0.7664 0.7433 0.7423 0.7417 0.7423 0.7773
#3 0.7442 0.7428 0.7421 0.7428 0.7840 0.7416 0.7415 0.7414 0.7415 0.7517
#4 0.7429 0.7422 0.7417 0.7422 0.7725 0.7448 0.7416 0.7403 0.7416 0.8012
#5 0.7429 0.7425 0.7422 0.7425 0.7647 0.7426 0.7416 0.7410 0.7416 0.7771
#6 0.7435 0.7427 0.7423 0.7427 0.7738 0.7429 0.7422 0.7417 0.7422 0.7725
#7 0.7443 0.7424 0.7415 0.7424 0.7897 0.7406 0.7406 0.7405 0.7406 0.7474
#8 0.7434 0.7433 0.7431 0.7433 0.7576 0.7414 0.7410 0.7407 0.7410 0.7647
#9 0.7427 0.7424 0.7421 0.7424 0.7646 0.7422 0.7419 0.7417 0.7419 0.7620
#10 0.7444 0.7427 0.7419 0.7427 0.7874 0.7468 0.7421 0.7404 0.7421 0.8138

Average 0.7437 0.7427 0.7422 0.7427 0.7756 0.7426 0.7415 0.7410 0.7415 0.7709

4. Discussion

Accurately predicting cardiovascular disease (CVD) risk is crucial for early interven-
tion and improved patient outcomes. This study proposes a novel framework, TPTM-
HANN-GA, that continuously optimizes hyperparameters for an ANN model to enhance
CVD prediction precision.

This study addressed the crucial challenge of improving prediction accuracy for
cardiovascular disease (CVD). We proposed the TPTM-HANN-GA framework to fine-tune
an ANN model for better CVD risk assessment. This method also revealed the relative
impact of each hyperparameter (V2 > V3 > V6 > V4 > V5 > V1), guiding further optimization.
Our analysis led to these optimal hyperparameter settings for the ANN model: V1 (HL) = 4,
V2 (AF) = tanh, V3 (OP) = sgd, V4 (LR) = 0.3, V5 (MR) = 0.9, and V6 (HN) = 8.

In the subsequent phase, we refined the three hyperparameters’ predicted accuracies
using the Taguchi method L9(34). This method facilitated the identification of optimal
configurations with fewer trials. We then added the Monte Carlo method with a normal
distribution probabilistic model into the second-stage Taguchi method of TSTO to increase
the number of modeling data points. By employing the Monte Carlo method, this study
aimed to construct a hyperparameter artificial neural network (HANN) model using a
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larger and more diverse dataset, theoretically enhancing the overall performance of the
given dataset.

Table 9 serves as the data source for the HANN model, with V4 (LR), V5 (MR), and V6
(HN) acting as input variables for predicting cardiovascular accuracy. The model boasts
a single hidden layer for efficient learning. An amount of 80% of the dataset fuels the
training process, while the remaining 20% is reserved for testing. To identify the optimal
hyperparameter combination, we employed a grid search, evaluating various learning
rates, momentum rates, and hidden node configurations. After 1000 training iterations, the
search yielded these winning settings: learning rate = 0.25, moment rate = 0.9, and hidden
nodes = 7. This configuration translates to a 3-7-1 HANN model architecture chosen based
on minimizing the root mean square error (RMSE) on the test dataset.

To identify the optimal configuration of input variables for the HANN model, we
employed a genetic algorithm (GA), leveraging a population size of 25. This work priori-
tizes individuals within the population for reproduction based on their predicted accuracy.
Individuals exhibiting superior predictive performance are assigned a higher probability of
selection. Crossover and mutation rates were set at 0.9 and 0.05, respectively, balancing ex-
ploration and stability. After 500 iterations, the GA identified the ultimate hyperparameter
configuration: V4 (LR) = 0.23425849, V5 (MR) = 0.75462782, and V6 (HN) = 7. To validate
these findings, we conducted confirmation experiments and achieved an average accuracy
of 74.25%. This underscores the effectiveness of the GA-optimized HANN model.

The proposed TPTM-HANN-GA framework achieved a 0.11% higher accuracy in
predicting cardiovascular disease risk compared to the leading TSTO-ANN model. This
indicates its ability to correctly identify an additional 77 patients from the 70,000 data
points in the Kaggle Cardiovascular Disease dataset. It highlights the potential to enhance
patient survival rates. In addition, TPTM-HANN-GA can perform a continuous value
search for each continuous variable. This method has a larger search space and is more
general than the discrete search method of the TSTO-ANN model, which is more likely to
find the optimal solution. The GA used in this paper performed eight-digit and single-digit
searches for LR (learning rate), MR (moment rate), and HN (hidden nodes), respectively.

The TPTM-HANN-GA framework offers several advantages over traditional grid
search methods, notably by substantially reducing computational demands while main-
taining the ideal accuracy.

In this study, we applied the HANN method to the GA to search for optimal settings
of continuous hyperparameters. In contrast to the TSTO method, which only allows for
discrete parameter searches (e.g., learning rate choices limited to 0.2, 0.3, and 0.4), HANN-
TPTM-GA enables the simultaneous use of discrete and continuous variables. For instance,
the learning rate can be selected continuously within the range of 0.2 to 0.4. Theoretically, it
allows for an infinite number of learning rate choices. In our study, the identified optimal
learning rate was 0.23425849. Consequently, the expanded search range makes it easier to
find optimal solutions compared to TSTO-ANN. In our research, the achieved accuracy of
74.25% surpasses the 74.14% accuracy obtained with TSTO-ANN.

In the initial phase of the Taguchi method, experiments for model training were
performed using the Taguchi orthogonal array L18(21 × 37) involving 54 runs, which
required a total computation time of 33.9 min on a personal computer, translating to an
average of about 0.63 min per run. Comparatively, considering the traditional grid search
involving 2187 runs, this study did not execute all runs but estimated that at 0.63 min per
run, completing the full set of 2187 runs would likely demand around 1373.8 min. The
initial-phase Taguchi method enables a reduction in computation time by approximately
40 times.

In the second phase of the Taguchi method, a traditional grid search with three
levels for each hyperparameter, repeated three times, would necessitate 81 trials, taking
approximately 50.9 min to complete. Conversely, employing the Taguchi orthogonal array
L9(34) reduced the number of experiments to 27, with an approximate total time requirement
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of 16.9 min. The second-phase Taguchi method enables a reduction in computation time by
approximately three times.

In the final step, we applied a genetic algorithm to identify optimal hyperparameter
configurations for accurate CVD Risk Prediction. This involved testing a total of 25 initial
populations over 500 iterations, resulting in 12,500 tests. In contrast, if a traditional grid
search were employed, it would entail 108 × 108 × 10 = 1017 tests, leading to an impractical
consumption of time resources.

Our approach significantly mitigates computational demands, rendering it well-suited
for low-power computers and edge artificial intelligence (edge AI) devices, which can
achieve the goal of point-of-care testing (POCT), providing individuals a way to take
charge of their heart health.

While the identified hyperparameters are tailored to the specific dataset used, explor-
ing the adaptability of TPTM-HANN-GA to other medical domains could reveal significant
potential. Additionally, relying solely on a single dataset limits generalizability. Incorpo-
rating independent datasets from diverse healthcare organizations in future research can
enhance the technique’s validity. Furthermore, validating its efficacy with datasets from
various sources will increase its credibility and generalizability.

In future work, the proposed TPTM-HANN-GA framework could be extended to
address other deep learning-based medical image disease detection tasks, including patho-
logical, CT, and X-ray images. The TPTM-HANN-GA framework is particularly suitable
for application in clinical edge AI devices, which will provide more efficient training and
accurate inference results for medical image disease detection tasks with limited comput-
ing resources.

5. Conclusions

This study proposes a novel TPTM-HANN-GA framework to improve the predic-
tion of CVD risk. Compared with traditional grid search methods, TPTM-HANN-GA
significantly enhances the prediction accuracy of an ANN model while minimizing com-
putational costs, making it efficient and resource-friendly. TPTM-HANN-GA adapts to
various neural networks, offering flexibility for implementation. The network architec-
ture will be simplified and lightweight by incorporating optimal hyperparameter settings.
These improvements enable the resulting ANN model to run efficiently on low-power
computers, which offers individuals direct access to personalized CVD risk prediction,
allowing them to effectively manage their heart health and accomplish the objective of
point-of-care testing.
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