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Abstract: White light cystoscopy is the gold standard for the diagnosis of bladder cancer. Automatic
and accurate tumor detection is essential to improve the surgical resection of bladder cancer and
reduce tumor recurrence. At present, Transformer-based medical image segmentation algorithms face
challenges in restoring fine-grained detail information and local boundary information of features
and have limited adaptability to multi-scale features of lesions. To address these issues, we propose
a new multi-scale detail-enhanced reverse attention network, MDER-Net, for accurate and robust
bladder tumor segmentation. Firstly, we propose a new multi-scale efficient channel attention module
(MECA) to process four different levels of features extracted by the PVT v2 encoder to adapt to
the multi-scale changes in bladder tumors; secondly, we use the dense aggregation module (DA)
to aggregate multi-scale advanced semantic feature information; then, the similarity aggregation
module (SAM) is used to fuse multi-scale high-level and low-level features, complementing each
other in position and detail information; finally, we propose a new detail-enhanced reverse attention
module (DERA) to capture non-salient boundary features and gradually explore supplementing
tumor boundary feature information and fine-grained detail information; in addition, we propose
a new efficient channel space attention module (ECSA) that enhances local context and improves
segmentation performance by suppressing redundant information in low-level features. Extensive
experiments on the bladder tumor dataset BtAMU, established in this article, and five publicly
available polyp datasets show that MDER-Net outperforms eight state-of-the-art (SOTA) methods in
terms of effectiveness, robustness, and generalization ability.

Keywords: bladder tumor segmentation; cystoscopy images; transformer; multi-scale; attention
mechanism; computer-aided diagnosis

MSC: 68T07

1. Introduction

Bladder cancer is one of the most common malignant tumors of the urinary system [1].
The early screening of bladder cancer is of great significance for the treatment of patients.
Cystoscopy is currently the gold standard for screening bladder tumors. Under cystoscopy,
urologists can detect bladder tumors and completely remove all visible tumors in the blad-
der through transurethral resection of bladder tumor (TURBT) [2]. However, the detection
of bladder tumors heavily relies on visual examination by doctors, which is cumbersome
and subjective, and it is estimated that up to 20% of bladder tumors are overlooked in
cystoscopy [3]. Bladder tumor segmentation based on deep learning algorithms is an im-
portant technology in medical-assisted diagnosis, which can automatically and accurately
locate tumors, help doctors improve detection accuracy, and save time and cost. However,
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as shown in Figure 1, bladder tumors vary in shape and size, with uneven brightness;
automatically and accurately segmenting bladder tumors is a challenging task.
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Figure 1. Cystoscopy images. The first row (a–d) is the original bladder tumor image, and the
second row (a1–d1) is the corresponding ground truth (GT) image. (a–d) Different in shape and size;
(d) uneven brightness.

With the rapid development of artificial intelligence technology, deep learning al-
gorithms have been widely applied in medical image segmentation. The existing deep-
learning-based medical image segmentation methods can be roughly divided into three
types: CNN-based methods, Transformer-based methods, and CNN–Transformer hy-
brid methods.

Compared to traditional image segmentation methods, convolutional neural networks
(CNNs) perform better. Shelhamer et al. [4] proposed fully convolutional networks (FCNs),
which achieved excellent performance in image semantic segmentation tasks. Ronneberger
et al. modified FCNs and proposed UNet [5], with a U-shaped architecture, which was
the first medical image segmentation model based on an encoder–decoder structure. Sub-
sequently, many UNet variant models (UNet++ [6], ResUNet [7], ResUNet++ [8], and
DoubleUNet [9]) emerged to improve segmentation accuracy. However, as the feature scale
of these models gradually decreases during the encoding stage, some detailed information
is lost. Although attempts are made to supplement the lost detailed information during the
decoding stage, the semantic gap between the encoder and decoder, as well as the issue of
background noise, still exists. Recently, PraNet [10], ACSNet [11], HarDNet-MSEG [12],
CaraNet [13], DCRNet [14], FTMFNet [15], and FRBNet [16] have gradually emerged,
further improving the accuracy of medical image segmentation. These methods all use
CNNs as the backbone to extract features and combine some fine modules for feature
enhancement, performing well in extracting local detail information. However, because the
convolution operation is essentially a local operation, these CNN-based methods have a
relatively weak ability to capture global information and may result in incomplete segmen-
tation results. Especially for lesions with significant differences in size, shape, and texture,
CNN-based methods make it difficult to extract the appearance features of lesions and are
prone to overfitting.

The emergence of Vision Transformer [17] overcame the limitations of CNNs in cap-
turing remote dependencies. Unlike CNNs, Transformers use multi-head self-attention
(MHSA) to capture remote dependencies in images, and then, generate global contextual
information based on these remote dependencies. ViT [17] is the first transformer-based
image recognition model. ViT divides each image into fixed-sized patches and models
the remote dependencies of each patch to generate global information. Subsequently,
PVT [18], Twins [19], Swin Transformer [20], and PVT v2 [21] gradually emerged, and
these Transformer-based backbone networks further improved the segmentation perfor-
mance. However, these backbone networks can only perform well when trained on large
datasets, and their segmentation performance is limited when trained on small medical
datasets. Recently, Poly-PVT [22], SSFormer [23], HSNet [24], MSRAformer [25], PVT-
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CASCADE [26], and CAFE-Net [27] overcame this limitation by using transformer weights
pre-trained on other non-medical big datasets, such as ImageNet [28]. Due to their exper-
tise in capturing global contextual information, these methods perform well in medical
image segmentation tasks. However, these Transformer-based methods have limitations in
restoring fine-grained detail information and local boundary information of features and
have limited adaptability to multi-scale features of lesions.

To combine the advantages of CNNs and Transformer, some CNN–Transformer hybrid
methods [29–32] directly combine CNN and Transformer backbone networks. However,
these methods only structurally combine CNNs and Transformer, ignoring the interaction
between the two semantics. The more obvious disadvantage is the large computational
load and high computational complexity.

To automatically and accurately segment bladder tumors in cystoscopy images, this
paper proposes a new multi-scale detail-enhanced reverse attention network MDER-Net
based on Transformer, aiming to capture the multi-scale global and local detail features of
bladder tumors. We choose PVT v2 [21] as the encoder to capture global contextual informa-
tion. Subsequently, the proposed multi-scale efficient channel attention module (MECA) is
utilized to process the four different levels of features extracted by the encoder. Multi-scale
feature information is extracted through convolutions of different kernel sizes, and trainable
weight parameters and an ECA module [33] are used to suppress information gaps caused
by different receptive fields, fuse feature information, enhance valuable information, and
obtain multi-scale features with channel weight information to adapt to changes in the
size and morphology of bladder tumors. Next, using a DA module [12], the second, third,
and fourth layers of multi-scale advanced features are aggregated through step-by-step
fusion to locate the approximate location of the bladder tumor and generate a rough initial
segmentation map. Due to the rich texture, color, and edge detail information contained
in low-level features, we use the SAM module [22] to fuse the feature map, which can
roughly locate the bladder tumor with the lowest-level features, complementing each other
in position and detail information, and generating a global prediction map containing detail
information. Next, the proposed new detail-enhanced reverse attention module (DERA) is
utilized to supplement fine-grained detail information from low-level features to high-level
features, and then, extract local feature details from each level of fused features, gradually
supplementing them to the global prediction map from the previous stage. In addition,
before extracting local detail features from the lowest-level features, we propose a new and
efficient channel space attention module (ECSA) to suppress irrelevant information in the
bottom-level features, capture bladder tumor details from both the channel and spatial
dimensions, enhance local context, and further extract edge detail information by inputting
it into an RA module [34]. MDER-Net achieves accurate localization of bladder tumors by
mixing six deep supervisions, ranging from locating the approximate location of tumors
to supplementing detailed information to repairing tumor boundary information. On the
bladder tumor dataset BtAMU, established in this article, our method outperforms other
state-of-the-art (SOTA) segmentation methods in the mDice, mIoU, MAE, accuracy, Fω

β , and
HD metrics, with mDice and mIoU reaching 0.9108 and 0.8543, respectively; meanwhile,
our method’s visual segmentation results are also superior to other SOTA methods. On five
publicly available polyp datasets (Kvasir-SEG [35], CVC- ClinicDB [36], CVC-ColonDB [37],
ETIS [38], and CVC-300), our method consistently achieved SOTA segmentation perfor-
mance in the mDice, mIoU, and HD metrics, especially on the CVC-300 dataset, where
MDER-Net’s mDice and mIoU results improved by 3.03% and 3.08%, respectively, on those
of MSRAformer [25].

The main contributions of this article are as follows:

• A new Transformer-based network architecture MDER-Net is proposed, which can capture
multi-scale global features of bladder tumors and enhance local feature representation.

• A new multi-scale efficient channel attention module (MECA) is proposed, which
improves the network’s multi-scale adaptability to lesions, enabling it to adapt to
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various changes in the size and morphology of bladder tumors, and improving its
generalization ability.

• A new detail-enhanced reverse attention module (DERA) is proposed, which restores
fine-grained detail information and local boundary information of features, and can
help the network generate prediction masks containing clear tumor boundaries, solv-
ing the problem of the Transformer’s insufficient ability to recover local detail features.

• A new efficient channel space attention module (ECSA) is proposed, which can reduce
the impact of noise and irrelevant information in low-level features, more effectively
preserve bladder tumor details in different dimensions of low-level features, and
improve segmentation performance.

• A new bladder tumor dataset, BtAMU, is established, which contributes to the de-
velopment of state-of-the-art (SOTA) semantic segmentation algorithms on images
captured by cystoscopys.

2. Related Works
2.1. CNN-Based Methods

In recent years, CNNs [10–16] have been widely used in medical image segmentation
tasks. PraNet [10] abandoned the use of shallow features and utilized parallel partial
decoders (PPDs) to aggregate advanced semantic features, using reverse attention (RA)
modules [34] to mine boundary clues in advanced semantic features; however, PraNet [10]
almost ignored global information. HarDNet-MSEG [12] uses HarDNet [39] as the backbone
network, expands the receptive field through multi-branch extended convolutional layers,
and combines it with the use of PPDs to achieve efficient inference speed in polyp semantic
segmentation tasks. However, PraNet [10] and HarDNet-MSEG [12] only use high-level
features and ignore the rich detailed information in shallow features. CaraNet [13] combines
the CFP module and A-RA module to improve the segmentation performance related to
small medical objects, enhancing edge information but ignoring contextual information
at different scales. DCRNet [14] utilizes two parallel modules (ICR and ECR) to obtain
contextual information within and between images, respectively. FTMF-Net [15] performs
well on small medical objects by extracting more accurate boundary information through
Fourier transform (FT) modules; however, FTMF-Net has limitations in feature aggregation.
FRBNet [16] uses a boundary detection module (BD) to detect tumor boundaries in breast
ultrasound images, and then, fuses the boundary information into the coarse prediction
map through a feedback refinement module (FRM); however, since the FRM module
uses Laplacian convolution operators to directly detect boundaries from low-level features
extracted by the encoder, some low-level feature information unrelated to tumor boundaries
is excessively extracted.

2.2. Transformer-Based Methods

Transformers [17–21] perform excellently in capturing remote dependencies. ViT [17]
utilizes a multi-head self-attention mechanism to capture global contextual information
between pixels. To reduce the computational cost of ViT [17], PVT [18] proposed a spatial
reduction attention mechanism, and Swin Transformer [20] used sliding window operations
to extract visual features at different levels. However, the self-attention used in PVT [18]
and Swin Transformer [20] can lead to an insufficient ability to learn local contextual rela-
tionships. To overcome this limitation, PVT v2 [21] embeds convolutional layers between
the fully connected layers of the feedforward network, but the ability to capture local
context is still limited. In recent medical image segmentation research, Polyp-PVT [22] uses
a cascaded fusion module (CFM) for advanced feature fusion, and then, uses a similarity
aggregation module (SAM) to explore the relationship between advanced and low-level
features for feature fusion. However, due to insufficient exploration of the local detail
information of each stage feature output by the Transformer encoder, Polyp-PVT [22] has
limitations in restoring the boundary detail information of lesions. SSFormer [23] proposed
a progressive local decoder (PLD) to emphasize local features and limit attention dispersion.
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However, PLD cannot fully recover fine-grained detail information. MSRAformer [25]
uses Swin Transformer [20] as the backbone network and supplements boundary detail
information through the spatial reverse attention module (SRA). However, due to the
direct aggregation of high-level and low-level features in the feature aggregation stage,
MSRAformer [25] ignores the semantic gap between high-level and low-level features,
which may introduce noise and cannot effectively recover detailed information. HSNet [24],
PVT-CASCADE [26], and CAFE-Net [27] all use PVT v2 [21] as the backbone network to
extract four layers of features. Among them, CAFE-Net [27] uses FSEM modules to explore
potential information in the features extracted by the encoder, while the CADM module
effectively preserves lower-level features. Although these models perform well in medical
image segmentation tasks, they all overlook the importance of restoring boundary details.

2.3. CNN–Transformer Hybrid Methods

Recently, some CNN–Transformer hybrid methods [29–32] have utilized Transformers
to capture remote dependencies and a CNN to capture local contextual relationships
between pixels. TransUNet [29] improves the encoder part based on the original UNet [5]
network, transforming the original CNN encoder into a two-stage encoder structure,
where the upper CNN is used to extract local information and the lower Transformer
is used to extract global information. TGDAUNet [32] utilized Res2Net [40] and Swin
Transformer [20] as dual-branch encoders to jointly extract features and designed an RGF
module to capture nonimportant boundary features. However, these methods require a
large amount of computation and are not suitable for medical image segmentation tasks
that require real-time performance in clinical practice.

2.4. Segmentation Methods for Bladder Tumors

At present, research on using deep learning algorithms for bladder tumor segmenta-
tion [41–43] mainly focuses on CT [44,45] or MRI images [46–50], and there is relatively
little research on tumor segmentation for cystoscopy images [3,51–54]. Shkolyar et al. [3]
constructed a CNN-based image analysis platform, CystoNet, for automatic bladder tumor
detection. Varnyu et al. [51] studied and analyzed the tumor segmentation performance of
eight existing deep learning algorithms in cystoscopic images, proving that deep learning
technology may be very useful in the real-time diagnosis and treatment of bladder cancer.
Yoo et al. [52] used a Mask RCNN model with ResNeXt-101-32 × 8d-FPN as the backbone
to segment tumors in white light and narrowband cystoscopy images. Zhang et al. [53]
improved the UNet model by using a hybrid attention module to mine global information
in tumor regions, and a guidance and fusion attention module to fuse low-level features
of the encoder with high-level features of the decoder; the Dice of this model reached
82.7%. However, these CNN-based models cannot capture global information and find it
difficult to extract the appearance features of tumors in bladder mirror images with signifi-
cant differences in size, shape, and texture, resulting in poor segmentation performance.
CystoNet-T [54] improved the tumor detection performance under cystoscopy by adding a
Transformer encoder module to the pyramid layer of the feature pyramid network (FPN)
and introducing a self-attention mechanism; however, the average precision of this model
on the test set was only 91.4%. There is still a lot of room for improvement in the semantic
segmentation algorithm for detecting bladder tumors from cystoscopy images.

3. Proposed Method

In this section, we first describe the overall architecture of the proposed MDER-Net,
then provide a detailed introduction to the Transformer encoder PVT v2 [21] and the
proposed new multi-scale efficient channel attention module (MECA), detail enhanced
reverse attention module (DERA), and efficient channel spatial attention module (ECSA).
Finally, we provide a loss function for training the network.
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3.1. Overall Architecture

The overall architecture of our proposed MDER-Net is shown in Figure 2, which
includes six modules: multi-scale effective channel attention module (MECA), dense
aggregation module (DA) [12], similarity aggregation module (SAM) [22], detail-enhanced
reverse attention module (DERA), efficient channel space attention module (ECSA), and
reverse attention module (RA) [34].
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Figure 2. The architecture of the proposed MDER-Net, which consists of the backbone PVT v2, the
multi-scale effective channel attention module (MECA), the dense aggregation module (DA), the
similarity aggregation module (SAM), the detail-enhanced reverse attention module (DERA), the
efficient channel space attention module (ECSA), and the reverse attention module (RA).

Specifically, given an input image X ∈ RH×W×3, we extract four pyramid features

Xi ∈ R
H

Mi
× W

Mi
×Ci from the PVT v2 [21] backbone, where i ∈ {1, 2, 3, 4}, Mi ∈ {4, 8, 16, 32},

Ci ∈ {64, 128, 320, 512}, and Ci is the channel dimension of the ith layer. PVT v2, as an
encoder, can capture global contextual information and establish remote dependency re-
lationships. Then, we input four pyramid features Xi into the MECA module to obtain
multi-scale features XMi with channel weight information; compared with Xi, XMi is more
adaptable to changes in the size and morphology of bladder tumors. The DA module [12]
receives three multi-scale advanced features, XM2, XM3, and XM4, and aggregates them to
generate an initial global prediction map D6. D6 can only capture the relatively rough
position of the bladder tumor without structural details. Next, we send the coarse seg-
mentation result D6 and the multi-scale low-level feature XM1, containing rich texture,
color, and edge detail information, to the SAM module [22], generating a global feature
map D5 containing detailed information. Next, we input X1, Xi, and Di+1(i = 2, 3, 4) into
three DERA modules in sequence; X1 is used to provide more low-level detail information
to each high-level feature Xi(i = 2, 3, 4). The DERA module uses the global feature map
Di+1 from the previous layer to sequentially delete the current predicted bladder tumor
area, capture fine-grained detail information and local boundary information, and then,
integrate this information into Di+1 to obtain a predicted image D2 containing the details
of the bladder tumor edge structure. Next, we input the low-level feature X1 into the
ECSA module, and then, input the low-level features that suppress noise and irrelevant
information and D2 into the RA module [34]. We further refine the edge detail information
and integrate it into D2 to obtain the final predicted image D1. During the training process,
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we perform mixed supervision on the prediction map Di(i = 1, 2, 3, 4, 5, 6) generated in six
stages. The overall network structure of MDER-Net is defined as follows:

Xi = PVT v2(X), (i = 1, 2, 3, 4) (1)

XMi = MECA(Xi)(i = 1, 2, 3, 4) (2)

D6 = DA(XM2, XM3, XM4) (3)

D5 = SAM(XM1, D6) (4)

Di = Di+1 + DERA(X1, Xi, Di+1)(i = 2, 3, 4) (5)

D1 = D2 + RA(ECSA(X1) , D2) (6)

3.2. Transformer Encoder PVT v2

Recent studies [55] have shown that Visual Transformers have a stronger ability to
capture remote dependency relationships than CNNs. Inspired by this, we use PVT v2 [21]
as an encoder to extract global information, obtaining four different levels of pyramid
features from PVT v2. Among them, X1 is considered a low-level feature, which contains
rich texture, color, and edge details, as well as more noise and irrelevant information;
X2, X3, and X4 are considered high-level features that contain more feature information
that can locate bladder tumors.

3.3. Multi-Scale Effective Channel Attention Module

Due to the variable morphology and size of bladder tumors in cystoscopy images,
existing Transformer-based methods have limited adaptability to multi-scale features of
bladder tumors. To enhance the multi-scale adaptive ability of the network for bladder
tumors and accurately locate bladder tumors of different shapes and sizes, we propose a
multi-scale effective channel attention module (MECA), as shown in Figure 3. Specifically,
first, we extract multi-scale feature information from the multi-level feature Xi(i = 1, 2, 3, 4)
output by the encoder through convolutions with three different kernel sizes. Since con-
volutions of different kernel sizes determine the receptive field range on the cystoscopy
image, compared to using convolutions of a single kernel, convolutions with three different
kernel sizes can better capture global and local features. Next, when concatenating the
feature information extracted by convolutions of different kernel sizes on the channel
dimension, to suppress the information gap caused by receptive fields of different sizes
we design two trainable weight coefficients w1 and w2, which are, respectively, multiplied
by the features extracted by the convolutions of the two larger kernels. The ECA (efficient
channel attention) [33] module is a local cross-channel interaction strategy that achieves
dimensionality reduction through 1D convolution. It can strengthen valuable features and
suppress irrelevant ones. Therefore, we use the ECA module to reassign weights to feature
maps, so that the feature information that is conducive to segmenting bladder tumors
receives attention from the network. At the same time, we use one 1 × 1 convolution and
batch normalization operation on the input feature map Xi(i = 1, 2, 3, 4). The 1 × 1 con-
volution reduces the number of feature channels to 32 to reduce computational resources.
Finally, it is residually connected with multi-scale feature information with channel weight
information to enhance the original features. In this way, the output feature XMi of the
MECA module can adapt to changes in the size and shape of bladder tumors. This process
can be described using Equation (7):

XMi = R(BN(Conv1(Xi)) + ECA(Conv1(Cat(Mconv1(Xi), w1 × Mconv2(Xi) , w2 × Mconv3(Xi))))) (7)
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In Equation (7), Mconvi(i = 1, 2, 3) represent convolutional layers with kernel sizes of
3 × 3, 5 × 5, and 7 × 7, respectively. w1 and w2 represent two trainable weight parameters,
Cat(·) represents a connection operation in the channel dimension, Conv1(·) represents a
convolutional layer with a kernel size of 1 × 1, BN(·) represents batch normalization, and
R(·) represents the ReLU activation function.

3.4. Detail-Enhanced Reverse Attention Module

Due to the limited ability of Transformers to process local contextual information
between pixels, existing Transformer-based methods have unclear tumor segmentation
boundaries when predicting tumor areas in cystoscopy images. To obtain clear bladder
tumor boundaries, we propose a new detail-enhanced reverse attention module (DERA)
to capture inconspicuous boundary features and gradually explore supplementing tumor
boundary feature information and fine-grained detail information. The DERA module
consists of two parts: feature detail enhancement and local detail extraction. The structure
of this module is shown in Figure 4.

• Feature detail enhancement: To supplement the fine-grained detail information con-
tained in the low-level feature X1 to high-level features Xi(i = 2, 3, 4), we first use
the predicted image Di+1 obtained in the previous stage to reduce the influence of
background information; secondly, to preserve as much fine-grained detail informa-
tion as possible in the low-level feature X1, we use morphological dilation to expand
the prediction area, and then, multiply the inflated prediction mask by the low-level
feature X1 to obtain the feature map X′

1. Next, we fuse X′
1 with the high-level feature

Xi(i = 2, 3, 4) through downsampling and concatenation operations. Then, we extract
and denoise the fused features through a 3 × 3 convolutional layer, and finally, use
a 1 × 1 convolutional layer to recover the number of feature channels to obtain the
feature map Xe

i (i = 2, 3, 4) with enhanced details. This process can be summarized as
Equation (8):

Xe
i = Conv1(BN(Conv3(Cat(Xi, X1 × Dilate(σ(Di+1)))))) (8)

In Equation (8), σ(·) represents the sigmoid activation function used to generate
prediction mask, Dilate(·) represents morphological dilation operations, Cat(·) represents
connection operations in the channel dimension, Conv3(·) represents a convolutional layer
with a kernel size of 3 × 3, BN(·) represents batch normalization, and Conv1(·) represents
a convolutional layer with a kernel size of 1 × 1.

• Local detail extraction: The predicted image D5 generated by the SAM module [22]
lacks boundary details. We use the RA module [35] to extract local feature details from
the detail-enhanced feature map Xe

i (i = 2, 3, 4) and explore local boundary clues. The
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RA module [34] first uses the prediction map Di+1 obtained in the previous stage to
generate reverse attention weights Ri:

Ri = 1 − σ(Di+1) (9)

Then, the feature map Xe
i (i = 2, 3, 4) with enhanced details is multiplied into the

reverse attention weight Ri(i = 2, 3, 4), the previously predicted tumor regions are deleted,
the detailed information of the tumor boundaries is explored, and then, the subsequent
feature exploration proceeds through three convolutional units to extract edge detail
information and generate a feature map DRi(i = 2, 3, 4):

DRi = Conv(Xe
i × Ri) (10)

We sequentially integrate DRi(i = 2, 3, 4) into the prediction map Di+1(i = 2, 3, 4) of
the previous stage to refine the details of the edge structure of the bladder tumor. The DERA
module can supplement fine-grained detail information and help the network generate
prediction masks containing clear tumor boundaries.
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3.5. Efficient Channel Space Attention Module

Due to the rich texture, color, and edge details contained in low-level features, as well
as more noise and irrelevant information, to more effectively extract important information
from low-level features and capture details of bladder tumors in different dimensions,
we propose an efficient channel space attention module (ECSA). The module structure
is shown in Figure 5; it refines the feature map by concatenating linear effective channel
attention [24] LECA(·) and space attention [56] SA(·):

ECSA(X1) = SA(ECA(X1)) (11)

Linear efficient channel attention LECA(·) identifies which feature maps to focus on,
and then, assigns greater weights to these feature maps to enhance these features. The
process of LECA(·) can be summarized as Equation (12):

LECA(X1) = σ(R t(Conv1d(R(AVG(X1))))) ∗ X1 (12)

In Equation (12), AVG(·) represents the global average pooling layer, used to perform
global information statistics by channel; R(·) refers to the feature reshape operation, which
converts the 2D tensor to 1D; Conv1d(·) is a 1D convolutional layer with a kernel size
of k = 5 and a stride of s = 1; Rt(·) represents the inverse operation of R(·); and σ(·)
represents the sigmoid activation function, used to generate channel attention maps.
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Space attention SA(·) identifies where to focus in a feature map, and then, gives these
regions greater weights in the spatial direction to enhance those features. The process of
SA(·) can be summarized as Equation (13):

SA(x) = σ(Conv7(Cat(Cm(x), Ca(x)))) ∗ x (13)

In Equation (13), σ(·) represents the sigmoid activation function, used to generate
spatial attention maps; Conv7(·) is a 7 × 7 convolutional layer with padding 3 to enhance
spatial contextual information; Cat(·) represents the connection operation on the channel
dimension; Cm(·) and Ca(·) represent the maximum and average values obtained along
the channel dimension, respectively; and x represents the input tensor LECA(X1).
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3.6. Loss Function

We used a prediction head for each of the six stages in the proposed MDER-Net, includ-
ing Di(i = 1, 2, 3, 4, 5, 6), using addition aggregation to obtain the final prediction mask:

output =
6

∑
i=1

Pi (14)

In Equation (14), Pi is the prediction mask obtained by applying the sigmoid activation
function to Di, and the output is the final prediction mask.

To monitor the prediction quality of the six stages of the network, we designed a
multi-stage joint loss function, which is defined as

Loverall =
6

∑
i=1

Li (15)

Li = Lwiou(Di, G) + Lwbce(Di, G) (16)

In the above equation, Li(i = 1, 2, 3, 4, 5, 6) represents the loss function for each stage,
which is composed of weighted intersection over union (wiou) [57] and weighted binary
cross-entropy (wbce) [57]; wiou and wbce limit the prediction mask from global and local
perspectives, respectively; G represents the ground truth.

Finally, we provide the training process of the proposed MDER-Net algorithm, as
shown in Algorithm 1.
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Algorithm 1: The training process of the proposed MDER-Net algorithm.

Input: Image set I1, I2,......In, Label(ground truth) set G1, G2,......Gn
Output: Prediction maps Di, Model parameters ∅

1: While not converging do
2: Sample Ii, Gi from I1, I2,......In, G1, G2,......Gn
3: Acquire feature maps of four different levels

X1,X2,X3, X4 = Trans f ormer Backbone − PVT v2(Ii)
4: for feature maps Xi do
5: for i = 1 to 4 do
6: Use Equation (7) to obtain multi-scale features XMi
7: end for
8: end for
9: Multi-scale high-level features aggregation D6 = DA(XM2, XM3, XM4)
10: Multi-scale fusion of high-level and low-level features D5 = SAM(XM1, D6)
11: for feature maps Xi do
12: for i = 2 to 4 do
13: Use Equation (8) to obtain feature maps Xe

i with enhanced details
14: Calculate reverse attention weights Ri by Equation (9)
15: Use Equation (10) to generate edge detail feature map DRi
16: Generate prediction map Di = Di+1 + DRi
17: end for
18: end for
19: for feature map X1 do
20: Generate linear effective channel attention maps LX1 by Equation (12)
21: Generate space attention maps SX1 by Equation (13)
22: Edge detail information extraction DR1 = RA(SX1 ,D2)
23: Generate the final prediction map D1 = D2 + DR1
24: end for
25: Use Equations (15) and (16) to calculate the total loss Loverall
26: The Adam optimizer and the loss Loverall to update the model parameters ∅
27: end while

4. Experimental Results and Discussion

In this section, we first introduce the dataset, evaluation metrics, and implementation
details. Then, we compare the results of the proposed MDER-Net with state-of-the-art
(SOTA) methods to demonstrate its superiority. We also conduct ablation experiments to
demonstrate the effectiveness of our proposed three new modules.

4.1. Datasets
4.1.1. Bladder Tumor Dataset: BtAMU

In the field of bladder tumor segmentation, there is a lack of a cystoscopy image
dataset for comparative evaluation. Therefore, we have established a bladder tumor
dataset, BtAMU. Specifically, BtAMU consists of 1948 bladder tumor images and their
corresponding ground truth (GT) labels extracted from 110 cystoscopy examinations and
surgical videos provided by the Department of Urology at the First Affiliated Hospital of
Anhui Medical University; the GT is manually annotated by professional urology experts.
The image resolution is 1920 × 1080.

4.1.2. Polyp Dataset

To verify the robustness and generalization of the proposed MDER-Net, we selected
five publicly challenging polyp datasets, including Kvasir-SEG [35], CVC-ClinicDB [36],
CVC-ColonDB [37], ETIS [38], and CVC-300.

Kvasir-SEG: This dataset consists of 1000 polyp images extracted from colonoscopy
videos, with a resolution distribution range of 332 × 487 to 1920 × 1072.

CVC-ClinicDB: This dataset consists of 612 polyp images extracted from 25 colonoscopy
videos, with an image resolution of 384 × 288.
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CVC-ColonDB: This dataset consists of 380 polyp images extracted from 15 colonoscopy
videos, with an image resolution of 574 × 500.

ETIS: This dataset consists of 196 polyp images extracted from 34 colonoscopy videos,
with an image resolution of 1225 × 996.

CVC-300: This dataset is a subset of the polyp dataset EndoScene [58], containing
60 images of colorectal polyps with a resolution of 574 × 500.

As shown in Table 1, when conducting bladder tumor segmentation experiments using
the BtAMU dataset we randomly selected 80% of the dataset for training and 20% for testing.
For the polyp segmentation task, we use the same data distribution settings as PraNet [10].
Specifically, 90% of the Kvasir-SEG dataset and 90% of the CVC-ClinicDB dataset are used
for training, and 10% of the Kvasir-SEG dataset and 10% of the CVC-ClinicDB dataset
are used for testing. In addition, to evaluate the generalization performance of the model
on unseen CVC-ColonDB, ETIS, and CVC-300 datasets, we trained using 0% of the CVC-
ColonDB, ETIS, and CVC-300 datasets and tested 100% of the CVC-ColonDB, ETIS, and
CVC-300 datasets. In other words, these three datasets were not used for training the
model, but only for testing the model.

Table 1. The image size, quantity, and division of training and testing datasets for the bladder tumor
dataset BtAMU and five polyp datasets.

Dataset Image Size Image Number Train Number Test Number

BtAMU 1920 × 1080 1948 1562 386
Kvasir-SEG [35] Variable 1000 900 100

CVC-ClinicDB [36] 384 × 288 612 550 62
CVC-ColonDB [37] 574 × 500 380 0 380

ETIS [38] 1225 × 996 196 0 196
CVC-300 574 × 500 60 0 60

4.2. Evaluation Metrics

In the bladder tumor segmentation experiment, we selected mean Dice (mDice), mean
intersection over union (mIoU), mean absolute error (MAE), Accuracy, weighted Fmeasure
(Fω

β ), and Hausdorff distance (HD) as evaluation metrics for quantitative analysis. In the
polyp segmentation task, we used mDice, mIoU, and HD as evaluation metrics. mDice and
mIoU are similarity measures at the regional level, representing the degree of agreement
between the predicted and actual results of the model. MAE is a pixel-level evaluation
metric that represents the average absolute error between the algorithm’s predicted value
and the true value. Accuracy represents the proportion of pixels correctly predicted by
the model to actual pixels. Fω

β is a metric that comprehensively considers precision and
recall, and it trades them off through a parameter β. HD is used to measure the accuracy of
boundary segmentation. Among these metrics, the higher the value of the mDice, mIoU,
accuracy, and Fω

β metrics, the better the algorithm’s prediction performance, while the lower
the values of the MAE and HD metrics, the better the model’s segmentation performance.
The metrics’ definitions are as follows:

mDice =
1

N + 1

N

∑
i=0

2TP
FP + 2TP + FN

(17)

mIoU =
1

N + 1

N

∑
i=0

TP
FP + TP + FN

(18)

MAE =
1

W × H

W

∑
x=1

H

∑
y=1

|P(x, y)− Y(x, y)| (19)

Accuracy =
TP + TN

TP + TN + FP + FN
(20)
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Precision = TP

FP + TP

Recall = TP
TP + FN

Fω
β =

(β2 + 1)Precisionω · Recallω

β2 · Precisionω + Recallω

(21)


h(A, B) = maxa∈A minb∈B∥a − b∥

HD(A, B) = 1
N+1

N
∑

i=0
max(h(A, B), h(B, A))

(22)

In the above equations, TP represents true positive, TN represents true negative, FP
represents false positive, and FN represents false positive; N represents the number of
test images. In Equation (19), P represents the predicted map, Y represents the ground
truth, and W and H are the width and height of the images, respectively. In Equation (20),
β is a parameter, Precisionω and Recallω denote weighted precision and weighted recall,
respectively. In Equation (22), A and B represent the true image and predicted map,
respectively, and ∥a − b∥ represents a distance function, such as the Euclidean distance.

4.3. Implementation Details

We implement MDER-Net on an NVIDIA GeForce RTX 3090 GPU card using PyTorch.
When training, the optimizer is the Adam optimizer, the learning rate is set to 10−4, the
decay rate is set to 0.1, and the batch size is set to 16. The proposed network is trained for a
total of 100 epochs. In addition, we adjust the size of the input image to 352 × 352 and use
a multi-scale {0.75, 1.0, 1.25} training strategy with a gradient clip limit of 0.5.

4.4. Experimental Results and Discussion on the BtAMU Dataset
4.4.1. Quantitative Results

To verify the effectiveness of the proposed MDER-Net for bladder tumor segmenta-
tion, we compared the quantitative results of the proposed MDER-Net with the results of
UNet [5], PraNet [10], CaraNet [13], HarDNet-MSEG [12], DCRNet [14], MSRAformer [25],
HSNet [24], and TGDAUNet [32], and quantitatively evaluated the segmentation per-
formance of all models on the bladder tumor dataset BtAMU using six medical image
segmentation evaluation metrics: mDice, mIoU, MAE, accuracy, Fω

β , and HD. Table 2
presents a comparison of the quantitative results of the different algorithms on the BtAMU
dataset. From Table 2, it can be seen that our proposed MDER-Net achieves state-of-the-art
segmentation performance on the BtAMU dataset compared to other models. In terms of
the mDice and mIoU metrics, our MDER-Net improved by 1.22% and 1.28%, respectively,
compared to the second-best-performing MSRAformer [25], indicating that MDER-Net
can better distinguish bladder tumors from normal tissue backgrounds. The accuracy and
Fω

β of MDER-Net were also improved by 0.18% and 0.50%, respectively, compared to the
second-best-performing MSRAformer [25]. In addition, MDER-Net showed a decrease of
0.24% and 0.3454 in the MAE and HD indicators, respectively, compared to the second-
best-performing HSNet [24]. The HD metric quantitative results showed that MDER-Net
improved the accuracy of bladder tumor boundary segmentation and reduced boundary
segmentation errors. To improve the clarity of the quantitative results comparison between
different models on the BtAMU dataset, we designed bar charts for the mDice and mIoU
metrics, as shown in Figure 6. These results validate the effectiveness and superiority of
the proposed MDER-Net for bladder tumor segmentation in cystoscopy images.
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Table 2. Comparison of quantitative results of our model MDER-Net with other state-of-the-art
(SOTA) methods on the BtAMU dataset. ↑ indicates higher is better, ↓ indicates lower is better, and
bold indicates the best-performing result.

Methods mDice ↑ mIoU ↑ MAE ↓ Accuracy ↑ Fω
β ↑ HD ↓

UNet [5] 0.8241 0.7572 0.0277 0.9729 0.9043 11.8904
PraNet [10] 0.8670 0.8093 0.0241 0.9774 0.9305 11.1110

CaraNet [13] 0.8253 0.7641 0.0385 0.9664 0.9147 12.2071
HarDNet-MSEG [12] 0.8594 0.8003 0.0254 0.9763 0.9213 11.2059

DCRNet [14] 0.8592 0.8008 0.0309 0.9721 0.9281 11.3585
MSRAformer [25] 0.8986 0.8415 0.0205 0.9809 0.9460 10.7913

HSNet [24] 0.8982 0.8411 0.0197 0.9808 0.9455 10.7512
TGDAUNet [32] 0.8951 0.8330 0.0202 0.9798 0.9451 10.7861

Ours 0.9108 0.8543 0.0173 0.9827 0.9510 10.4058
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4.4.2. Qualitative Results

To demonstrate the superiority of the proposed MDER-Net more clearly and intu-
itively, we compared the qualitative results of the proposed MDER-Net with the results of
UNet [5], PraNet [10], CaraNet [13], HarDNet-MSEG [12], DCRNet [14], MSRAformer [25],
HSNet [24], and TGDAUNet [32]. Figure 7 shows a visual comparison of the results of
the different models on the BtAMU dataset. From Figure 7, it can be seen that compared
with other models, our proposed MDER-Net has more accurate prediction results. From
Figure 7a,b,f, our proposed MDER-Net is more sensitive to the boundary features of bladder
tumors, i.e., it can better outline the boundaries of bladder tumors and remove noisy areas.
This is because the DERA module can effectively recover local boundary information, while
the ECSA module also reduces the impact of noise and irrelevant information. For Figure 7c–
e, the predicted masks of MDER-Net are closer to the ground truth (GT) images, especially
for multiple tumor regions (Figure 7c,e) and smaller tumor regions (Figure 7e). Compared
with other comparative algorithms, it is more robust. This is because the proposed MECA
module improves the network’s multi-scale adaptability to lesions, enabling it to adapt to
various changes in the size and morphology of bladder tumors. In addition, MDER-Net can
remove noise in images with lower brightness (Figure 7f), achieving more accurate bladder
tumor segmentation. The comparison of qualitative visual results proves that MDER-Net
can better solve the challenges brought by the different shapes and sizes of bladder tumors
and the uneven brightness. At the same time, it once again verifies the effectiveness and
robust stability of the proposed MDER-Net for bladder tumor segmentation.
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and the segmentation results of ours, TGDAUNet [32], HSNet [24], MSRAformer [25], DCRNet [14],
HarDNet-MSEG [12], CaraNet [13], PraNet [10], and UNet [5].
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The quantitative and qualitative results in Table 2 and Figure 7 demonstrate the
superiority of MDER-Net in the bladder tumor segmentation task. Compared with other
SOTA models, MDER-Net can improve the segmentation accuracy of bladder tumors in
cystoscopy images, reduce boundary segmentation errors, and achieve more accurate
tumor localization and boundary delineation.

4.5. Experimental Results and Discussion on Polyp Datasets

To verify the robustness and generalization of the proposed MDER-Net, we com-
pared the polyp segmentation results of the proposed MDER-Net with the results of
UNet [5], UNet++ [6], PraNet [10], HarDNet-MSEG [12], DCRNet [14], SSFormer [23],
MSRAformer [25], and TGDAUNet [32], and quantitatively evaluated the segmentation
performance of all models on the polyp tumor datasets Kvasir-SEG [35], CVC-ClinicDB [36],
CVC-ColonDB [37], ETIS [38], and CVC-300, using three evaluation metrics: mDice, mIoU,
and HD. Tables 3–7, respectively, present the quantitative results comparison of different
algorithms on the Kvasir-SEG dataset, CVC-ClinicDB dataset, CVC-ColonDB dataset, ETIS
dataset, and CVC-300 dataset. From Tables 3–7, it can be seen that the results of MDER-
Net on the five polyp datasets are superior to the other compared methods, consistently
achieving state-of-the-art segmentation performance. From Tables 3 and 4, it can be seen
that MDER-Net has a stronger feature learning ability than other comparative models.
Among them, the mDice metric results of MDER-Net on the Kvasir-SEG dataset and the
CVC-ClinicDB dataset reached 92.65% and 92.19%, respectively. From Tables 5–7, it can be
seen that MDER-Net has stronger generalization ability compared to the other models on
the three unseen polyp datasets. On the CVC-ColonDB dataset, the mDice metric results
of MDER-Net were 3.01% and 5.95% higher than the second-ranked MSRAformer [25]
and third-ranked TGDAUNet [32], respectively. On the ETIS dataset, our mDice results
were 0.27% and 1.88% higher than the second-ranked MSRAformer [25] and third-ranked
TGDAUNet [32], respectively. On the CVC-300 dataset, the mDice and mIoU results of
MDER-Net increased by 3.03% and 3.08%, respectively, compared to the second-ranked
MSRAformer [25], while HD decreased by 0.1862. These experimental results validate the
robustness and generalization ability of MDER-Net.

Table 3. Comparison results on the Kvasir-SEG dataset. ↑ indicates higher is better, ↓ indicates lower
is better, and bold indicates the best-performing result.

Methods mDice ↑ mIoU ↑ HD ↓
UNet [5] 0.8209 0.7559 7.9805

UNet++ [6] 0.8237 0.7532 7.6587
PraNet [10] 0.8997 0.8475 6.7757

HarDNet-MSEG [12] 0.8974 0.8434 6.5981
DCRNet [14] 0.8875 0.8385 6.6422

SSFormer [23] 0.8463 0.7566 8.9949
MSRAformer [25] 0.9075 0.8604 6.1880
TGDAUNet [32] 0.9207 0.8699 6.1904

Ours 0.9265 0.8786 6.1075

Table 4. Comparison results on the CVC-ClinicDB dataset. ↑ indicates higher is better, ↓ indicates
lower is better, and bold indicates the best-performing result.

Methods mDice ↑ mIoU ↑ HD ↓
UNet [5] 0.8243 0.7668 4.7971

UNet++ [6] 0.7970 0.7412 4.8488
PraNet [10] 0.9005 0.8576 4.0658

HarDNet-MSEG [12] 0.9104 0.8673 3.8894
DCRNet [14] 0.8979 0.8565 4.1236
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Table 4. Cont.

Methods mDice ↑ mIoU ↑ HD ↓
SSFormer [23] 0.8291 0.7496 5.6388

MSRAformer [25] 0.9158 0.8717 4.0575
TGDAUNet [32] 0.9213 0.8689 4.0352

Ours 0.9219 0.8760 3.7691

Table 5. Comparison results on the CVC-ColonDB dataset. ↑ indicates higher is better, ↓ indicates
lower is better, and bold indicates the best-performing result.

Methods mDice ↑ mIoU ↑ HD ↓
UNet [5] 0.5113 0.4402 8.6059

UNet++ [6] 0.4894 0.4110 8.9454
PraNet [10] 0.7156 0.6450 6.8284

HarDNet-MSEG [12] 0.7371 0.6686 6.7526
DCRNet [14] 0.7065 0.6419 7.2245

SSFormer [23] 0.6966 0.6966 9.1187
MSRAformer [25] 0.8037 0.7291 6.3099
TGDAUNet [32] 0.7743 0.7034 6.3336

Ours 0.8338 0.7492 6.2414

Table 6. Comparison results on the ETIS dataset. ↑ indicates higher is better, ↓ indicates lower is
better, and bold indicates the best-performing result.

Methods mDice ↑ mIoU ↑ HD ↓
UNet [5] 0.4059 0.3430 11.5915

UNet++ [6] 0.4134 0.3420 10.7764
PraNet [10] 0.6294 0.5761 9.1532

HarDNet-MSEG [12] 0.7004 0.6345 8.1429
DCRNet [14] 0.5489 0.5065 12.7186

SSFormer [23] 0.5567 0.5567 15.3920
MSRAformer [25] 0.7821 0.7165 7.9340
TGDAUNet [32] 0.7660 0.6789 8.6597

Ours 0.7848 0.7174 7.8749

Table 7. Comparison results on the CVC-300 dataset. ↑ indicates higher is better, ↓ indicates lower is
better, and bold indicates the best-performing result.

Methods mDice ↑ mIoU ↑ HD ↓
UNet [5] 0.7166 0.6390 6.5059

UNet++ [6] 0.7144 0.6362 5.8897
PraNet [10] 0.8717 0.8038 5.0731

HarDNet-MSEG [12] 0.8749 0.8081 5.1673
DCRNet [14] 0.8573 0.7975 5.0207

SSFormer [23] 0.7908 0.7005 6.4926
MSRAformer [25] 0.8749 0.8068 4.9494
TGDAUNet [32] 0.8730 0.8084 5.1858

Ours 0.9052 0.8392 4.7632

4.6. Ablation Experiments

In our proposed MDER-Net, we propose three new modules (MECA, DERA, and
ECSA) to improve the segmentation performance of bladder tumors. To verify the effective-
ness of each module, we conducted ablation experiments on the BtAMU dataset to explore
the impact of each module on the segmentation performance of bladder tumors.

Specifically, our baseline is PVT v2. For the validation of the effectiveness of the
MECA module, we replace it with a 1× 1 convolutional layer for comparison; for the DERA
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module, we compare and verify by replacing all DERA modules with RA modules; and for
the ECSA module, we directly remove it to verify its effectiveness. We label the ablation
experiments of the MECA, DERA, and ECSA modules as “w/o MECA”, “w/o DERA”,
and “w/o ECSA”, respectively. The experimental results are shown in Table 8. Specifically,
in terms of the mDice and mIoU metrics, these decreased by 0.76% and 1.00%, respectively,
in “w/o MECA” compared to MDER-Net, indicating that compared to multi-scale features
processed by the MECA module, the original features extracted by the encoder have limited
adaptability to changes in tumor shape and size. The mDice and mIoU metrics of “w/o
DERA” were reduced by 1.1% and 1.17%, respectively, compared to MDER-Net, and the HD
was 0.3486 higher. This is due to the failure to supplement fine-grained detail information
from low-level features to high-level features, resulting in a decrease in segmentation
performance. The mDice and mIoU metrics of “w/o ECSA” decreased by 1.16% and 1.38%,
respectively, compared to MDER-Net, indicating that the lack of the ECSA module leads to
excessive extraction of noise and irrelevant information in low-level features. We designed
bar charts of the mDice and mIoU metrics on the BtAMU dataset to visually represent the
results of the ablation experiments, as shown in Figure 8. From Table 8 and Figure 8, it
can be seen that replacing or removing any of the proposed modules leads to a significant
decrease in the segmentation performance of bladder tumors, proving the effectiveness of
the proposed modules. The segmentation performance of “w/o MECA”, “w/o DERA”,
and “w/o ECSA” is higher than the baseline, reflecting the effectiveness of cooperation
between the various proposed modules.

Table 8. Comparison table of segmentation results on the BtAMU dataset for ablation experiments of
our proposed MDER-Net. ↑ indicates higher is better, ↓ indicates lower is better, and bold indicates
the best-performing result.

Methods mDice ↑ mIoU ↑ MAE ↓ Accuracy ↑ Fω
β ↑ HD ↓

Baseline 0.8768 0.8106 0.0232 0.9780 0.9406 11.7165
w/o MECA 0.9032 0.8443 0.0207 0.9793 0.9495 10.6668
w/o DERA 0.8998 0.8426 0.0207 0.9798 0.9492 10.7544
w/o ECSA 0.8992 0.8402 0.0212 0.9788 0.9457 10.7059
MDER-Net 0.9108 0.8543 0.0173 0.9827 0.9510 10.4058
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In addition, we analyzed the impact of each module on computational efficiency,
including floating-point operations (GFLOPs) and inference time. From Table 9, it can
be seen that the inference time of all models meets the real-time requirements. MDER-
Net has similar inference time and GFLOPs to “w/o MECA”, “w/o DERA”, and “w/o
ECSA”, and slightly higher than baseline. However, compared to them, MDER-Net has
a significant advantage in segmentation performance. We believe that in medical image
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segmentation tasks, it is more important to achieve higher segmentation accuracy while
ensuring real-time performance.

Table 9. Comparison table of computational efficiency results on the BtAMU dataset for ablation
experiments of our proposed MDER-Net.

Methods GFLOPs (G) Inference Time (s)

Baseline 9.65 0.0205
w/o MECA 12.62 0.0256
w/o DERA 14.05 0.0269
w/o ECSA 16.63 0.0275
MDER-Net 16.63 0.0279

5. Conclusions

This paper proposes a new multi-scale detail-enhanced reverse attention network
MDER-Net for bladder tumor segmentation in cystoscopy images. It uses a PVT v2 encoder
and six modules (MECA, DA, SAM, DERA, ECSA, RA) to capture multi-scale global
features of bladder tumors and enhance local feature representation. By mixing six deep
supervisions, it effectively and accurately locates bladder tumors in cystoscopy images.
We propose three new modules: MECA, DERA, and ECSA. The MECA module is used
to obtain multi-scale features with channel weight information to adapt to changes in
the size and morphology of bladder tumors; the DERA module gradually integrates the
fine-grained detail information and local boundary information contained in the fused
features at all levels into the global feature map of the previous layer, refining the edge
structure details of bladder tumors; and the ECSA module is used to suppress irrelevant
information in the underlying features, capture details of bladder tumors in different
dimensions, and enhance local context. We also established a new bladder tumor dataset,
BtAMU, for comparative evaluation. The quantitative and qualitative results of MDER-
Net on the bladder tumor dataset BtAMU are superior to eight state-of-the-art (SOTA)
methods, demonstrating the superiority of MDER-Net in bladder tumor segmentation
tasks. Meanwhile, the visualized qualitative results also prove that MDER-Net can better
solve the challenges caused by the varying shapes and sizes of bladder tumors and uneven
brightness. The experimental results of MDER-Net on five publicly available polyp datasets
are superior to the compared SOTA models, verifying the robustness and generalization
ability of the proposed MDER-Net. In the future, we will collect more cystoscopy images
and further improve the tumor segmentation performance of the network. At the same
time, we hope that our proposed MDER-Net can help clinical decision-making in bladder
tumors and provide new ideas for the diagnosis and treatment of bladder tumors. In
addition, we will explore the application of MDER-Net in other types of medical image
segmentation tasks, such as skin injuries, blood vessels, retina, and 3D medical images.

Author Contributions: Methodology, C.N.; software, C.X.; validation, C.X. and Z.L.; resources, C.N.
and C.X.; data curation, Z.L.; writing—original draft preparation, C.N.; writing—review and editing,
C.X.; visualization, C.N.; supervision, C.X.; project administration, C.X.; funding acquisition, C.X. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by The National Key Research and Development Program of
China (No.2019YFC0117800).

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author (accurately indicate status).

Conflicts of Interest: The authors declare no conflicts of interest.



Mathematics 2024, 12, 1281 20 of 22

References
1. Antoni, S.; Ferlay, J.; Soerjomataram, I.; Znaor, A.; Jemal, A.; Bray, F. Bladder Cancer Incidence and Mortality: A Global Overview

and Recent Trends. Eur. Urol. 2017, 71, 96–108. [CrossRef] [PubMed]
2. Kumarasegaram, V.; Drejer, D.; Jensen, J.B. Detection Rate of Carcinoma In Situ during TURBT Following Shift from Photodynamic

Diagnosis to Narrow Band Imaging in a Single University Hospital. Urology 2022, 161, 83–86. [CrossRef]
3. Shkolyar, E.; Jia, X.; Chang, T.C.; Trivedi, D.; Mach, K.E.; Meng, M.Q.H.; Xing, L.; Liao, J.C. Augmented Bladder Tumor Detection

Using Deep Learning. Eur. Urol. 2019, 76, 714–718. [CrossRef]
4. Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach.

Intell. 2017, 39, 640–651. [CrossRef] [PubMed]
5. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the

18th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Munich, Germany,
5–9 October 2015.

6. Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. In
Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Proceedings of the 4th International
Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Granada, Spain, 20 September 2018; Springer: Cham,
Switzerland, 2018; Volume 11045, pp. 3–11.

7. Zhang, Z.; Liu, Q.; Wang, Y. Road Extraction by Deep Residual U-Net. IEEE Geosci. Remote Sens. Lett. 2018, 15, 749–753. [CrossRef]
8. Jha, D.; Smedsrud, P.H.; Riegler, M.A.; Johansen, D.; De Lange, T.; Halvorsen, P.; Johansen, H.D. Resunet++: An advanced

architecture for medical image segmentation. In Proceedings of the 2019 IEEE International Symposium on Multimedia (ISM),
San Diego, CA, USA, 9–11 December 2019.

9. Jha, D.; Riegler, M.A.; Johansen, D.; Halvorsen, P.; Johansen, H.D. DoubleU-Net: A deep convolutional neural network for
medical image segmentation. In Proceedings of the 2020 IEEE 33rd International Symposium on Computer-Based Medical
Systems (CBMS), Rochester, MN, USA, 28–30 July 2020; pp. 558–564.

10. Fan, D.-P.; Ji, G.-P.; Zhou, T.; Chen, G.; Fu, H.; Shen, J.; Shao, L. PraNet: Parallel reverse attention network for polyp segmentation.
In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Lima, Peru,
4–8 October 2020; pp. 263–273.

11. Zhang, R.; Li, G.; Li, Z.; Cui, S.; Qian, D.; Yu, Y. Adaptive Context Selection for Polyp Segmentation. In Proceedings of the Medical
Image Computing and Computer Assisted Intervention—MICCAI 2020, Lima, Peru, 4–8 October 2020; pp. 253–262.

12. Huang, C.H.; Wu, H.Y.; Lin, Y.L. Hardnet-mseg: A simple encoder-decoder polyp segmentation neural network that achieves
over 0.9 mean dice and 86 fps. arXiv 2021, arXiv:2101.07172.

13. Lou, A.; Guan, S.; Ko, H.; Loew, M.H. CaraNet: Context axial reverse attention network for segmentation of small medical objects.
In Proceedings of the SPIE Medical Imaging 2022: Image Processing, San Diego, CA, USA, 20 February–28 March 2022.

14. Yin, Z.; Liang, K.; Ma, Z.; Guo, J. Duplex Contextual Relation Network For Polyp Segmentation. In Proceedings of the 2022 IEEE
19th International Symposium on Biomedical Imaging (ISBI), Kolkata, India, 28–31 March 2022; pp. 1–5.

15. Liu, G.; Chen, Z.; Liu, D.; Chang, B.; Dou, Z. FTMF-Net: A Fourier Transform-Multiscale Feature Fusion Network for Segmentation
of Small Polyp Objects. IEEE Trans. Instrum. Meas. 2023, 72, 5020815. [CrossRef]

16. Li, W.; Zeng, G.; Li, F.; Zhao, Y.; Zhang, H. FRBNet: Feedback refinement boundary network for semantic segmentation in breast
ultrasound images. Biomed. Signal Process. Control. 2023, 86, 105194. [CrossRef]

17. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold,
G.; Gelly, S.; et al. An Image Is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. In Proceedings of the 9th
International Conference on Learning Representations, ICLR 2021, Online, 3–7 May 2021.

18. Wang, W.; Xie, E.; Li, X.; Fan, D.-P.; Song, K.; Liang, D.; Lu, T.; Luo, P.; Shao, L. Pyramid Vision Transformer: A Versatile Backbone
for Dense Prediction without Convolutions. In Proceedings of the 18th IEEE/CVF International Conference on Computer Vision,
ICCV 2021, Montreal, QC, Canada, 11–17 October 2021; pp. 548–558.

19. Chu, X.; Tian, Z.; Wang, Y.; Zhang, B.; Ren, H.; Wei, X.; Xia, H.; Shen, C. Twins: Revisiting the Design of Spatial Attention in
Vision Transformers. In Proceedings of the 35th Conference on Neural Information Processing Systems, NeurIPS 2021, Online,
6–14 December 2021; pp. 9355–9366.

20. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using
Shifted Windows. In Proceedings of the 18th IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC,
Canada, 11–17 October 2021; pp. 9992–10002.

21. Wang, W.; Xie, E.; Li, X.; Fan, D.-P.; Song, K.; Liang, D.; Lu, T.; Luo, P.; Shao, L. PVT v2: Improved baselines with Pyramid Vision
Transformer. Comput. Vis. Media 2022, 8, 415–424. [CrossRef]

22. Dong, B.; Wang, W.; Fan, D.P.; Li, J.; Fu, H.; Shao, L. Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers. arXiv
2021, arXiv:2108.06932. [CrossRef]

23. Wang, J.; Huang, Q.; Tang, F.; Meng, J.; Su, J.; Song, S. Stepwise Feature Fusion: Local Guides Global. In Proceedings of the 25th
International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022, Singapore, 18–22
September 2022; pp. 110–120.

24. Zhang, W.; Fu, C.; Zheng, Y.; Zhang, F.; Zhao, Y.; Sham, C.-W. HSNet: A hybrid semantic network for polyp segmentation.
Comput. Biol. Med. 2022, 150, 106173. [CrossRef] [PubMed]

https://doi.org/10.1016/j.eururo.2016.06.010
https://www.ncbi.nlm.nih.gov/pubmed/27370177
https://doi.org/10.1016/j.urology.2021.11.025
https://doi.org/10.1016/j.eururo.2019.08.032
https://doi.org/10.1109/TPAMI.2016.2572683
https://www.ncbi.nlm.nih.gov/pubmed/27244717
https://doi.org/10.1109/LGRS.2018.2802944
https://doi.org/10.1109/TIM.2023.3293880
https://doi.org/10.1016/j.bspc.2023.105194
https://doi.org/10.1007/s41095-022-0274-8
https://doi.org/10.26599/AIR.2023.9150015
https://doi.org/10.1016/j.compbiomed.2022.106173
https://www.ncbi.nlm.nih.gov/pubmed/36257278


Mathematics 2024, 12, 1281 21 of 22

25. Wu, C.; Long, C.; Li, S.; Yang, J.; Jiang, F.; Zhou, R. MSRAformer: Multiscale spatial reverse attention network for polyp
segmentation. Comput. Biol. Med. 2022, 151, 106274. [CrossRef] [PubMed]

26. Rahman, M.M.; Marculescu, R. Medical Image Segmentation via Cascaded Attention Decoding. In Proceedings of the 2023
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–7 January 2023; pp. 6211–6220.

27. Liu, G.; Yao, S.; Liu, D.; Chang, B.; Chen, Z.; Wang, J.; Wei, J. CAFE-Net: Cross-Attention and Feature Exploration Network for
polyp segmentation. Expert Syst. Appl. 2024, 238, 121754. [CrossRef]

28. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2012,
60, 84–90. [CrossRef]

29. Chen, J.; Lu, Y.; Yu, Q.; Luo, X.; Adeli, E.; Wang, Y.; Lu, L.; Yuille, A.L.; Zhou, Y. TransUNet: Transformers make strong encoders
for medical image segmentation. arXiv 2021, arXiv:2102.04306.

30. Zhang, Y.; Liu, H.; Hu, Q. TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation. In Proceedings of the
24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021, Online, 27
September–1 October 2021.

31. Hatamizadeh, A.; Nath, V.; Tang, Y.; Yang, D.; Roth, H.R.; Xu, D. Swin UNETR: Swin Transformers for Semantic Segmentation of
Brain Tumors in MRI Images. In Proceedings of the 7th International Brain Lesion Workshop, BrainLes 2021, Held in Conjunction
with the Medical Image Computing and Computer Assisted Intervention, MICCAI 2021, Online, 27 September 2021.

32. Song, P.; Li, J.; Fan, H.; Fan, L. TGDAUNet: Transformer and GCNN based dual-branch attention UNet for medical image
segmentation. Comput. Biol. Med. 2023, 167, 107583. [CrossRef] [PubMed]

33. Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient channel attention for deep convolutional neural networks. In
Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA,
14–19 June 2020.

34. Chen, S.; Tan, X.; Wang, B.; Hu, X. Reverse attention for salient object detection. In Proceedings of the 15th European Conference
on Computer Vision, ECCV 2018, Munich, Germany, 8–14 September 2018; pp. 236–252.

35. Jha, D.; Smedsrud, P.H.; Riegler, M.A.; Halvorsen, P.; De Lange, T.; Johansen, D.; Johansen, H.D. Kvasir-seg: A Segmented Polyp
Dataset. Int. Conf. Multimed. Model. 2020, 26, 451–462.

36. Bernal, J.; Sánchez, F.J.; Fernández-Esparrach, G.; Gil, D.; Rodríguez, C.; Vilariño, F. WM-DOVA maps for accurate polyp
highlighting in colonoscopy: Validation vs. saliency maps from physicians. Comput. Med. Imaging Graph. 2015, 43, 99–111.
[CrossRef]

37. Tajbakhsh, N.; Gurudu, S.R.; Liang, J. Automated Polyp Detection in Colonoscopy Videos Using Shape and Context Information.
IEEE Trans. Med. Imaging 2016, 35, 630–644. [CrossRef]

38. Silva, J.; Histace, A.; Romain, O.; Dray, X.; Granado, B. Toward embedded detection of polyps in WCE images for early diagnosis
of colorectal cancer. Int. J. Comput. Assist. Radiol. Surg. 2014, 9, 283–293. [CrossRef]

39. Chao, P.; Kao, C.-Y.; Ruan, Y.; Huang, C.-H.; Lin, Y.-L. HarDNet: A low memory traffic network. In Proceedings of the 17th
IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Republic of Korea, 27 October–2 November 2019.

40. Gao, S.-H.; Cheng, M.-M.; Zhao, K.; Zhang, X.-Y.; Yang, M.-H.; Torr, P. Res2Net: A New Multi-Scale Backbone Architecture. IEEE
Trans. Pattern Anal. Mach. Intell. 2021, 43, 652–662. [CrossRef] [PubMed]

41. Bandyk, M.G.; Gopireddy, D.R.; Lall, C.; Balaji, K.C.; Dolz, J. MRI and CT bladder segmentation from classical to deep learning
based approaches: Current limitations and lessons. Comput. Biol. Med. 2021, 134, 104472. [CrossRef] [PubMed]

42. Borhani, S.; Borhani, R.; Kajdacsy-Balla, A. Artificial intelligence: A promising frontier in bladder cancer diagnosis and outcome
prediction. Crit. Rev. Oncol. Hematol. 2022, 171, 103601. [CrossRef] [PubMed]

43. Li, M.; Jiang, Z.; Shen, W.; Liu, H. Deep learning in bladder cancer imaging: A review. Front. Oncol. 2022, 12, 930917. [CrossRef]
[PubMed]

44. Gordon, M.N.; Hadjiiski, L.M.; Cha, K.H.; Samela, R.K.; Chan, H.-P.; Cohan, R.H.; Caoili, E.M. Deep-learning convolutional
neural network: Inner and outer bladder wall segmentation in CT urography. Med. Phys. 2019, 46, 634–648. [CrossRef] [PubMed]

45. Ma, X.; Hadjiiski, L.M.; Wei, J.; Chan, H.-P.; Cha, K.H.; Cohan, R.H.; Caoili, E.M.; Samala, R.; Zhou, C.; Lu, Y. U-Net based deep
learning bladder segmentation in CT urography. Med. Phys. 2019, 46, 1752–1765. [CrossRef] [PubMed]

46. Dolz, J.; Xu, X.; Rony, J.; Yuan, J.; Liu, Y.; Granger, E.; Desrosiers, C.; Zhang, X.; Ben Ayed, I.; Lu, H. Multiregion segmentation of
bladder cancer structures in MRI with progressive dilated convolutional networks. Med. Phys. 2018, 45, 5482–5493. [CrossRef]

47. Liu, J.; Liu, L.; Xu, B.; Hou, X.; Liu, B.; Chen, X.; Shen, L.; Qiu, G. Bladder cancer multi-class segmentation in MRI with
pyramid-in-pyramid network. In Proceedings of the 16th IEEE International Symposium on Biomedical Imaging, ISBI 2019,
Venice, Italy, 8–11 April 2019.

48. Wang, Y.; Li, X.; Ye, X. LCANet: A Lightweight Context-Aware Network for Bladder Tumor Segmentation in MRI Images.
Mathematics 2023, 11, 2357. [CrossRef]

49. Wang, Y.; Ye, X. MSEDTNet: Multi-Scale Encoder and Decoder with Transformer for Bladder Tumor Segmentation. Electronics
2022, 11, 3347. [CrossRef]

50. Xu, J.; Kang, L.; Han, W.; Jiang, J.; Zhou, Z.; Huang, J.; Zhang, T. Multi-Scale Network Based on Dilated Convolution for Bladder
Tumor Segmentation of Two-Dimensional MRI Images. In Proceedings of the 15th IEEE International Conference on Signal
Processing, ICSP 2020, Beijing, China, 6–9 December 2020.

https://doi.org/10.1016/j.compbiomed.2022.106274
https://www.ncbi.nlm.nih.gov/pubmed/36375412
https://doi.org/10.1016/j.eswa.2023.121754
https://doi.org/10.1145/3065386
https://doi.org/10.1016/j.compbiomed.2023.107583
https://www.ncbi.nlm.nih.gov/pubmed/37890420
https://doi.org/10.1016/j.compmedimag.2015.02.007
https://doi.org/10.1109/TMI.2015.2487997
https://doi.org/10.1007/s11548-013-0926-3
https://doi.org/10.1109/TPAMI.2019.2938758
https://www.ncbi.nlm.nih.gov/pubmed/31484108
https://doi.org/10.1016/j.compbiomed.2021.104472
https://www.ncbi.nlm.nih.gov/pubmed/34023696
https://doi.org/10.1016/j.critrevonc.2022.103601
https://www.ncbi.nlm.nih.gov/pubmed/35065220
https://doi.org/10.3389/fonc.2022.930917
https://www.ncbi.nlm.nih.gov/pubmed/36338676
https://doi.org/10.1002/mp.13326
https://www.ncbi.nlm.nih.gov/pubmed/30520055
https://doi.org/10.1002/mp.13438
https://www.ncbi.nlm.nih.gov/pubmed/30734932
https://doi.org/10.1002/mp.13240
https://doi.org/10.3390/math11102357
https://doi.org/10.3390/electronics11203347


Mathematics 2024, 12, 1281 22 of 22

51. Varnyu, D.; Szirmay-Kalos, L. A Comparative Study of Deep Neural Networks for Real-Time Semantic Segmentation during the
Transurethral Resection of Bladder Tumors. Diagnostics 2022, 12, 2849. [CrossRef]

52. Yoo, J.W.; Koo, K.C.; Chung, B.H.; Lee, K.S. Deep learning diagnostics for bladder tumor identification and grade prediction
using RGB method. Eur. Urol. 2023, 83, S846. [CrossRef]

53. Zhang, Q.; Liang, Y.; Zhang, Y.; Tao, Z.; Li, R.; Bi, H. A comparative study of attention mechanism based deep learning methods
for bladder tumor segmentation. Int. J. Med. Inform. 2023, 171, 104984. [CrossRef] [PubMed]

54. Jia, X.; Shkolyar, E.; Laurie, M.A.; Eminaga, O.; Liao, J.C.; Xing, L. Tumor detection under cystoscopy with transformer-augmented
deep learning algorithm. Phys. Med. Biol. 2023, 68, 165013. [CrossRef]

55. Bhojanapalli, S.; Chakrabarti, A.; Glasner, D.; Li, D.; Unterthiner, T.; Veit, A. Understanding Robustness of Transformers for Image
Classification. In Proceedings of the 18th IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC,
Canada, 11–17 October 2021.

56. Chen, L.; Zhang, H.; Xiao, J.; Nie, L.; Shao, J.; Liu, W.; Chua, T.-S. SCA-CNN: Spatial and channel-wise attention in convolutional
networks for image captioning. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2017, Honolulu, HI, USA, 21–26 July 2017.

57. Wei, J.; Wang, S.; Huang, Q. F3Net: Fusion, feedback and focus for salient object detection. In Proceedings of the 34th AAAI
Conference on Artificial Intelligence, AAAI 2020, New York, NY, USA, 7–12 February 2020.

58. Vazquez, D.; Bernal, J.; Sanchez, F.J.; Fernandez-Esparrach, G.; Lopez, A.M.; Romero, A.; Drozdzal, M.; Courville, A. A Benchmark
for Endoluminal Scene Segmentation of Colonoscopy Images. J. Healthc. Eng. 2017, 2017, 037190. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/diagnostics12112849
https://doi.org/10.1016/S0302-2838(23)00640-1
https://doi.org/10.1016/j.ijmedinf.2023.104984
https://www.ncbi.nlm.nih.gov/pubmed/36634475
https://doi.org/10.1088/1361-6560/ace499
https://doi.org/10.1155/2017/4037190
https://www.ncbi.nlm.nih.gov/pubmed/29065595

	Introduction 
	Related Works 
	CNN-Based Methods 
	Transformer-Based Methods 
	CNN–Transformer Hybrid Methods 
	Segmentation Methods for Bladder Tumors 

	Proposed Method 
	Overall Architecture 
	Transformer Encoder PVT v2 
	Multi-Scale Effective Channel Attention Module 
	Detail-Enhanced Reverse Attention Module 
	Efficient Channel Space Attention Module 
	Loss Function 

	Experimental Results and Discussion 
	Datasets 
	Bladder Tumor Dataset: BtAMU 
	Polyp Dataset 

	Evaluation Metrics 
	Implementation Details 
	Experimental Results and Discussion on the BtAMU Dataset 
	Quantitative Results 
	Qualitative Results 

	Experimental Results and Discussion on Polyp Datasets 
	Ablation Experiments 

	Conclusions 
	References

