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Abstract: Deep learning-based models have achieved impressive results across various practical fields.
However, these models are susceptible to attacks. Recent research has demonstrated that adversarial
samples can significantly decrease the accuracy of deep learning models. This susceptibility poses
considerable challenges for their use in security applications. Various methods have been developed
to enhance model robustness by training with more effective and generalized adversarial examples.
However, these approaches tend to compromise model accuracy. Currently proposed detection
methods mainly focus on speech adversarial samples generated by specified white-box attack models.
In this study, leveraging manifold learning technology, a method is proposed to detect whether a
speech input is an adversarial sample before feeding it into the recognition model. The method is
designed to detect speech adversarial samples generated by black-box attack models and achieves a
detection success rate of 84.73%. It identifies the low-dimensional manifold of training samples and
measures the distance of a sample under investigation to this manifold to determine its adversarial
nature. This technique enables the preprocessing detection of adversarial audio samples before their
introduction into the deep learning model, thereby preventing adversarial attacks without affecting
model robustness.

Keywords: speech adversarial samples; manifold learning; dimensionality reduction
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1. Introduction

Deep learning has made significant advancements in various fields, including com-
puter vision, natural language processing, speech recognition, and recommendation sys-
tems. The widespread application of deep neural networks is evident in tasks such as
image classification, object detection, and text generation [1]. The complex structure and
learning capabilities of deep neural networks enable them to outperform traditional meth-
ods in terms of accuracy and performance. With the increase in computing power and
the availability of architectures that support parallel processing, training deep learning
networks with numerous parameters and massive datasets has become feasible within
reasonable timeframes. Consequently, there has been a remarkable improvement in the
predictive accuracy of machine learning models.

Deep learning has demonstrated success in speech recognition, particularly in end-to-
end deep learning models [2]. Examples of these accomplishments include Baidu’s Deep
Speech, which has displayed favorable results in speech recognition tasks. Using deep
learning models, Google’s WaveNet can generate high-quality, natural-sounding speech,
while Tacotron can directly convert text into natural speech. Additionally, deep learning
technology has enabled the development of intelligent voice assistants such as Apple’s
Siri and Amazon’s Alexa. Microsoft has developed a range of deep learning-based speech
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recognition technologies, such as the Cortana voice assistant and Azure voice service,
which offer highly accurate and efficient speech recognition capabilities.

However, in 2013, Szegedy et al. revealed the vulnerability of neural networks, reveal-
ing their high sensitivity to small perturbations, and proposed the concept of adversarial
samples. Through the use of slightly perturbed images as input, they successfully deceived
image recognition models, resulting in misclassifications [3]. Adversarial samples are
samples that have been generated by applying small perturbations to existing data samples.
These perturbations are undetectable to humans but can cause neural network models
to misclassify [4]. Models trained under normal conditions possess generalizability. To
defend against adversarial attacks, many studies have incorporated adversarial samples
into neural networks during training to enhance model robustness. However, this approach
often leads to a loss in generalizability [5].

Subsequent research has revealed that the threat of adversarial attacks is not restricted
to image recognition but also extends to other domains, such as speech recognition. Speech
adversarial samples are now extensively employed to safeguard against personal data
breaches in speech recognition systems [6] and to enhance the security of call equipment
and voice assistants [7]. Generating adversarial samples in the field of speech is more
challenging than in computer vision. Speech recognition systems must contend with
temporal changes in audio, and most speech files are sampled at a rate of 10,000 data points
per second. In contrast to image recognition, speech recognition processes a significantly
larger volume of data [8,9]. Moreover, sampled speech data require decoding following its
output by the neural network [10,11]. Existing research on adversarial examples primarily
concentrates on image recognition, with limited investigation into adversarial examples
in speech.

In 2018, Moustafa Alzantot demonstrated an adversarial attack on a speech classi-
fication model [12]. Figure 1 depicts the principle behind speech adversarial samples:
an attacker introduces imperceptible noise to the speech, preserving its acoustic charac-
teristics as perceived by the human ear while causing the speech recognition model to
classify it as a different type of speech. These manipulated audio samples represent speech
adversarial samples.
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This study introduces a novel approach for the detection of speech adversarial samples,
thereby enabling neural networks to defend against adversarial attacks based on black-box
models. By conducting adversarial detection prior to the admission of speech data into the
recognition model, identified speech adversarial samples are withheld from recognition,
rather than being misclassified.

2. Related Work

In recent years, there have been numerous advancements in speech recognition tech-
nologies that are built upon deep learning models. Graves [13] employed connectionist
temporal classification (CTC) to develop a state-of-the-art end-to-end speech recognition
model that directly maps input acoustic feature sequences to output word sequences.
Building upon this work, Baidu successfully commercialized speech recognition models
for both English and Chinese languages through extensive data training [14]. Kubanek
et al. proposed a novel approach that utilizes three independent convolutional layers:
traditional temporal convolution and two different frequency convolutions. This technique
enables the creation of sound patterns in the form of RGB images and proposes a method
for segmenting continuous speech into syllables [15].

The generation of speech adversarial samples primarily involves two methods:
gradient-based methods and black-box optimization-based methods [16,17]. Current re-
search on adversarial samples is rooted in the study of neural network robustness. This
research began with the work of Biggio and Szegedy et al., who explored adversarial sam-
ples for deep neural networks. They utilized gradient descent and L-BFGS to implement
optimization-based attack strategies, which resulted in the generation of adversarial image
samples. This breakthrough paved the way for generating adversarial samples in the
machine learning domain.

In 2014, Goodfellow et al. [18] discovered that the linear characteristics of neural
networks render them vulnerable to adversarial perturbations. They proposed the fast
gradient sign method (FGSM) as the first proposed approach to provide adversarial samples
for adversarial training, effectively enhancing the network’s robustness. Building upon
these findings, Alexey Kurakin [19] and others advanced the FGSM to the iterative gradient
symbolic method (IGSM) through a more sophisticated iterative optimization strategy.
Additionally, in 2017, Aleksander Madry et al. proposed the projected gradient descent
(PGD) method [20], which generates adversarial samples by repeatedly applying gradient
descent steps during training. As a result, the generated adversarial samples exhibited
improved performance and convincingly deceived the neural network model.

To address the issue that the defense system might analyze the output class of nontar-
get adversarial examples to determine the original class, Hyun Kwon et al. [21] proposed
a method for generating nontarget adversarial examples. In the field of speech, Dan Iter
and colleagues utilized adversarial samples generated by the fast gradient sign method
and the fooling gradient sign method [22] to successfully deceive the automatic speech
recognition model Wavenet. Notably, the generated adversarial audio exhibited imper-
ceptible differences to the human ear. Furthermore, they proposed a method to convert
adversarial mel-scale frequency cepstral coefficient (MFCC) features back into audio. This
demonstrates the effectiveness of the adversarial sample generation method in the field of
image recognition within the domain of speech recognition as well.

Carlini and Wagner [23] further validated the existence of adversarial samples in the
speech domain by applying a white-box iterative optimization-based attack algorithm to the
end-to-end implementation of Mozilla’s DeepSpeech. This experiment provided evidence
that adversarial samples within the speech field can be utilized for targeted attacks.

Adversarial training [24] is a technique to bolster the robustness of speech recognition
models against adversarial disturbances, which is achieved by incorporating adversarial
examples during the training process. However, in 2018, Dimitris et al. [25] found that
while adversarial training increased model robustness, it concurrently reduced the model’s
recognition accuracy.
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Constructing an adversarial sample detector is a defensive method that screens for
adversarial samples before they enter the recognition models. Samizade [17] employed a
Convolutional Neural Network (CNN) to detect minute perturbations in speech adversarial
samples, while Li et al. [26] introduced a detection network akin to a VGG network structure,
utilizing convolutional operations to capture subtle discrepancies between adversarial and
genuine samples. Nonetheless, both approaches are limited to defending against specifically
targeted white-box attack models.

The study of learning the manifold where data points are located is an area of re-
search that has attracted significant attention. Manifold learning refers to a technique of
nonlinear dimensionality reduction that aims to comprehend the inherent structure of
high-dimensional data and map it to a lower-dimensional space, thereby facilitating better
visualization, understanding, and analysis of the data. The primary objective of manifold
learning is to reduce the dimensionality of data while preserving the local characteristics
inherent to the data. Consequently, it is often employed for dimensionality reduction and
feature extraction of high-dimensional datasets.

In 2000, Roweis and Saul proposed the LLE method [27] for manifold learning, which
reconstructs the local structure of data based on local linear relationships and maps it to a
lower-dimensional space while preserving these relationships. Shortly thereafter, Tenen-
baum et al. proposed the ISOMAP method [28], which maintains the geodesic distance
between data points by constructing a graph based on nearest-neighbor relationships and
utilizes the geometric structure of the graph for dimensionality reduction. In 2008, Laurens
van der Maaten and others suggested the t-distributed stochastic neighbor embedding (t-
SNE) method [29], which constructs a probability distribution on pairs of high-dimensional
data points in a manner that assigns a higher probability to similar objects. This method
is often employed to preserve the similarity between data points in high-dimensional
space while mapping the data to a lower-dimensional space, particularly for visualizing
high-dimensional datasets.

In 2020, Leland McInnes proposed uniform manifold approximation and projection
(UMAP), the most advanced manifold learning method [30]. UMAP is a practical and
scalable algorithm that builds upon the theoretical foundations of Riemannian geometry
and algebraic topology. It is capable of processing real-world data. In terms of visualization
quality, the UMAP algorithm is a strong competitor to t-SNE and can preserve more
global structures. Additionally, UMAP does not impose any computational restrictions
on embedding dimensions, making it a versatile dimensionality reduction technique for
machine learning applications.

Figure 2 illustrates the visual results of dimensionality reduction using manifold
learning methods on the MNIST dataset. Tanay et al. [31] discovered that various types
of data exhibit remarkable similarity in high-dimensional space, yet neural networks are
capable of correctly classifying them. They proposed a boundary-tilted view, suggesting
that adversarial samples tend to reside in close proximity to the classification boundary
of the training data manifold. With regard to the manifold hypothesis of adversarial
examples [32,33], it is assumed that adversarial examples deviate from the low-dimensional
data manifold.
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3. Audio Adversarial Sample Detection Method Based on Manifold Learning

Recent research has demonstrated that adversarial examples are located near the
classification boundary of the training data manifold or deviate from the manifold. Building
on this finding, this study proposes a speech adversarial sample detection method based
on manifold learning.

In this section, we first discuss the manifold dimensionality reduction technique
employed in this article. We will then introduce the adversarial sample detection method
that relies on the results obtained from manifold learning dimensionality reduction. Finally,
we present a speech adversarial sample detection method grounded in manifold learning.

3.1. Low-Dimensional Manifold Embedding of Speech Data

We utilize two leading manifold learning techniques, namely, t-SNE(t-distributed
Stochastic Neighbor Embedding) and UMAP(t-distributed Stochastic Neighbor Embed-
ding), to perform low-dimensional embedding on the speech dataset and compare
the results.
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3.1.1. t-SNE

t-SNE adopts a probability-based approach to measure the similarity between high-
dimensional data points to preserve these similarities in low-dimensional space. By employ-
ing a specific probability distribution (t-distribution), t-SNE effectively handles outliers in
high-dimensional data and generates improved clustering effects in low-dimensional space.

The calculation of similarity between data points in high-dimensional space involves
computing a probability distribution for each data point, which determines its similarity to
other data points. This distribution can be interpreted as a “neighbor relationship”.

Similarly, to determine a new position for each data point in the low-dimensional
space and calculate the similarity between data points in this reduced space, t-distributed
stochastic neighbor embedding (t-SNE) computes a probability distribution for each data
point in the low-dimensional domain.

t-SNE leverages the Kullback–Leibler divergence (KL divergence) optimization tech-
nique to minimize the disparity between probability distributions in high- and low-
dimensional spaces. By employing algorithms such as gradient descent, t-SNE aims to min-
imize this disparity and ensure that the distribution of data points in the low-dimensional
space preserves as many of the similar relationships present in the high-dimensional space
as possible.

The “t-distribution” used in t-SNE is a specific probability distribution function that
effectively retains the local structure in low-dimensional space while placing more emphasis
on distant data points. This approach greatly enhances the representation of the data
structure in the reduced space.

3.1.2. UMAP

UMAP finds the nearest neighbors of a data point by using the nearest neighbor
descent algorithm to identify the nearest neighbors of a given data point. Subsequently,
UMAP constructs a graph by connecting these nearest neighbors. UMAP operates under
the assumption that data points are uniformly distributed on the manifold, causing the
spacing between points to stretch or compress based on local density. Consequently, the
distance metric across space is not uniform but instead varies across regions. To control
the dimensionality reduction process, UMAP employs the n_neighbors hyperparameter,
which specifies the number of neighbors to consider.

During graph construction, it is essential to avoid numerous disconnected points that
may hinder the learning of the desired manifold structure. To address this concern, UMAP
utilizes the local_connectivity parameter (default value of 1). By setting local_connectivity
to 1, each data point in the high-dimensional space is associated with another. The strength
of the connections between the data points in the graph is represented by edge weights
(w). Due to UMAP’s adoption of a different distance method, there may be discrepancies
in edge weights from the perspective of individual points. For instance, the edge weights
from points A to B may differ from the weights in the opposite direction. UMAP suc-
cessfully resolves this issue by taking the union of both edges, resulting in a connected
neighborhood graph.

UMAP calculates the distance between data points on the manifold using the standard
Euclidean distance relative to the global coordinate system. The conversion from variable
distance to standard distance also influences the distance between a data point and its
nearest neighbor. Consequently, UMAP introduces a hyperparameter called min_dist (with
a default value of 0.1) to define the minimum distance between the embedded points.

Upon specifying the minimum distance, UMAP proceeds to identify a superior low-
dimensional representation of the manifold by minimizing the following cost function, also
known as cross-entropy (CE):

CE = ∑
e∈E

FT + ST (1)

FT = wh(e) log
(

wh(e)
wl(e)

)
(2)
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ST =
(
1 − wh(e)

)
log

(
1 − wh(e)
1 − wl(e)

)
(3)

where e represents the edge connecting each pair of nearest neighbors, wh(e) represents
the known edge weight from the high-dimensional manifold approximation, and wl(e)
represents the edge weight to be discovered for the low-dimensional representation.

Whenever the weight associated with the high-dimensional case is larger, the first
term (FT) acts as the “attraction”. This is because this term will be minimized when wl(e) is
as large as possible, which occurs when the distance between points is as small as possible.

When the high-dimensional weight wh(e) is small, the second term acts as a “repulsive
force”. This is because by making wh(e) as small as possible, the term will be minimized.

Ultimately, the interplay between these two “forces” brings the low-dimensional rep-
resentation closer to an accurate representation of the overall topology of the original data.

The optimal weights of edges in a low-dimensional representation are sought as
the ultimate goal. These weights are obtained by minimizing the cross-entropy function
mentioned earlier. Finally, UMAP calculates the coordinates of each data point in the
designated low-dimensional space.

3.1.3. Contrast

While t-SNE is limited to embedding dimensions of two and three, UMAP can preserve
both local and global structures without this restriction.

The speech dataset and the target sample are subjected to manifold learning-based
dimensionality reduction to be projected onto a low-dimensional manifold. The sample
to be detected is then embedded on this low-dimensional manifold. By examining the
geometric relationship between the speech adversarial sample and the speech dataset on
the manifold, it is possible to determine whether the sample to be detected is a speech
adversarial sample.

3.2. Detection Method for Speech Adversarial Samples

There are a total of s types of original audio data. After dimensionality reduction, the
centroid of each type is calculated, and the point ci nearest to the centroid is selected as the
center point of that type of data. The distance dij between the center points of each type
of audio data is found. The first indicator is set to determine the geometric relationship
between the sample to be detected and the original audio sample:

α = l
∑ dij

2s
(4)

In the formula, lϵ(0, 1] is set to 0.9 for this experiment. The distance between the
audio sample to be detected and the center point of each type of original audio data in the
reduced low-dimensional space is calculated, and the minimum value is dmin. Research
suggests that adversarial samples are located near the training data manifold’s classification
boundary or deviate from the manifold. Therefore, speech adversarial samples should be
relatively far from the centroid of various types of original audio data. If dmin > α, the
sample to be detected is far from the centroid of various types of original audio data and is
suspected to be a speech adversarial sample.

However, due to the unknown and irregular manifold structure of speech data, many
normal audio samples are also situated far from the centroid of various types of original
audio data. Therefore, another decision criterion is set: a maximum neighbor search range
lneighbors (the value is set to 0.5 in this experiment). First, the neighbors of all center points
within this range are searched, and the minimum number of neighbors nneighbors is selected.

Next, we search for other data points within the range of the sample to be detected if
any of the following two conditions are met when dmin > α is met:

• The number of data points within the search range is much smaller than nneighbors.
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• There are multiple categories of data points within the search range, with no single
category accounting for more than 60% of the total.

Then, it can be inferred that the speech sample to be detected is an adversarial au-
dio sample.

4. Experiment and Result Analysis
4.1. Selection of Experimental Datasets

The speech dataset utilized in this experiment is TensorFlow’s official Speech_Co-
mmands [34]. A pretrained classification model was used, thereby treating speech recogni-
tion as a classification task for speech data.

A total of 10,000 voice commands with five different labels were chosen as the original
dataset. Each command consists of an English word (e.g., go, stop). Each command is
represented by more than 1700 voice files recorded by different speakers.

4.2. Selection of Speech Adversarial Samples

From a security standpoint, the primary threat to neural networks is black-box attacks,
wherein the attacker does not need to comprehend the internal structure of the target
network and can conduct model attacks merely by interacting with the target network.

This article employs the method proposed by Moustafa Alzantot et al., to generate
speech adversarial samples. It randomly selects original audio samples for attack and gen-
erates 100 speech adversarial samples for subsequent experimental testing. This technique
constitutes a black-box attack method that employs a gradient-free approach based on
genetic algorithms to generate speech adversarial samples. The method relies solely on
access to the input and output of the victim’s speech recognition system.

The speech adversarial samples generated using this technique enable listeners to
perceive the sounds received as the original labels without the human ear’s final judgment
being influenced by any noise, while the machine learning model misclassifies all of them.

4.3. MFCC Feature Extraction

Typically, automatic speech recognition (ASR) models employ MFCC features from the
original audio as input. Consequently, the experiment in this article extracts MFCC features
from the original speech data and speech adversarial samples. It then utilizes manifold
learning techniques to capture the low-dimensional manifold and identify the geometric
relationship between the original speech data and the speech adversarial samples.

In this experiment, the voice data are divided into 101 frames, and MFCC features are
extracted from each frame. Each frame’s MFCC features comprise 13 coefficients. Therefore,
the resulting MFCC feature data constitute a two-dimensional array with dimensions of
13 × 101. Figure 3 depicts the results of MFCC extraction according to the aforementioned
criteria on a voice command labeled ‘go’ and a speech adversarial sample generated by
perturbing the voice.

4.4. Low-Dimensional Embedding of Speech Data in Manifold Space and Detection of Speech
Adversarial Samples
4.4.1. Results

After performing low-dimensional embedding on the speech dataset and the samples
to be detected using t-SNE and UMAP, the method proposed in this article for detecting
speech adversarial samples is applied to identify potential adversarial attacks.

In the experiments, it was observed that the t-SNE and UMAP manifold learning
methods are sensitive to the number of nearest neighbor searches (n_neighbors) during
the dimensionality reduction process. This study restricts the embedding dimension to
three dimensions and conducts experiments by varying the number of nearest neighbor
searches in the manifold learning method. The impact of these different parameter settings
on the final detection results of the speech adversarial samples is observed. The impact of
adjusting the number of nearest neighbor searches for t-SNE and UMAP respectively on
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the detection success rate is shown in Tables 1 and 2. Subsequently, the optimal number
of nearest neighbor searches is determined for both t-SNE and UMAP under specific
speech datasets and adversarial sample detection tasks to achieve better results in speech
adversarial sample detection.
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Figure 3. (a) MFCC feature extraction diagram of the voice command labeled ‘go’; (b) MFCC feature
extraction diagram of the speech adversarial sample generated by interfering with the voice command
labeled ‘go’.

Table 1. Detection success rate based on t-SNE under different numbers of nearest neighbor searches
when the embedding dimension is limited to 3 dimensions.

Algorithm n_Neighbors Detection Success Rate

t-SNE

15 36.74%
20 48.05%
25 53.96%
30 55.32%
35 43.37%

Table 2. Detection success rate based on UMAP under different numbers of nearest neighbor searches
when the embedding dimension is limited to 3 dimensions.

Algorithm n_Neighbors Detection Success Rate

UMAP

5 34.26%
10 59.75%
11 73.47%
12 66.46%
15 57.32%

Experimental results demonstrate that compared with t-SNE, the low-dimensional
data manifold obtained through dimensionality reduction in the speech dataset using
UMAP exhibits superior performance in detecting speech adversarial samples.

As manifold learning technologies, t-SNE and UMAP demonstrate excellent visual-
ization capabilities. t-SNE is adept at capturing local structures and clustering patterns,
while UMAP is better equipped to preserve the global data structure and handle large-scale
and high-dimensional data. During the experiment, the embedding conditions were set
to two-dimensional and three-dimensional to better visualize the results of t-SNE and
UMAP when appropriate parameters were applied. Through the visualization of these
experimental results, the internal structure of speech data can be more comprehensively
understood and presented. Additionally, the characteristics, patterns, and geometric rela-
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tionships between speech adversarial samples and original speech samples can be analyzed
at a low-dimensional level.

4.4.2. Visualization

As depicted in Figure 4, the speech data exhibit evident clustering effects and distinct
boundaries between different data types following dimensionality reduction. However,
due to the constraints of low dimensions, the visualization results are severely limited in
terms of the information they can convey.
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the samples to be detected to 2 dimensions.

The process of mapping high-dimensional data to a low-dimensional space in dimen-
sionality reduction inherently involves information loss. While the visualization results
present clustering effects and clear boundaries, the information represented in lower di-
mensions only offers a partial projection of the original data and may fail to fully depict the
complex structure and detailed characteristics of the data.

Furthermore, excessively low dimensionality constraints can give rise to issues such
as information compression and data overlap, impeding the clear expression of the true
relationship between subsets of data points.

According to the 2D visualization results shown in Figure 4, although similar data
points cluster effectively, the substantial loss of features leads to the overlap of different
data types, preventing an accurate representation of the geometric relationships within the
speech data. By increasing the embedding dimension to three, the visualization results of
the speech dataset are presented in Figure 5. This increase in dimensionality allows for the
representation of additional data points, revealing numerous hidden data points that remain
concealed when limited to two dimensions. All five types of data selected for the experiment
are exhibited in the visualization results. The geometric relationships among speech data
may be portrayed more clearly in a three-dimensional space. And the visualization results
show conclusions that align with the experimental results. Irrespective of whether the
embedding dimension is limited to two or three dimensions, the clustering efficacy of
UMAP in reducing the dimensionality of the speech dataset significantly surpasses that
of t-SNE.

Compared to two dimensions, a three-dimensional space retains a relatively larger
number of speech data features, captures the complexity and diversity of the data more
effectively, and provides a wider range of perspectives and a more comprehensive observa-
tion space.

While t-SNE restricts the embedding dimensions to two and three, UMAP imposes
no such limitations. Therefore, the advantages of manifold learning technology at the
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visualization level can be discarded in favor of further enhancing the embedding dimen-
sion. Even so, the dimension of the MFCC feature of the speech data is reduced from
13 × 101 to single digits, resulting in a significant reduction in the computational cost of
subsequent processes.
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By increasing the dimension of manifold embedding, the success rate of detecting
speech adversarial samples can be improved to some extent, and in some cases, even better
results can be achieved. Under different manifold learning embedding dimensions, the
changes in detection success rate are shown in Table 3. Enhanced by UMAP, the detection
success rate for speech adversarial samples reached 84.73%, significantly surpassing the
performance of t-SNE. However, it is important to note that while increasing the embedding
dimension may lead to better detection results, having a dimension that is too high can
result in unnecessary problems, particularly when one of the advantages of manifold
learning technology is its ability to significantly reduce computational costs.

Table 3. Adversarial sample detection results after low-dimensional manifold embedding restricted
to different dimensions using t-SNE and UMAP.

Algorithm Embed Dimension Restrictions Detection Success Rate

t-SNE
2 36.28%
3 55.32%

UMAP

2 44.56%
3 73.47%
4 84.73%
5 80.24%

The detection methods for speech adversarial samples proposed by Samizade et al. [17]
and Li et al. [26] have achieved a success rate of over 99% in identifying adversarial samples
crafted by specified white-box models. However, their defensive efficacy significantly
declines when attackers switch their methods, and these methods fail to detect adversarial
samples produced by black-box models. This study puts forward a manifold learning-
based detection method for speech adversarial samples, boasting a success rate of 84.73%,
capable of detecting samples generated by black-box models and exhibiting a certain degree
of transferability.
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5. Conclusions

This study proposes a novel method for detecting speech adversarial samples by
analyzing the geometric relationship between the sample to be detected and the original
audio sample on a low-dimensional manifold. The experiment focuses on speech adver-
sarial samples generated through black-box attack methods, as these adversaries do not
require an understanding of the internal structure of the target network and can achieve
model attacks simply by inputting speech adversarial samples into the target network.
Furthermore, the commonly used method of training neural networks with adversarial
samples to improve model robustness is not effective against adversarial samples generated
through black-box attack methods.

Through the use of manifold learning, important features can be extracted, and data
representation can be simplified, leading to a significant reduction in data dimensionality
and the amount of computation required for the processing, storage, and analysis of data.
This advantage allows manifold learning to train models more efficiently when dealing
with large-scale datasets or high-dimensional data.

Additionally, this paper demonstrates through experiments that manifold learning
can provide intuitive and easily understandable visualization results for high-dimensional
speech data. By visualizing high-dimensional speech features in a more comprehensible
space, the inherent structure and characteristics of speech data can be observed more clearly.

Recent research has shown that training neural networks using adversarial examples
can effectively enhance model robustness. However, this approach also reduces model
accuracy due to the incorporation of adversarial examples as inputs. The method proposed
in this article allows for the detection of speech data adversarial examples prior to their
input into the machine learning model, thus avoiding the negative impact of training on
adversarial samples.
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