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Abstract: Recently, a mixed redundancy was introduced among the redundant design strategies
to achieve a more reliable system within the equivalent resources. This study deals with a lifetime
distribution for a mixed redundant system with an imperfect fault detector/switch. The lifetime
distribution model was formulated using a structured continuous Markov chain (CTMC) and consid-
ers the time-to-failure (TTF) distribution of a component as a phase-type distribution (PHD). The
model’s versatility and practicality are enhanced because the PHD can represent diverse degradation
patterns of the components exposed to varied operating environments. The model provides accurate
reliability for a mixed redundant system by advancing the approximate reliability function suggested
in previous studies. Furthermore, the model would be useful in system design and management
because it provides information such as the nth moment of the system’s lifetime distribution. In
numerical experiments on some examples, the mixed redundancy was confirmed to devise a more
reliable system than the existing active and standby redundancies, and the improvement effect
increased as the number of redundant components decreased. The optimal structure for maximizing
the expected lifetime of the system changes depends on the reliability of the components and fault
detector/switch.

Keywords: system lifetime; reliability design; mixed redundancy; structured Markov chain; phase–
type distribution

MSC: 90B25

1. Introduction

Traditionally, redundant designs, such as active and standby structures, have been
considered to enhance system reliability. In an active redundant system, all the components
start operating simultaneously and are exposed to the same operating stress. In addition,
the longevity of the system depends on the longest lifetime of the component. A system
with standby redundancy consists of both primary components and spares. The primary
components start functioning when the system is turned on, and the reserves are activated
sequentially when the functional part fails. Thus, the system requires a supplementary
apparatus, called a fault detector/switch (abbreviated as a switch), to detect the failure
of the operating component and transfer its function to one of the spare components on
standby. Assuming that the switch is a fault-free device, a standby redundancy strategy
is preferred over an active redundancy for system reliability [1,2]. However, considering
that the switch is imperfect, that is, switch reliability is less than 1.0, Coit [3] showed
that the optimal redundancy strategy should be employed depending on the condition
of the redundant design, such as the reliability and redundancy level of the switch and
components. Since then, many studies, such as [3–13], have presented the reliability
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optimization problem of employing either an active or cold standby (hereafter referred to
as standby) redundancy strategy for each subsystem. Moreover, the reliability optimization
problem has been applied in various real-world industrial fields such as spaceflight [14],
manufacturing systems [15], and sliding window systems [16].

New versions of the optimization problems for system reliability design, such as a
redundancy allocation problem (RAP) and a reliability–redundancy allocation problem
(RRAP), have been proposed using the reliability function for the mixed redundant system
suggested in [17]. When several alternative components for each subsystem perform the
identical function but have different features, a RAP simultaneously determines compo-
nents, redundancy levels, and strategies for the subsystems to maximize system reliability.
Thus, the RAP would be generally applied to create a system with components already
developed for each subsystem. An RRAP is an integrated form of the reliability allocation
problem and the RAP, and it determines the components’ reliability, redundancy levels,
and strategies for individual subsystems. Determining the component’s reliability means
the component should be newly researched and developed for a subsystem. Ardakan
and Hamadani [17] have also proposed a RAP with either an active, standby or mixed
redundancy strategy for each subsystem and showed that the mixed redundancy strategy
could achieve higher system reliability than other strategies based on the numerical ex-
periments on well-known benchmarks. The best system structures presented in [17,18]
have been searched by a genetic algorithm (GA) [19,20] that does not guarantee the op-
timal solution. Thus, to intactly review the reliability improvement effect of the mixed
redundancy strategy, Sadeghi and Roghanian [21] have exploited the optimal solutions
obtained by a general algebraic modeling system (GAMS) for the same RAP. Some studies,
such as [22–27], have extended RAP to allow for subsystems composed of heterogeneous
components. In refs. [24,28–31], new RRAP formulations have been suggested for a system
consisting of subsystems that apply a mixed redundancy strategy with heterogeneous
components. However, because most of the abovementioned studies are based on the lower
bound of mixed redundant system reliability, the effect of improving system reliability by
mixed redundancy analyzed in previous studies includes some errors. Although the error
may be numerically small, it would be sufficiently meaningful in systems requiring high
reliability, such as satellites, aircraft, medical and safety equipment.

To measure the exact reliability of a system using a mixed redundancy strategy, Guilani
et al. [31,32] and Peiravi et al. [33] suggested a continuous-time Markov chain (CTMC)
model that describes the operating mechanism of the system. In addition, Peiravi et al. [33]
reported that the CTMC model significantly improves system reliability and computational
time in numerical experimentations based on the same benchmark RAP compared with
the approximated reliability function. However, the models are applicable only if the
components have a constant hazard function because the proposed CTMC models [31–33]
assume that a component’s time-to-failure (TTF) is exponentially distributed. To create
a new reliability model, the researchers have attempted to obtain a more generalized
TTF distribution to represent diverse degradation patterns of components exposed to
varied operating environments, such as loading, friction, thermal fatigue, vibration, and
chemical and electrical stresses [34]. Therefore, to formulate the lifetime distribution of
a mixed redundant system with an imperfect switch, this study suggests a new CTMC
model and the TTFs of the system components are distributed according to the generalized
phase–type distribution (PHD). The PHD can describe any random distribution well and
can represent all the distributions with finite support on non-negative integers [35]. The
lifetime distribution model provides accurate system reliability and contains valuable
information on the system lifetime, such as the expectation and variance. Based on the
optimal reliability of a system in the well-known benchmark for the RAP that has been
used in the existing studies, the reliability improvement effect of the mixed redundancy
strategy compared to other strategies, such as active and standby redundancies, and the
approximation error of the previous reliability function for a mixed redundant system
were analyzed. The benchmark considers that the TTFs of the components are distributed



Mathematics 2024, 12, 1191 3 of 17

according to Erlang (m, λ), which is a specific form of the PHD, and has upper bounds on
the cost (CSys) and weight (WSys) of the system.

The remainder of this paper is organized as follows. Section 2 reviews the reliability
model for a system with mixed redundancy proposed by Ardakan and Hamadani [17].
Section 3 proposes a new reliability model for a mixed redundant system with imperfect
switching and components with phase–type TTF distributions. Based on the numerical
experiments and the optimal solutions of the well-known benchmark problems for the RAP,
Section 4 reviews the characteristics of the mixed redundancy strategy, the approximation
error of the previous reliability model [17], and the effectiveness of improving the system
reliability by considering the mixed redundancy strategy. Finally, Section 5 presents the
conclusions and topics for future research.

2. Review on Previous Reliability Model

Ardakan and Hamadani [17] first proposed a mixed redundancy strategy in which
some components could be applied by active redundancy, whereas others are employed
by standby redundancy when the system starts up, as shown in Figure 1. In other words,
when a failure is detected in all the activating components, redundant standby components
are sequentially hired to maintain the system’s functionality. Table 1 is adapted from [17]
and describes the strategies for the redundant design based on the number of active (nA,i)
and standby (nS,i) redundant components.
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Table 1. Strategies for the redundant design.

Strategy nA,i nS,i Redundant Design Type

Strategy 1 = 1 = 0 No redundancy
Strategy 2 > 1 = 0 Active redundancy
Strategy 3 = 1 ≥ 1 Standby redundancy
Strategy 4 > 1 ≥ 1 Mixed redundancy

Ardakan and Hamadani [17] presented Equation (1) as a reliability function for a
mixed redundancy system. As mentioned by Coit [36], it is complicated to implement in a
closed form using Equation (1); therefore, they proposed Equation (2) to handily compute

the lower bound,
∼
Ri(t), of the system reliability. In Equation (2), the reliability ρ(t) of

a switch at mission time t, always has a smaller value than ρ(u) because u ≤ t. Thus,

it could be instinctively discovered that the approximation error, [Ri(t)−
∼
Ri(t)]/Ri(t),

grows when mission times are long over, or the switch’s reliability decreases. Moreover,
Sadeghi and Roghanian [21] and Kim and Kim [34] analyzed the error caused by the above
approximation method through numerical experiments as follows:

Ri(t) = RAct,i(t) +
∫ t

0 ρi(u)ri(t − u) fTAct,i (u)du

+
ns,i−1

∑
x=1

∫ t
0 ρi(u)ri(t − u)

∫ u
0 fi

(x)(u − h) fTAct,i (h)dhdu
(1)
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∼
Ri(t) = RAct,i(t) + ρi(t)

∫ t
0 ri(t − u) fTAct,i (u)du

+
ns,i−1

∑
x=1

ρi(t)
∫ t

0 ri(t − u)
∫ u

0 fi
(x)(u − h) fTAct,i (h)dhdu

(2)

where RAct,i is the reliability of the module with active redundancy with nA,i components;
thus, RAct,i = 1 − [1 − ri(t)]

nA,i . fTAct(u) is the probability density function (PDF) for the
maximum TTF (TAct,i) of the active redundant module. Symbolically, TAct,i = max(Ti; nA,i)

and fTAct(u) = nA,i fi(u)Fi(u)
nA,i . Let fi(u) be the PDF for the component TTF; then, f (x)

i (u)
is the PDF for the sum of x components’ TTF, that is, it is the x-fold convolution of fi(u).

3. Proposed Reliability Model
3.1. TTF Distribution of a Component

Kim and Kim [34] proposed a PHD to model the generalized component TTF. As
shown in Figure 2, the PHD is a probability distribution constructed by a convolution or a
mixture of exponential distributions and involves all exponential family distributions, such
as exponential, hyper-/hypo-exponential, Erlang, Gamma, and hyper-Erlang distributions.
Furthermore, it has considerable flexibility and practicality in system lifetime analysis, such
as system reliability, expectation, and the variance of the system lifetime because it can
describe any random distribution well and can represent all the distributions with finite
support on non-negative integers [35]. Figure 3 is adapted from [34] and shows instances
of approximations to the general distribution of the PHD. It includes the initial probability
vector and transition rate matrix (TRM) between the transient states.
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3.2. Reliability of a Component

This study considers that the TTFs of the components are distributed according to the
generalized PHDs. The PHD consists of transient states (m) and an absorbing state (1), and
it is defined as the time required to reach an absorbing state. The transient states describe
the degradation of the component during operation, and the absorbing state indicates
the failure of the component. Thus, a component normally operates while it remains in
the transient state and is broken at the moment of transition to the absorbing state. The
PHD for the jth component of system i is represented as PH

(
αij, Dij

)
, where αij is a row

vector of size
(
1 × mij

)
denoting the initial probabilities of a CTMC and Dij is a TRM of

size
(
mij × mij

)
to describe the transitions among the transient states

(
mij

)
in the CTMC.

The infinitesimal generator
(

Qij

)
for PH

(
αij, Dij

)
, which includes the absorbing state, is

given by Equation (3) as follows:

Transient states
(
mij

)
Absorption (1)

Qij =

[
Dij dij

01×mij 0

]
,

(3)

where, dij is the intensity vector of size
(
mij × 1

)
describing the transitions from the

transient states to the absorption, and 01×mij denotes a row vector of zeros of length mij.
Thus, the dimension of Qij is equal to

(
mij + 1

)
×

(
mij + 1

)
. For example, Figure 4 shows

the infinitesimal generators and the transition mechanism in the components with hypo-
exponential (or generalized Erlang) and Coxian TTF distributions, which are specific forms
of generalized PHDs.
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Finally, the reliability function for a component with an infinitesimal generator, as in
Equation (3), is presented in Equation (4) as follows:

rij(t) = αij exp
(
Dijt

)
1, for t ≥ 0, (4)

where exp(A) denotes the matrix exponential; 1 denotes a column vector of ones of length
mij, which is used for summing the probabilities of the transient states.

3.3. Reliability of Active Redundant Module

In an active redundant module, all the components are concurrently activated when
the system starts operating. The reliability function for the module with nA,i components
can be presented as RAct,i = 1 −

[
1 − rij(t)

]nA,i . However, in this study, the module is
considered as one of the components of a mixed redundant system. To integrate the TTFs of
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the standby redundant components of the system, a TRM expressing its TTF is required. As
shown in Figure 5, the lifetime, TAct,i, of the module is determined by the longest lifetime
of nA,i components, symbolically, TAct,i = max

(
T1, T2, . . . , TnA,i

)
.
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It implies that the active redundant module malfunctions when the states of all the
components reach their individual absorption. Thus, the infinitesimal generator, QAct,i, for
the lifetime, TAct,i, of the module should cover all the combinations of the transient states
and the absorbing state for the infinitesimal generators of the components. According to
Buchholz [37], for TAct,i of the active redundant module, the infinitesimal generator, QAct,i,
and the initial probability vector, αAct,i, are generated as presented in Equation (5):

[αAct,i 0] =
nA,i
⊗

k=1

[
αij 0

]
, QAct,i =

nA,i
⊕

k=1
Qij =

[
DAct,i dAct,i

0 0

]
, (5)

where, k is a dummy variable; thus,
⊗nA,i

k=1 and
⊗nA,i

k=1 mean that the Kronecker product and
sum operations are repeated n times, respectively. Considering Qij for components’ TTF as
a square matrix of size

(
mij + 1

)
, αAct,i is a row vector of length nA,i

(
mij + 1

)
, and QAct,i

is a square matrix of size nA,i
(
mij + 1

)
. DAct,i, a submatrix of QAct,i, is a square matrix of

size
[
nA,i

(
mij + 1

)
− 1

]
and describes transient states for the module. dAct,i is the column

vector of size
[
nA,i

(
mij + 1

)
− 1

]
and expresses the global absorbing state in which all the

components have reached the absorbing state.

3.4. Reliability of a Mixed Redundant System

Mixed redundant system i consists of an active redundant module (nA,i), standby
components (nS,i), and a fault detector/switch (hereafter referred to as switch) to detect
the failure in the activating components and transfer the function to another component.
The system assumes that the components on standby do not deteriorate because they are
completely protected against the operational stresses, and the failure of a switch implies
that the function of activating components cannot be switched over to a standby state. For
an imperfect switch, the initial probability vector is denoted as αid, and the infinitesimal
generator, Qid, is represented by Equation (6) as follows:

Qid =

[
Did did

0 0

]
(6)

The integration process between the TRM, DAct,i, of the active redundant module and
TRMs, Dij, of the standby redundant components follows the procedure presented by Kim
and Kim [34]. Based on whether the switch operates, they are divided into two situations,
and TRMs describing the operating mechanism of the system in each situation have been
developed and adequately integrated.

[Situation#1(S1)] In the switch-on condition, the system operates until the last standby
component fails because the switchover of an assigned function between the components
can be performed in sequence. In other words, if all components of the active redundant
module fail, the first standby redundancy component is activated. Also, if the activated
component fails, the mission is transferred to the next standby component. Thus, as shown
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in Figure 6, the system lifetime, TS1,i, is defined as the sum of the lifetime (TAct,i) of the
active redundant module and the lifetimes

(
Tij

)
of the standby redundant components;

symbolically, TS1,i = TAct,i + ∑
ns,i
k=1 Tij. The initial probability vector (αS1,i) and infinitesimal

generator (QS1,i) for TS1,i are expressed by Equations (7) and (8), respectively:

αS1,i =
[
αAct,i αAct(SA),iα

(1)
ij α

(1)
ij(SA)

α
(2)
ij · · · α(ns,i−1)

ij(SA)
α
(ns,i)
ij

]
=

[
αAct,i 0ns.imij

]
(7)

where αAct(SA),i and αij(SA)
denote the initial probabilities that the operation of the active

redundant module and standby components start from the absorbing state (SA), i.e.,
failure, respectively. In general, they could be assumed to be zero; thus, αAct(SA),iα

(1)
ij and

α
(k)
ij(SA)

α
(k+1)
ij are row vectors of zeros of size mij as follows:

QS1,i =

[
DS1,i dS1,i

0 0

]
=



DAct,i dAct,iα
(1)
ij

D(1)
ij d(1)

ij α
(2)
ij

. . . . . . 0
D(k)

ij d(k)
ij α

(k+1)
ij

. . . . . .

D(ns,i)
ij d(ns,i)

ij
0 0


(8)

where dAct,iα
(1)
ij is the sub-TRM for entering the initial state of the first standby component

when the active redundant module fails. Similarly, d(k)
ij α

(k+1)
ij is the sub-TRM activating

the (k + 1)th standby component when the kth standby component fails.
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[Situation#2(S2)] In switch-off condition, the failure of an activating component causes
system failure because the switch cannot detect the failure and switch the function to an-
other standby, as shown in Figure 7. Thus, the initial probability vector (αS2,i) and infinites-
imal generator

(
QS2,i

)
for the TS2,i are expressed by Equations (9) and (10), respectively:

αS2,i =
[
αAct,i α

(1)
ij α

(2)
ij · · · α

(ns,i)
ij

]
(9)
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QS2,i =

[
DS2,i dS2,i

0 0

]
=



DAct,i dAct,i

D(1)
ij d(1)

ij
. . .

...
D(k)

ij d(k)
ij

. . .
...

D(ns,i)
ij d(ns,i)

ij
0 0


(10)

where D(k)
ij depicts the degradation of the kth standby component, while d(k)

ij indicates that
the failure of the kth standby component causes system failure.
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To integrate the above TRMs, DS1,i and DS2,i, according to the operating mechanism of
a mixed redundant system, the transition probability matrices (TPMs), as in Equation (11),
are employed. For Situation#1(S1), PT conserves the components’ states when the state tran-
sition of a switch transpires. For Situation#2(S2), PA indicates that the state transition turns
up in only an activated component when the switch has already broken. The relationship
between two TPMs is expressed as PT + PA = Imid+1.

PT =

[
Imid 0mid×1

01×mid 0

]
, PA =

[
0mid×mid 0mid×1
01×mid 1

]
(11)

The initial probability vector, αi, for the mixed redundant system i is presented in
Equation (12). When the system remains functional, the sub-TRM (Di), which describes the
state transitions of the active redundant module and standby components, is formulated as
in Equation (13) [34]:

αi =
[
αid ⊗αS1,i αid(SA)

⊗αS2,i

]
= [αid ⊗αS1,i 0] (12)

where αid(SA)
is the probability that the switch fails (SA) when the system starts; thus, it

could be assumed to be zero, generally. Finally, αid(SA)
⊗

α
S2,i

is the row vector of the zeros

of length
[
nA,i

(
mij + 1

)
− 1

]
+ ns,imij:

Di = PT ⊗ DS1,i + Qid ⊗ IDS1,i + PA ⊗ DS2,i
= Imid+1 ⊗ DS1,i + Qid ⊗ IDS1,i + PA ⊗ (D2,i − DS1,i)
= Qid ⊕ DS1,i + PA ⊗ (DS2,i − DS1,i)

(13)

where, PT
⊗

DS1,i + Qid
⊗

IDS1,i describes the transitions between the combinatorial states
of components’ transient states in the system when the switch is normally operating
[Situation#1(S1)]. PA

⊗
DS2,i depicts the state transition of components when the switch

has failed [Situation#2(S2)].
Finally, for the lifetime distribution of a mixed redundant system i, the reliability,

Ri(t), and hazard function, hi(t), at time t and the nth moment, E
[
Tn

i
]
, are presented as
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Equations (14)–(16), respectively. When n = 1 in Equation (16), the expected lifetime, E[Ti],
of the system, i.e., mean time-to-failure (MTTF), is suggested as Equation (17). Moreover,
Equation (16) provides various information on the system lifetime, such as variance, skew-
ness, and kurtosis. The information would be utilized for system design and management.

Ri(t) = αi exp(Dit)1, (14)

hi(t) =
fi(t)
Ri(t)

=
fi(t)

1 − Fi(t)
=

αi exp(Dit)d
αi exp(Dit)1

, for t ≥ 0, (15)

E[Tn
i ] = (−1)nn!αiD−n

i 1, for n ≥ 1, (16)

E[Ti] = −αiD−1
i 1 (17)

4. Numerical Experiments

In this section, the characteristics of the mixed redundancy strategy are reviewed
through general numerical experiments considering system design factors such as the
reliabilities of components and a switch, the number of redundant components, and
the mission time. In addition, based on the well-known benchmark for an RAP, the
approximation error of the previous reliability model [17] for a mixed redundant system and
the effectiveness of improving the system reliability by considering the mixed redundancy
strategy are examined.

4.1. Characteristics of the Mixed Redundancy Strategy

Numerical experiments for reviewing the characteristics of the mixed redundancy
strategy assume that the TTFs of components and a switch are distributed according to
Erlang(1, λ), that is, an exponential distribution. Since, the active redundancy strategy is
always preferred over standby and mixed redundancies when the switch reliability, ρ(t), is
less than the reliability, r(t), of the components; this study reviews the characteristics in a
condition where ρ(t) > r(t) for all t [3,36].

Figure 8a is created assuming that r(t) = 0.5 and ρ(t) = 0.9, when the mission
time (t) is given as 100 h. As the number of components (n) increases, the reliabilities
of the active redundant system (nA = n) and mixed redundant system (nA ≥ 1, nS ≥ 1)
are observed to approach 1.0; however, the reliability of the standby redundant system
(nA = 1) converges to about 0.9717 from when n ≥ 5. Moreover, although the gap between
the reliabilities of the active and mixed redundant systems decreases with the increasing
number of components, the mixed redundant system always has the highest reliability. In
particular, in the practical situation of installing fewer redundant components, there is a
significant difference between the reliability of the active and mixed redundancy strategies.
In conclusion, the benefit of a mixed redundancy strategy over an active redundancy
increases as the number of redundant components decreases.
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In the design process of reliability, the general aim is to search for the optimal con-
figuration to maximize the system’s reliability at a predetermined mission time. Based
on a system with an imperfect switch and five components (n = 5), Figure 8b observes
the change in the reliability of the five configurations (nA + nS = 5) over the system’s
operating time. The best configuration (nA, nS) achieving the highest reliability by the time
interval is the following: (5, 0) on the time interval [0, 15], (4, 1) on the time interval [16, 89],
(3, 2) the time interval [90, 152], (2, 3) on the time interval [153, 197], and (1, 4) after 197 h.
Therefore, when attempting to maximize system reliability at a predetermined mission time
by installing the same number of components, increasing the number of standby redundant
components may be recommended as the mission time expands.

Figure 9 shows the observed expected lifetime, E
(
TSys

)
, of the mixed redundant system

with five components (n = 5) as a function of the reliability of the components and switch.
When the switch’s reliability, ρ(t), is sufficiently more elevated than the reliability, r(t), of
the components, Figure 9a shows that the standby redundant system, (nA = 1, nS = 4), is
the optimal configuration for the expected system lifetime (i.e., MTTF). Furthermore, as the
number (nS) of standby redundant components increases, the growth rate, dE

(
TSys

)
/dρ(t),

of the expected system lifetime increases as ρ(t) increases. As shown in Figure 9b, when
ρ(t) ≤ r(t), the active redundancy strategy, (nA = 5, nS = 0), is recommended; however,
the case of ρ(t) ≤ r(t) is not general. As ρ(t) increases, it is beneficial to increase the
number (nS) of standby redundant components.
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4.2. Redundancy Allocation Problem (RAP)

This section presents the numerical experimental results on a well-known RAP bench-
mark. The experiments were conducted for two purposes: (i) to review the approximation

error of the existing reliability function
∼
Ri(t) in Equation (2) for a mixed redundancy sys-

tem; (ii) to observe the improvement in the system reliability through a mixed redundancy
strategy, compared with other redundancy strategies, which are, ‘only active’ and ‘either
active or standby’. The above two purposes are measured using the maximum possible
improvement (MPI) index defined by Equation (18).

MPI(%) =
High RSys(t)− Low RSys(t)

1 − Low RSys(t)
× 100 (18)

To maximize the system reliability at a designated mission time (t = 100 h) within
the upper bounds, CSys and WSys, of the system’s cost and weight, the RAP determines
(1) the component type, (2) the number of redundancies, and (3) the number of active
redundancies for each subsystem. Figure 10 shows the system configuration for the RAP
benchmark. The benchmark system has 14 subsystems with 3 or 4 alternative components,
as listed in Table 2. In Table 2, the TTF of the jth alternative component for subsystem i is
considered to be Erlang

(
mij, λij

)
, and the cost and weight of the component are denoted
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as cij and wij, respectively. For all the subsystems, the TTF distribution of the switch for
standby redundancy is supposed to be Erlang(1, λid) and λid = −(ln 0.99)/100, that is,
ρ(t) = 0.99. In addition, the upper limit on the number of components that can be installed
in each subsystem is set to six, that is, nmax,i = 6 for all i.
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Table 2. Component data for RAP example.

Subsystem (i)
Choice 1 (j=1) Choice 2 (j=2) Choice 3 (j=3) Choice 4 (j=4)

λij mij cij wij λij mij cij wij λij mij cij wij λij mij cij wij

1 0.005320 2 1 3 0.000726 1 1 4 0.004990 2 2 2 0.008180 3 2 5
2 0.008180 3 2 8 0.000619 1 1 10 0.004310 2 1 9
3 0.013300 3 2 7 0.011000 3 3 5 0.012400 3 1 6 0.004660 2 4 4
4 0.007410 2 3 5 0.012400 3 4 6 0.006830 2 5 4
5 0.000619 1 2 4 0.004310 2 2 3 0.008180 3 3 5
6 0.004360 3 3 5 0.005670 3 3 4 0.002680 2 2 5 0.000408 1 2 4
7 0.010500 3 4 7 0.004660 2 4 8 0.003940 2 5 9
8 0.015000 3 3 4 0.001050 1 5 7 0.010500 3 6 6
9 0.002680 2 2 8 0.000101 1 3 9 0.000408 1 4 7 0.000943 1 3 8
10 0.014100 3 4 6 0.006830 2 4 5 0.001050 1 5 6
11 0.003940 2 3 5 0.003550 2 4 6 0.003140 2 5 6
12 0.002360 1 2 4 0.007690 2 3 5 0.013300 3 4 6 0.011000 3 5 7
13 0.002150 2 2 5 0.004360 3 3 5 0.006650 3 2 6
14 0.011000 3 4 6 0.000834 1 4 7 0.003550 2 5 6 0.004360 3 6 9

The RAP is presented as a nonlinear optimization problem with a nonlinear objective
function for evaluating system reliability. However, to obtain optimal solutions for the
RAP, it is necessary to convert this problem to a linear programming problem. Thus, in this
study, the RAP is transformed into a simple binary integer linear programming problem,
such as Equations (19)–(23), by constructing the three-dimensional matrices shown in
Figure 11 through pre-calculation using MATLAB R2022a. In Figure 11, R∗

ijni
(t) denotes the

maximum reliability of subsystem i when the jth component of the alternatives is selected
and ni components are installed; namely, it is equal to arg max

nA≤ni
Ri(t; j, ni, nA). Cijni and Wijni

represent the cost and weight of subsystem i, respectively, with ni of the jth component,
that is, Cijni = nicij and Wijni = niwij.

Maximize ln RSys(t) =
s

∑
i=1

qi

∑
j=1

nmax,i

∑
ni=1

ln R∗
ijni

(t) · xijni (19)

subject to :
s

∑
i=1

qi

∑
j=1

nmax,i

∑
ni=1

Cijni xijni ≤ CSys (20)

s

∑
i=1

qi

∑
j=1

nmax,i

∑
ni=1

Wijni xijni ≤ WSys (21)

qi

∑
j=1

nmax,i

∑
ni=1

xijni = 1, ∀i ∈ {1, 2, . . . , s} (22)
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xijni ∈ {0, 1}, ∀i ∈ {1, 2, . . . , s},
∀j ∈ {1, 2, . . . , qi}, ∀ni ∈ {1, 2, . . . , nmax,i}

(23)
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The objective function, Equation (19), maximizes the system reliability, and a logarith-
mic transformation is applied for linearization. Equations (20) and (21) constrain the upper
limits of the cost and the weight of the system. Equation (22) indicates that the set (j, ni)
for the type and number of components should be uniquely determined in the subsystem i.
Equation (23) indicates that the decision variable xijni is a binary integer.

Table 3 shows the best solution of the RAP when WSys = 170, which was searched
by Ardakan and Hamadani [17] using a genetic algorithm. Moreover, for each subsystem,
Table 3 lists the approximated reliability by Equation (2), and the true reliability using
Equation (14). A review of the approximation error of Equation (2) based on the MPI index
showed that the average error is 15.0%, with a maximum and minimum of 24.5% and 3.4%
at the 13th and 12th subsystems, respectively. When the subsystems are designed according

to the best solution, the approximated and true values,
∼
RSys(t) and RSys(t), of the system

reliability are evaluated as 0.992329 and 0.993449, respectively, and the MPI index is 14.6%.

Table 3. Approximation error of Equation (2) [17,23].

Subsystem
(i) j nA,i nS,i Strategy

∼
Ri(t)

by Equation (2)
Ri(t)

by Equation (14) MPI (%)

1 3 2 1 Mixed 0.999850 0.999868 12.0
2 1 1 1 Standby 0.999294 0.999434 19.8
3 4 2 1 Mixed 0.999888 0.999902 12.5
4 3 2 1 Mixed 0.999410 0.999461 8.6
5 2 2 1 Mixed 0.999920 0.999930 12.5
6 2 1 1 Standby 0.999772 0.999826 23.7
7 1 1 1 Standby 0.998347 0.998604 15.5
8 1 2 1 Mixed 0.999344 0.999412 10.4
9 1 1 1 Standby 0.999527 0.999631 22.0

10 2 2 1 Mixed 0.999410 0.999461 8.6
11 3 1 1 Standby 0.999287 0.999425 19.4
12 1 3 1 Mixed 0.999353 0.999375 3.4
13 2 1 1 Standby 0.999894 0.999920 24.5
14 3 1 1 Standby 0.999007 0.999180 17.4

Review
∼
RSys(t) = 0.992329

RSys(t) = 0.993449, MPI = RSys(t)−
∼
RSys(t)

1.0−
∼
RSys(t)

× 100(%) = 14.6%

Moreover, numerical experiments for the above mathematical programming model,
Equations (19)–(23), were conducted with 33 problems, while fixing the system cost (CSys)
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130 and changed the system weight (WSys) from 159 to 191. The optimal solution for each
system weight constraint was determined using ILOG CPLEX 20.1. The optimal reliability
and structure of the system are presented in Tables 4 and 5, respectively. Figure 12 visualizes
Table 4, and the bar graph represents the MPIs for (D)–(B). In Table 4, the MPIs of (D)–(A)
and (D)–(B) represent the system reliability improvement effect by considering the mixed
redundancy strategy compared to ‘Only active (A)’ and ‘Either active or standby (B)’
strategies in the RAP. In the MPIs of (D)–(A), the average was 77.4%, with a maximum of
79.2% at WSys = 168 and a minimum of 75.6% at WSys = 191. In the MPIs of (D)–(B), the
average was 37.3%, with a maximum of 51.9% at WSys = 190 and a minimum of 18.6% at
WSys = 160. In conclusion, the mixed redundancy strategy is confirmed to implement a
more reliable system than traditional strategies within equivalent resources.

Table 4. Comparison of the optimal system reliability by the redundancy strategies considered.

WSys
Only Active (A) Active or Standby (B) Mixed Redundancy (C) This Study (D) MPI (%)

[38] [34] [21] (D)–(A) (D)–(B) (D)–(C)

159 0.954565 0.986740 0.98737 0.989263 76.4 19.0 15.0
160 0.954565 0.987102 0.98769 0.989504 76.9 18.6 14.7
161 0.956503 0.987370 0.98864 0.990228 77.5 22.6 14.0
162 0.958936 0.987731 0.98898 0.990648 77.2 23.8 15.1
163 0.960221 0.988077 0.98938 0.991015 77.4 24.6 15.4
164 0.960861 0.988439 0.98971 0.991279 77.7 24.6 15.2
165 0.962149 0.988707 0.99065 0.991982 78.8 29.0 14.2
166 0.964619 0.989069 0.99100 0.992402 78.5 30.5 15.6
167 0.965593 0.989334 0.99137 0.992614 78.5 30.8 14.4
168 0.966555 0.989607 0.99172 0.993035 79.2 33.0 15.9
169 0.967531 0.989872 0.99198 0.993154 78.9 32.4 14.6
170 0.970015 0.990035 0.99233 0.993575 78.6 35.5 16.2
171 0.970015 0.990397 0.99233 0.993575 78.6 33.1 16.2
172 0.971962 0.990497 0.99265 0.993842 78.0 35.2 16.2
173 0.972327 0.990663 0.99299 0.994099 78.7 36.8 15.8
174 0.974416 0.990763 0.99299 0.994099 76.9 36.1 15.8
175 0.974416 0.990928 0.99331 0.994366 78.0 37.9 15.8
176 0.976372 0.991280 0.99352 0.994455 76.5 36.4 14.4
177 0.977223 0.991280 0.99387 0.994876 77.5 41.2 16.4
178 0.977223 0.991547 0.99387 0.994876 77.5 39.4 16.4
179 0.979185 0.991637 0.99419 0.995143 76.7 41.9 16.4
180 0.979552 0.991811 0.99453 0.995401 77.5 43.8 15.9
181 0.980036 0.991903 0.99453 0.995401 77.0 43.2 15.9
182 0.981518 0.992077 0.99485 0.995669 76.6 45.3 15.9
183 0.981709 0.992168 0.99485 0.995669 76.3 44.7 15.9
184 0.982206 0.992377 0.99509 0.995901 77.0 46.2 16.5
185 0.982879 0.992435 0.99515 0.995930 76.2 46.2 16.1
186 0.983070 0.992644 0.99548 0.996188 77.5 48.2 15.7
187 0.983568 0.992734 0.99548 0.996188 76.8 47.5 15.7
188 0.984738 0.992846 0.99580 0.996456 76.8 50.5 15.6
189 0.984738 0.993001 0.99580 0.996456 76.8 49.4 15.6
190 0.985225 0.993113 0.99604 0.996688 77.6 51.9 16.4
191 0.986399 0.993266 0.99604 0.996688 75.6 50.8 16.4

Table 5. The optimal system structure (j, nA,i, nS,i) by WSys.

WSys
Subsystem (i)

ln RSys RSys
1 2 3 4 5 6 7 8 9 10 11 12 13 14

159 3,2,1 1,1,1 4,1,1 3,2,1 2,1,1 2,1,1 1,1,1 1,2,1 3,1,1 2,2,1 1,1,1 1,2,2 2,1,1 3,1,1 −0.010795 0.989263
160 4,1,0 1,1,1 4,1,1 3,2,1 2,2,1 2,1,1 1,1,1 1,2,1 3,1,1 2,2,1 1,1,1 2,2,1 2,1,1 3,1,1 −0.010551 0.989504
161 3,2,1 1,1,1 4,1,1 3,2,1 2,2,1 2,1,1 1,1,1 1,2,1 3,1,1 2,2,1 1,1,1 2,2,1 2,1,1 3,1,1 −0.009820 0.990228
162 3,2,1 1,1,1 4,1,1 3,2,1 2,2,1 2,1,1 1,1,1 1,2,1 3,1,1 2,2,1 1,1,1 1,2,2 2,1,1 3,1,1 −0.009396 0.990648
163 3,2,1 1,1,1 4,2,1 3,2,1 2,1,1 2,1,1 1,1,1 1,2,1 3,1,1 2,2,1 1,1,1 1,2,2 2,1,1 3,1,1 −0.009026 0.991015
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Table 5. Cont.

¯
WSys

Subsystem (i)
ln RSys RSys

1 2 3 4 5 6 7 8 9 10 11 12 13 14

164 3,2,1 1,1,1 4,1,1 3,2,1 2,2,1 2,1,1 1,1,1 1,2,1 1,1,1 2,2,1 1,1,1 1,2,2 2,1,1 3,1,1 −0.008759 0.991279
165 3,2,1 1,1,1 4,2,1 3,2,1 2,2,1 2,1,1 1,1,1 1,2,1 3,1,1 2,2,1 1,1,1 2,2,1 2,1,1 3,1,1 −0.008051 0.991982
166 3,2,1 1,1,1 4,2,1 3,2,1 2,2,1 2,1,1 1,1,1 1,2,1 3,1,1 2,2,1 1,1,1 1,2,2 2,1,1 3,1,1 −0.007627 0.992402
167 3,2,1 1,1,1 4,2,1 3,2,1 2,2,1 2,1,1 1,1,1 1,2,1 1,1,1 2,2,1 1,1,1 2,2,1 2,1,1 3,1,1 −0.007413 0.992614
168 3,2,1 1,1,1 4,2,1 3,2,1 2,2,1 2,1,1 1,1,1 1,2,1 1,1,1 2,2,1 1,1,1 1,2,2 2,1,1 3,1,1 −0.006990 0.993035
169 3,2,1 1,1,1 4,2,1 3,2,1 2,2,1 2,1,1 1,1,1 1,2,1 1,1,1 2,2,1 3,1,1 2,2,1 2,1,1 3,1,1 −0.006870 0.993154
170 3,2,1 1,1,1 4,2,1 3,2,1 2,2,1 2,1,1 1,1,1 1,2,1 1,1,1 2,2,1 3,1,1 1,2,2 2,1,1 3,1,1 −0.006446 0.993575
171 3,2,1 1,1,1 4,2,1 3,2,1 2,2,1 2,1,1 1,1,1 1,2,1 1,1,1 2,2,1 3,1,1 1,2,2 2,1,1 3,1,1 −0.006446 0.993575
172 3,2,1 1,1,1 4,2,1 3,2,1 2,2,1 2,1,1 1,1,1 1,2,1 2,1,1 2,2,1 3,1,1 1,2,2 2,1,1 3,1,1 −0.006177 0.993842
173 3,2,1 1,1,1 4,2,1 3,2,1 2,2,1 2,1,1 1,1,1 1,2,1 1,1,1 2,2,1 1,2,1 1,2,2 2,1,1 3,1,1 −0.005918 0.994099
174 3,2,1 1,1,1 4,2,1 3,2,1 2,2,1 2,1,1 1,1,1 1,2,1 1,1,1 2,2,1 1,2,1 1,2,2 2,1,1 3,1,1 −0.005918 0.994099
175 3,2,1 1,1,1 4,2,1 3,2,1 2,2,1 2,1,1 1,1,1 1,2,1 2,1,1 2,2,1 1,2,1 1,2,2 2,1,1 3,1,1 −0.005650 0.994366
176 3,2,1 1,1,1 4,2,1 3,2,1 2,2,1 2,1,1 1,2,1 1,2,1 1,1,1 2,2,1 3,1,1 2,2,1 2,1,1 3,1,1 −0.005561 0.994455
177 3,2,1 1,1,1 4,2,1 3,2,1 2,2,1 2,1,1 1,2,1 1,2,1 1,1,1 2,2,1 3,1,1 1,2,2 2,1,1 3,1,1 −0.005137 0.994876
178 3,2,1 1,1,1 4,2,1 3,2,1 2,2,1 2,1,1 1,2,1 1,2,1 1,1,1 2,2,1 3,1,1 1,2,2 2,1,1 3,1,1 −0.005137 0.994876
179 3,2,1 1,1,1 4,2,1 3,2,1 2,2,1 2,1,1 1,2,1 1,2,1 2,1,1 2,2,1 3,1,1 1,2,2 2,1,1 3,1,1 −0.004869 0.995143
180 3,2,1 1,1,1 4,2,1 3,2,1 2,2,1 2,1,1 1,2,1 1,2,1 1,1,1 2,2,1 1,2,1 1,2,2 2,1,1 3,1,1 −0.004609 0.995401
181 3,2,1 1,1,1 4,2,1 3,2,1 2,2,1 2,1,1 1,2,1 1,2,1 1,1,1 2,2,1 1,2,1 1,2,2 2,1,1 3,1,1 −0.004609 0.995401
182 3,2,1 1,1,1 4,2,1 3,2,1 2,2,1 2,1,1 1,2,1 1,2,1 2,1,1 2,2,1 1,2,1 1,2,2 2,1,1 3,1,1 −0.004341 0.995669
183 3,2,1 1,1,1 4,2,1 3,2,1 2,2,1 2,1,1 1,2,1 1,2,1 2,1,1 2,2,1 1,2,1 1,2,2 2,1,1 3,1,1 −0.004341 0.995669
184 3,2,1 1,1,1 4,2,1 3,2,1 2,2,1 2,1,1 1,2,1 1,3,1 1,1,1 2,2,1 1,2,1 1,2,2 2,1,1 3,1,1 −0.004108 0.995901
185 3,2,1 1,1,1 4,2,1 3,2,1 2,2,1 2,1,1 1,2,1 1,2,1 2,1,1 2,2,1 3,1,1 1,2,2 2,1,1 3,2,1 −0.004078 0.995930
186 3,2,1 1,1,1 4,2,1 3,2,1 2,2,1 2,1,1 1,2,1 1,2,1 1,1,1 2,2,1 1,2,1 1,2,2 2,1,1 3,2,1 −0.003819 0.996188
187 3,2,1 1,1,1 4,2,1 3,2,1 2,2,1 2,1,1 1,2,1 1,2,1 1,1,1 2,2,1 1,2,1 1,2,2 2,1,1 3,2,1 −0.003819 0.996188
188 3,2,1 1,1,1 4,2,1 3,2,1 2,2,1 2,1,1 1,2,1 1,2,1 2,1,1 2,2,1 1,2,1 1,2,2 2,1,1 3,2,1 −0.003551 0.996456
189 3,2,1 1,1,1 4,2,1 3,2,1 2,2,1 2,1,1 1,2,1 1,2,1 2,1,1 2,2,1 1,2,1 1,2,2 2,1,1 3,2,1 −0.003551 0.996456
190 3,2,1 1,1,1 4,2,1 3,2,1 2,2,1 2,1,1 1,2,1 1,3,1 1,1,1 2,2,1 1,2,1 1,2,2 2,1,1 3,2,1 −0.003318 0.996688
191 3,2,1 1,1,1 4,2,1 3,2,1 2,2,1 2,1,1 1,2,1 1,3,1 1,1,1 2,2,1 1,2,1 1,2,2 2,1,1 3,2,1 −0.003318 0.996688
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Furthermore, (C) in Table 4 shows the optimal system reliability of the RAP suggested
by Sadeghi and Roghanian [21], based on Equation (2). The optimal system structures
presented in Table 5 are identical to the configurations suggested in (C) [21], except for
a slight difference when WSys = 160. At WSys = 160, the (C) recommended optimal
configurations for the 1st and 12th subsystems as (3, 2, 1) and (4, 1, 1), respectively. Thus,
the MPIs of (D)–(C) indicate the system reliability errors caused by Equation (2). The
average MPIs was 15.6%, with a maximum of 16.5% at WSys = 184 and a minimum of
14.0% at WSys = 161.

5. Conclusions and Future Study

This study suggests a lifetime distribution model for a mixed redundant system with
an imperfect fault detector/switch. The proposed model is formulated by a structured
CTMC that considers components’ TTF distribution as a generalized PHD. The PHD
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enhances the versatility and practicality of the model because it can represent diverse
degradation patterns of the components exposed to varied operating environments. Also,
the PHD can describe any random distribution well and represent all the distributions with
finite support on non-negative integers [35]. Furthermore, the model provides accurate
reliability by advancing the approximate reliability function suggested in the previous
studies. It would be helpful in system design and management because it provides valu-
able information such as system reliability, hazard function, MTTF (i.e., expected lifetime),
lifetime variance, skewness, and kurtosis based on the nth moment of the system’s life-
time distribution. Also, several insights for system reliability design are discovered in
numerical experiments: (1) the mixed redundancy strategy implements a more reliable
system than active and standby redundancies, and the effect of reliability improvement is
more significant when the number of redundant components is reduced; (2) as the mission
time required for the system expands, the mixed redundancy strategy is preferred over an
active redundancy.

Based on this study, the following subjects could be recommended for future re-
search. First, a structured CTMC model for a mixed redundant system with heterogeneous
components needs to be developed, and component sequencing is also considered in the
model [23,32,33]. Second, an optimization problem considering the system lifetime would
be proposed, such as the expected lifetime, percentile lifetime, and expected residual life-
time [38–40]. Third, for a K-mixed redundancy, a generalized form of mixed redundancy, it
would be interesting to research a system lifetime model considering a PHD as the TTF
distribution of components. Finally, developing a CTMC-based simulation methodology
for a phased-mission system with a mixed redundancy strategy is recommended [41].
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