
Citation: Sun, D.; Chen, Y.; Li, H.

Intelligent Vehicle Computation

Offloading in Vehicular Ad Hoc

Networks: A Multi-Agent LSTM

Approach with Deep Reinforcement

Learning. Mathematics 2024, 12, 424.

https://doi.org/10.3390/

math12030424

Academic Editor: Faheim Sufi

Received: 20 December 2023

Revised: 17 January 2024

Accepted: 25 January 2024

Published: 28 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Intelligent Vehicle Computation Offloading in Vehicular Ad Hoc
Networks: A Multi-Agent LSTM Approach with Deep
Reinforcement Learning
Dingmi Sun, Yimin Chen and Hao Li *

The School of Information Science and Engineering, Yunnan University, Kunming 650504, China;
dmsun@mail.ynu.edu.cn (D.S.); chenyimin@ynu.edu.cn (Y.C.)
* Correspondence: lihao707@ynu.edu.cn

Abstract: As distributed computing evolves, edge computing has become increasingly important. It
decentralizes resources like computation, storage, and bandwidth, making them more accessible to
users, particularly in dynamic Telematics environments. However, these environments are marked
by high levels of dynamic uncertainty due to frequent changes in vehicle location, network status,
and edge server workload. This complexity poses substantial challenges in rapidly and accurately
handling computation offloading, resource allocation, and delivering low-latency services in such
a variable environment. To address these challenges, this paper introduces a “Cloud–Edge–End”
collaborative model for Telematics edge computing. Building upon this model, we develop a
novel distributed service offloading method, LSTM Muti-Agent Deep Reinforcement Learning
(L-MADRL), which integrates deep learning with deep reinforcement learning. This method includes
a predictive model capable of forecasting the future demands on intelligent vehicles and edge
servers. Furthermore, we conceptualize the computational offloading problem as a Markov decision
process and employ the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) approach
for autonomous, distributed offloading decision-making. Our empirical results demonstrate that
the L-MADRL algorithm substantially reduces service latency and energy consumption by 5–20%,
compared to existing algorithms, while also maintaining a balanced load across edge servers in
diverse Telematics edge computing scenarios.

Keywords: edge computing; computation offloading; resource allocation; deep reinforcement learning

MSC: 68T07; 68T20

1. Introduction

With the rapid development of telematics technology, the computing needs for delay-
sensitive tasks such as pattern recognition, image and video processing, target detection
and route planning continue to increase. In this type of task, results must be achieved in
the shortest possible time so that the vehicle can quickly make the next decisions. However,
due to the limited computing resources of vehicles, task computations for computation-
ally intensive and delay-sensitive tasks cannot be performed locally in a short time. To
address this challenge, Mobile Edge Computing (MEC) provides us with a solution that
offloads tasks to edge servers to fully utilize their powerful computing resources to perform
task computations.

In MEC, the Roadside Unit (RSU) plays the role of providing richer computing and
storage resources. With the continuous development of 5G technology, communication
latency has been significantly reduced, making task offloading more practical and feasi-
ble.When studying task offloading solutions, traditional solutions usually only consider the
situation where the user does not leave the base station’s communication range. However,
in the context of the Internet-of-Vehicles (IoV), intelligent vehicles move very quickly on

Mathematics 2024, 12, 424. https://doi.org/10.3390/math12030424 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12030424
https://doi.org/10.3390/math12030424
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math12030424
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12030424?type=check_update&version=2

Mathematics 2024, 12, 424 2 of 27

the highway and reach speeds of up to 80 km/h, which brings new challenges for com-
munication between vehicle and base station. Due to the short communication range of
5G communication, the communication time between vehicle and base station may be
very limited, which directly limits the data transmission speed. In addition, if the vehicle
has left the communication range of the current base station before the RSU completes
the task calculation, the calculation results will not be returned to the vehicle in a timely
manner. Therefore, in the Internet-of-Vehicles, traditional task offloading solutions may
fail, and there is an urgent need to propose a new task shifting solution that combines
vehicle movements.

The incorporation of Multi-Agent Deep Reinforcement Learning (MADRL) enhances
the stability of decision-making processes within Telematics networks, ensuring a contin-
uous refinement of policies for each vehicle to maximize overall rewards. Through the
integration of MADRL with Mobile Edge Computing (MEC), our research addresses the
challenges associated with computational offloading in vehicular edge networks. Our
methodology carefully considers the mobility patterns of vehicles, a crucial factor sig-
nificantly influencing task execution latency. Our primary emphasis is on formulating
effective offloading strategies based on real-time observations. The adaptability of Deep
Reinforcement Learning (DRL) to dynamic environments remains pivotal, particularly in
the context of sophisticated multi-vehicle MEC systems.

To address these challenges, this paper introduces a reinforcement learning offloading
scheme based on vehicle trajectory prediction. The main contributions are as follows:

(1) We model the computational offloading issue in multi-vehicle environments as a
Multi-Agent DRL problem, concentrating on the selection of the most appropriate
MEC servers for various vehicle tasks. Our model adeptly captures the real-time state
of vehicles, encompassing location and task-specific information, thus enabling each
vehicle to make well-informed offloading decisions.

(2) We introduce a novel distributed task collaboration framework using a multi-agent
deep deterministic policy gradient (L-MADRL) network. This framework effectively
tackles the combined optimization challenge of offloading and resource allocation,
exhibiting notable performance improvements in task completion delays, vehicle
energy costs, and load balancing.

(3) We takes into account the urgency of specific tasks. This article makes priority judg-
ments on different types of tasks during the offloading decision generation process to
ensure that high-delay-sensitive tasks are completed locally first and prevent potential
catastrophic harm.

The remainder of the paper is structured as follows: Section 2 provides a review of
related research; Section 3 outlines the system model, including network, task, and compu-
tation models; Section 4 introduces the L-MADRL scheme; Section 5 presents evaluation
results; and Section 6 offers concluding remarks.

2. Related Work

Tian et al. [1] introduce a dynamic task offloading algorithm based on greedy match-
ing, focusing on real-time responsiveness in vehicle networks. Alqarni et al. [2] employ
GPU-based particle swarm optimization for high-performance vehicular edge comput-
ing, demonstrating efficient task offloading. Shu and Li [3] propose a joint offloading
strategy using quantum particle swarm optimization in MEC-enabled vehicular networks,
expanding the optimization horizon. Bozorgchenani et al. [4] address heterogeneous
vehicular edge networks with online and off-policy bandit solutions for computation of-
floading. Materwala et al. [5] contribute a QoS-SLA-aware adaptive genetic algorithm for
multi-request offloading in integrated edge-cloud computing for the Internet-of-Vehicles.
Wang et al. [6] present a sustainable Internet-of-Vehicles system, employing an improved
genetic algorithm for task offloading with a focus on sustainability.

Wang et al. [7] explore computation offloading in MEC-assisted V2X networks, intro-
ducing game theory to foster cooperative environments. Xu et al. [8] propose a distributed

Mathematics 2024, 12, 424 3 of 27

approach using game theory and fuzzy neural networks for task offloading in the Internet-
of-Vehicles, emphasizing collective decision-making. Zhang et al. [9] extend game theory
principles to symmetric MEC-enabled vehicular networks, showcasing its adaptability
in different vehicular scenarios.Ashraf et al. [10] conduct an analysis of link selection
challenges in underwater routing protocols, shedding light on the complexities of commu-
nication in submerged environments. Sundararajan et al. [11] enhance sensor linearity by
implementing translinear circuits with piecewise and neural network models, contributing
to improved sensor performance. Khan et al. [12] focus on location-based reverse data
delivery between infrastructure and vehicles, presenting a novel approach to data trans-
mission in vehicular networks.Nguyen et al. [13] explore cooperative task offloading and
block mining in blockchain-based edge computing using multi-agent deep reinforcement
learning, offering insights into collaborative computing paradigms. Lang et al. [14] con-
tribute to the field with cooperative computation offloading in blockchain-based vehicular
edge computing networks, emphasizing collaborative strategies. In a subsequent work,
Lang et al. [15] extend their contributions to blockchain by introducing secure handover
mechanisms, ensuring a comprehensive approach to secure computation offloading in
vehicular edge computing networks.

However, traditional methods for vehicular network computation offloading often
require manual adjustment of parameters and rules, making it challenging to dynamically
adapt to constantly changing network and vehicle conditions. In contrast, reinforcement
learning, as an automated learning approach based on intelligent agents and reward
mechanisms, brings new possibilities to address the challenges of vehicular network
computation offloading.

The survey landscape on vehicular task offloading, particularly focusing on reinforce-
ment learning (RL) and deep reinforcement learning (DRL), is comprehensively explored
in the literature. Liu et al. [16] present a thorough survey on vehicular edge computing and
networking, providing an overarching view of the field. Ahmed et al. [17] delve into the
classification, issues, and challenges of vehicular task offloading, offering a roadmap for
future research. In the realm of RL and DRL, Liu et al. [18] provide an extensive survey, trac-
ing the evolutionary path of reinforcement learning in vehicular task offloading. Moving to
specific RL-based methods, Hazarika et al. [19] contribute with a DRL-based resource alloca-
tion approach, highlighting dynamic and learning-centric task offloading. Mirza et al. [20]
focus on DRL-assisted delay-optimized task offloading in Automotive-Industry 5.0 based
Vehicular Edge Computing Networks (VECNs), addressing the nuances of delay-sensitive
applications. Jia et al. [21] introduce a learning-based queuing delay-aware task offload-
ing approach, showcasing the adaptability of RL in addressing temporal considerations.
Luo et al. [22] contribute by minimizing the delay and cost of computation offloading in
vehicular edge computing, emphasizing efficiency. Binh et al. [23] present a reinforcement
learning framework specifically tailored for optimizing delay-sensitive task offloading in
Vehicular Edge-Cloud Computing environments. Shang et al. [24] and Vemireddy and
Rout [25] explore deep learning and fuzzy reinforcement learning for energy-efficient task
offloading, bridging machine learning paradigms with sustainability in vehicular networks.
These works collectively represent the diverse and evolving landscape of RL and DRL
applications in vehicular task offloading, addressing challenges and contributing to the
intelligent, adaptive, and efficient resource allocation in vehicular networks.

In the above-mentioned studies, the task offloading models did not consider the nodes’
movement speed, making them only suitable for static nodes in task offloading scenarios.
Intelligent vehicles, traveling rapidly on highways, may leave the communication range of
the current base station before completing a computing task, especially in the context of 5G
communication. Therefore, these research methods become ineffective in the new scenario.

To address the aforementioned offloading challenges, Huang et al. [26] propose a
vehicle speed-aware computing task offloading and resource allocation scheme based on
multi-agent reinforcement learning, emphasizing the importance of real-time vehicular
dynamics in edge computing networks. Zhao et al. [27] introduce MESON, a mobility-

Mathematics 2024, 12, 424 4 of 27

aware dependent task offloading scheme tailored for urban vehicular edge computing,
demonstrating the significance of considering vehicle movement patterns for efficient of-
floading decisions. Additionally, trajectory prediction plays a pivotal role in task offloading
strategies. Chen et al. [28] leverage multiagent deep reinforcement learning for dynamic
avatar migration in AIoT-enabled vehicular metaverses, incorporating trajectory prediction
as a crucial element. Zeng et al. [29] contribute a task offloading scheme that combines deep
reinforcement learning and convolutional neural networks, specifically designed for vehicle
trajectory prediction in smart cities. Yan et al. [30] propose a vehicle trajectory prediction
method to enhance task offloading in vehicular edge computing, focusing on predicting
the future positions of vehicles to optimize offloading decisions. These approaches collec-
tively underscore the significance of integrating real-time vehicle dynamics and trajectory
prediction into location-aware task offloading strategies, paving the way for more adaptive
and context-aware vehicular edge computing solutions.

Table 1 summarizes the advantages and disadvantages of different algorithms.

Table 1. Comparison of different algorithms.

Method Advantages Shortcomings

Greedy Matching-Based
Methods

Real-time responsiveness in
vehicle networks.

May lack adaptability to
diverse vehicular scenarios.

Heuristic
Can find relatively good
solutions in large-scale

problems.

Results may not be
globally optimal.

Particle Swarm Optimization
1. High-performance

vehicular edge computing.
2. Efficient task offloading.

Quantum computing may
have limited practical

applications.

Genetic Algorithm-Based
Methods Focus on sustainability.

The complexity of genetic
algorithms may affect

real-time responsiveness.

Blockchain-Based Methods

1. Exploration of collaborative
computing paradigms.

2. Introduction of secure
handover mechanisms.

Requires a lot of
computing resources.

Game Theory-Based Methods

1. Foster cooperative
environments and Showcase

adaptability in different
vehicular scenarios

1. Effectiveness may depend
on specific network

conditions. 2. Fuzzy neural
network effectiveness not

guaranteed.

Specific RL and DRL-Based
Methods

1. Adapt to complex network
relationships. 2. Able to
effectively process large

amounts of data in
vehicle networks.

1. Long training time: Model
training can be

time-consuming. 2. High
dependence on large amounts

of labeled data.

Location-Aware Task
Offloading

1. Task offloading scheme
combining DRL and
convolutional neural

networks for vehicle trajectory
prediction. 2. Vehicle

trajectory prediction method
to enhance task offloading.

Ineffective for rapidly moving
vehicles in certain scenarios.

3. System Model
3.1. Model Architecture

This section focuses on presenting the system architecture of the vehicular edge
computing task offloading solution based on distributed reinforcement learning.

Mathematics 2024, 12, 424 5 of 27

In this research, we examine a tri-layered edge-cloud collaborative system architecture
for Telematics, as illustrated in Figure 1. Within the Vehicular Edge Computing (VEC)
framework, vehicles function as dynamic nodes of distributed computing, the vehicle
side generates a large number of computing tasks in real time, including perception tasks,
decision-making and planning tasks, vehicle control tasks, and data transmission tasks.
Some of these computing tasks require a large amount of computing resources, such as
target detection and lane detection, traffic signal recognition, path planning, etc.Road-Side
Units (RSUs), distributed throughout the urban infrastructure, play a pivotal role in pro-
cessing vehicular data, orchestrating computational offloading and caching strategies, and
delivering essential services, including video transmission and traffic management. In this
framework, each RSU is equipped with an edge computing server to handle computational
tasks. It’s important to note that each edge computing server associated with the RSUs has
a service radius denoted by ’L’ defining the geographical scope within which it provides
its computational and communication services. The cloud layer, equipped with expansive
computing and storage resources, oversees data from mobile nodes and edge servers,
providing centralized governance and strategic decision-making. This “Cloud–Edge–End”
architectural model adeptly caters to a variety of edge computing and communication
requirements, offering efficient and dependable services.

Offloading
Policy

Data
Transmission

Unit

Local
Processing Unit

VEC Processing
Unit

Task Queue

Queue State

Decision

Task

Local Execution Result

Local
Execution

Task
Offloading

Request

Mobile Vehicle

RSU
VEC Server RSU RSUVEC Server VEC Server

VEC Server

Transmission State

Remote Execution Result

L L L

Task Transmit

...

RSU

Cloud Server

Edge Server

wireless link

wired link

vehicles

Vehicle Layer

Edge Layer

Cloud Layer

Trajectory

Figure 1. Architecture of computing task offloading in VEC network.

Consider a region with M edge servers, represented as {E1, E2 . . . EM}. Each server,
characterized by a coverage radius Li, possesses computational capabilities defined by
CPU processing frequency f mec

i . Owing to the edge servers’ finite computational resources,
tasks awaiting immediate execution are queued. The queue length at each server is ex-
pressed as qmec

i = ∑ti∈Qi
ck, where ck signifies the CPU cycles required for task tk in

the queue. Consequently, the computational state of each edge server is represented by
omec

i = { f mec
i , qmec

i }.

Mathematics 2024, 12, 424 6 of 27

At any given moment, the set of vehicles within the coverage of edge server Ei is
{vi,1, vi,2 . . . vi,K}. The current task of each vehicle vi,K is denoted as ti,k = {di,k, ci,k, tmax

i,k },
where di,k denotes the task data size generated by the vehicle, ci,k represents the required
CPU cycles for task completion, and tmax

i,k is the task’s maximum tolerable latency. Given
the limited computing capacity of intelligent vehicles, unoffloaded tasks can be executed
on-board. The computational capability of vehicle vi,K is indicated by its CPU processing
frequency f v

i , and its task queue length by qv
i . Hence, the state of vehicle vi,K is captured

by its computational state { f v
i , qv

i } and task information ti,k = {di,k, ci,k, tmax
i,k }, collectively

denoted as omec
i = { f v

i , qv
i , di,k, ci,k, tmax

i,k }.
In this setting, the vehicle task offloading challenge is defined thus: at each time

instance T, vehicles {vi,1, vi,2 . . . vi,K} within each edge server Ei’s service range decide on
offloading actions {aT

i,1, aT
i,2 . . . aT

i,k}, where aT
i,k ∈ {0, 1} denotes a binary offloading decision

(0 for local computation, 1 for offloading). The objective is to learn each edge server’s
offloading strategy, ensuring efficient computational resource distribution and minimizing
overall costs in the task offloading system.

3.2. Network Communications Model

Firstly, we compute the communication delay induced by wireless transmission be-
tween vehicles and RSUs. In the wireless transmission process, we assume the RSU’s posi-
tion is fixed and denote it as Pi

M = (Xi
M, Yi

M). The position of vehicle vi changes with time,
and at time t, the position of vehicle vi is denoted as Pt

v = (xt
v, yt

v). Therefore, the distance be-

tween the vehicle and RSU at time t can be expressed as Dt
v,m =

√
|Xi

M − xt
v|

2
+ |Yi

M − yt
v|

2.
In wireless communication, the delay incurred when intelligent vehicle v offloads tasks to
RSU M in time slot t depends on the transmission rate of the uplink. The communication
mode between the vehicle and RSU utilizes wireless communication, with a transmission
rate Ri given by Equation (1):

Ri = Bilog2(1 +
piht

v,m

σ2) (1)

Here, pi represents the transmission power of vehicle v, Bi denotes the channel band-
width between the vehicle and RSU, ht

v,m represents the channel gain between the vehicle

and RSU, and this study considers Rayleigh channel fading, where ht
v,m = A(l

4π f Dt
v,m

)
2
.

A is the channel gain coefficient, l is the speed of light, f is the carrier frequency, and Dt
v,m

is the Euclidean distance between intelligent vehicle v and RSU m at time slot t. σ2 repre-
sents the noise of the transmission. According to Shannon’s theorem, the communication
transmission rate Ri can be derived.

3.3. Computational Model

At time slot T, for the current computational task ti,k of vehicle vi,K, two different
computational modes are generated depending on its offloading decision aT

i,K: executing
the computation locally or offloading the computation.

3.3.1. Local Computing

(1) Service Latency for Local Execution
When the task requested by a vehicle is executed locally, the vehicle does not need to
upload the task to the edge server and can simply process it using local computational
resources. In the local computation mode, task ti,k enters the task queue Pi,k of vehicle
vi,K and executes the tasks in the queue step by step according to the First-In-First-Out
(FIFO) queuing rule.

Mathematics 2024, 12, 424 7 of 27

Therefore, for vehicle vi,K and its generated service request ti,k = {di,k, ci,k, tmax
i,k },

we can calculate the latency for the vehicle to fulfill its service request locally by
Equation (2):

Tloc
i = Twait

i,k +
Ci(t)

f v
i

(2)

In this framework, Twait
i,k signifies the waiting delay within the task queue. Ci(t)

denotes the CPU cycles required for the execution of the task, and f v
i represents the

inherent computational capacity of the vehicle.
(2) Energy Consumption for Local Execution

The local computational energy consumption can be modeled as Equation (3)

Eloc
i = Ploc

i ∗ Tloc
i (3)

Here, Ploc
i is the power consumption of the device when executing the task locally,

and Tloc
i is the duration of executing the task. Therefore, the energy consumption of

local computation is denoted as Eloc
i .

3.3.2. Offloading Calculations
Latency

(1) Service Latency for Offloading to Edge Server
When offloading a vehicle’s service requirements to an edge server for processing,
it is crucial to consider multiple latency factors. These include: (1) Waiting Delay:
Caused by waiting for a free wireless channel. (2) Transmission Delay: Incurred in
uploading the service request from the local system to the edge server. (3) Queue
Waiting Delay: At the edge server while awaiting task execution. (4) Execution Delay:
For processing the service request on the edge server.The time required for a vehicle
to upload a computing request to an edge server can be calculated using Formula (4):

Ttra
i =

di
Ri

(4)

where di represents the size of the computational task generated by the i-th vehicle
and Ri signifies the transmission rate of the task uploaded to the RSU.
The execution delay for processing vehicle tasks at the edge server is computed by
Equation (5)

Tmec
i =

Ci
f mec
i

(5)

Here Ci denotes the number of CPU cycles required for the vehicle task and f mec
i

denotes the current computational power of the edge server.
Consequently, if the vehicle’s computational service is offloaded to the edge server for
execution, the resulting service offloading delay is To f f−mec

i , which can be calculated
using Equation (6).

To f f−mec
i = Twait−v

i + Ttra
i + Tmec

i + Twait−q
i (6)

Here Twait−v
i represents the waiting delay of the vehicle while waiting an idle channel,

Ttra
i denotes the transmission delay of the vehicle task, Tmec

i signifies the processing

delay of the vehicle task at the edge server, and Twait−q
i is the queuing delay of the

vehicle task at the edge server.
(2) Service Latency for Offloading to Cloud Server

In accordance with the 5G distributed vehicular network edge computing model
outlined in Section 3.1, if a user’s service requirement necessitates execution in the
cloud, the service input parameters are initially transmitted from the user’s vehicle
to the edge layer via a wireless channel. Subsequently, these parameters are for-

Mathematics 2024, 12, 424 8 of 27

warded to the cloud for processing through a wired channel by the respective edge
computing node. Given the substantial computational capabilities of cloud-based
servers, the processing delay is relatively negligible compared to the transmission
delay. Consequently, when a user vi offloads service ti,k for execution in the cloud, the
resulting service delay primarily comprises three components: the waiting delay for a
free wireless channel, the transmission delay for uploading input parameters to the
edge computing node, and the round-trip time (RTT) involved in transmitting data
between the edge computing node and the cloud server. The calculation formula is as
Equation (7):

To f f−cloud
i = Twait−v

i + Ttra
i + RTT (7)

Due to the significant geographical separation between cloud servers and edge com-
puting nodes, the incurred time delay in both forwarding input parameter data from
the edge computing node to the cloud and returning the processed service results
from the cloud tends to be similar. Importantly, this delay remains unaffected by the
data volume of the input parameters. As a result, the Round-Trip Time (RTT) can be
expressed using Formula (8):

RTT = 2tcloud
o f f (8)

Here tcloud
o f f represents the delay incurred in transferring data from the edge server to

the cloud.

Energy Consumption

(1) Service Energy Consumption for Offloading to Edge Server
The energy consumption associated with offloading services to the edge server is
modeled using Equation (9):

Eo f f−mec
i = Etra

i + Emec
i (9)

The energy consumption for the service offloaded to the edge server is calculated
as detailed in Equation (9). In this equation, Etra

i signifies the energy consumption
required to transfer the computation task to the edge server, while Emec

i denotes the
energy consumption generated by the task computed at the edge server, Thus, the
total energy consumption resulting from offloading the computation is expressed as
Eo f f−mec

i .
(2) Service Energy Consumption for Offloading to Cloud Server

The energy consumption associated with offloading the service to the cloud server is
modeled using Equation (10):

Eo f f−cloud
i = Etra

i + Ecloud
i + ERTT

i (10)

The energy consumption for the service offloaded to the cloud server is calculated as
detailed in Equation (10). Here, Etra

i represents the energy consumption required to
transfer the computation task to the edge server, Ecloud

i denotes the energy consump-
tion generated by the task computed at the cloud server, and ERTT

i signifies the energy
consumption arising from offloading the computation.

3.3.3. Load Calculation

In scenarios where achieving optimal latency and minimizing energy consumption are
of utmost importance, the simultaneous assignment of a large number of computational
offloading tasks to a single edge server can result in an excessive workload for that specific
server. Hence, we introduce the concept of the load balancing rate, denoted as Ln, for the
edge server at time t. This factor plays a pivotal role in collaborative offloading, ensuring
that edge servers can efficiently and effectively process offloading tasks.

Mathematics 2024, 12, 424 9 of 27

To quantitatively assess the disparity between the load of each individual server and
the average load across all edge servers, this study utilizes the load balancing rate as a
metric for evaluating the load distribution among edge servers. In this context, To quantify
the degree of deviation between each server’s load and the overall average load, this paper
employs the load balancing rate as a metric to evaluate the load balance of edge servers. In
this context, x̄ represents the average load of all edge servers, xi signifies the load of the i-th
edge server, and the overall system load balancing rate Ln is computed using Formula (11).

Ln =
1
N

N

∑
i=1

|xi − x̄|
x̄

(11)

This equation quantifies the degree of load balance across the edge servers, crucial for
achieving optimal system performance.

3.4. Problem Definition

In a Mobile Edge Computing (MEC) system, the decisions related to distributed
offloading and resource allocation play pivotal roles. Mobile users base their offloading
decisions on local information, guiding MEC servers in optimizing resource allocation
to minimize the overall cost. This study considers control variables, including execution
delay, energy consumption, and load balancing for mobile users, and establishes a utility
function. The utility function is carefully crafted to strike a balance between the execution
time and energy consumption of mobile users while also considering server load. With the
requirement of meeting maximum tolerable delay for each task, the description of Problem
Q1 is as Equation (12):

Q1 : min
N

∑
i=1

M

∑
j=1

(CostT + CostE + CostL) (12)

Subject to the following constraints:

Xi
i,j ∈ {0, 1}, ∀i ∈ V, ∀j ∈ M (12a)

To f f
i , Tloc

i (t) ≤ T
max
i (12b)

0 ≤ pi ≤ Pmax, ∀i ∈ N (12c)

0 ≤ f v
i ≤ Fmec

max, ∀i ∈ N (12d)

αi,j(t) + βi,j(t) + γi,j(t) = 1 (12e)

0 ≤ αi,j(t), βi,j(t), γi,j(t) ≤ 1 (12f)

Constraint (12a): A task can only be executed either locally (0) or on an edge server
(1), where 0 denotes local execution and 1 signifies offloading computation to the server.

Constraint (12b): Regardless of whether the computation task is executed locally or on
an edge server, the task’s completion time must not exceed the maximum tolerable delay.

Constraint (12c): The power consumption of the vehicle must remain within the limits
defined by Pmax.

Constraint (12d): The computational resources allocated to mobile vehicle i must not
exceed the maximum computing resources available from the MEC, denoted as Fmec

max.
Constraint (12e): The sum of the weights for delay, energy consumption, and load

balancing must equal 1.
Constraint (12f): The weights for delay, energy consumption, and load balancing

should fall within the range [0, 1].
For computing tasks in vehicular networks, the total processing delay and energy

consumption can be described by Equations (13) and (14) as follows:

Tn =
(

1− Xi
i,j

)
Tloc

i + Xi
i,jT

o f f
i , ∀n ∈ N (13)

Mathematics 2024, 12, 424 10 of 27

En =
(

1− Xi
i,j

)
Eloc

i + Xi
i,jE

o f f
i , ∀n ∈ N (14)

The overall system utility function is collectively determined by delay, energy con-
sumption, and load. Its calculation formula is presented in Equation (15) as follows:

Rn = αi,j(t)

(
Tloc

i − Tn

Tloc
i

)
+ βi,j(t)

(
Eloc

i − En

Eloc
i

)
+ γi,j(t)Ln (15)

The primary challenge lies in enabling mobile users to make decentralized decisions
to minimize their costs. The offloading decision and resource allocation among different
mobile users pose NP problems. Furthermore, various variables related to mobile users’
offloading decisions and resource allocation are interconnected, rendering Problem Q1
an NP problem. Additionally, as the number of mobile users increases, the solution
space for Problem Q1 grows exponentially. This paper aims to optimize the selection of
offloading strategies to maximize available computing resources while minimizing costs
for mobile users.

To address the challenges of computational offloading and resource allocation, this
paper introduces an approach based on multi-agent strategies called L-MADRL. In contrast
to value-based reinforcement learning methods, L-MADRL utilizes an Actor-Critic archi-
tecture, effectively handling continuous control problems. The following sections provide
a detailed description of the L-MADRL algorithm and its specific structural components.

4. DRL-Based Vehicular Computation Offloading

In this section, We proposes a mobile offloading method for Internet-of-Vehicles based
on trajectory prediction using reinforcement learning. Figure 2 illustrates the System
flow chart.

First, when a computational task from a vehicle arrives, an assessment is made re-
garding the offloading feasibility of the task. Tasks sensitive to high latency, such as those
involving control of vehicle direction or acceleration, cannot be offloaded and must be
completed locally to avoid catastrophic consequences. If the vehicle’s computational task
is suitable for offloading, an offloading request is submitted. The current Roadside Unit
(RSU) is checked for available computing resources. If the current RSU lacks sufficient
computing resources, the task is sent to a cloud server for offloading. The cloud server
performs the offloading task, and upon completion, the offloading results are returned to
the vehicle. If the current RSU has sufficient computing resources, the dwell time of the
vehicle within the current RSU’s service range is calculated. If the vehicle can complete
the offloading within this range, an offloading decision is generated using a reinforcement
learning algorithm, and the current RSU returns the offloading results to the vehicle. If the
vehicle cannot complete the offloading within the current RSU’s service range, the Long
Short-Term Memory (LSTM) algorithm is utilized to predict the vehicle’s trajectory. Based
on the predicted location of the vehicle at the next time step, the computational task is
sent to the RSU server at that location. Within the service range of the predicted RSU, an
offloading decision is generated using reinforcement learning, and the final decision is
returned to the vehicle.

We introduce a distributed method called L-MADRL, specifically designed to ad-
dress the service offloading problem within the Internet-of-Vehicles (IoV) edge computing
environment. L-MADRL combines the LSTM and MADDPG algorithms to provide an
effective solution. We begin by presenting an overview of the L-MADRL method, followed
by a detailed explanation of its components. Figure 3 illustrates the framework of the
L-MADRL algorithm.

Mathematics 2024, 12, 424 11 of 27

Start

Can the tasks be
offloaded?

Upload offloading
request

Does RSU have available
resources?

Generate offloading decisions
based on reinforcement learning

algorithms

The current RSU returns the
offloading results to the vehicle

End

Local Computing

Upload the tasks to the cloud
server

Cloud server computing offload
tasks

NO

YES

YES

NO

Can the vehicle complete the
calculation within the RSU service

range

Predict vehicle
trajectory

Tasks are uploaded to the RSU
at the predicted location

The cloud server returns the
offloading results to the vehicle

Vehicle returns
offloading results

NO

YES

Figure 2. Task offloading process in Vehicular Edge Computing.

The input layer plays a crucial role in handling the state set of the moving user at a
given time, denoted as S(t). This layer captures essential information, including S1: the
task queue of vehicles, S2: wireless availability for each communication link, S3: current
resources of each Multi-Access Edge Computing (MEC) server, S4: the precise location
and speed of vehicles. The position information of vehicles first undergoes a two-layer
LSTM network to predict the future position at subsequent time intervals. Variables x1,
x2...xt−1 represent the historical trajectories of the vehicle, while xt denotes the predicted
trajectory for the vehicle at the next time step obtained through the LSTM network.The
predicted location information is then incorporated as part of the state information for
reinforcement learning, facilitating better decision-making and resource allocation. After
collecting this state information data, it seamlessly transitions to the MADDPG layer. The
MADDPG layer continuously trains the agents with the objective of optimizing latency,
energy consumption, and load balancing, until the optimal computation offloading and
resource allocation strategy is generated. If the decision is to offload to an edge server,
an offloading request is submitted, waiting for the edge server to process the computa-

Mathematics 2024, 12, 424 12 of 27

tion task and return the results. If local execution is chosen, the computation results are
obtained directly.

Offload to MEC
Server

Local Execution

1.Data Upload

2.Data Processing

3.Data Return

1.Data Upload

2.Data Processing

3.Data Return

Data Processing

Energy Cost

Task
Completion

Delay

Load
Balancing

Rate

Minimize target

MEC Task Queue

Local Task Queue

Xt

Offloading
decisions

Environment

Agent

Output
Reward

State

Action

Computation
Resources

Result

LSTM

LSTM

LSTM

...

x1

x2

xt-1

S3

Position and
Speed of
Vehicles

S4
Position and

Speed of
Vehicles

S4

Wireless State

S2

Wireless State

S2

Task Queue

S1

Task Queue

S1

Figure 3. The Framework of the L-MADRL algorithm.

4.1. Vehicular Trajectory Prediction

Considering the uncertainty of vehicle movement and the complex dynamic road
environment, a method based on trajectory prediction is proposed. Specifically, an LSTM-
based encoder-decoder network architecture is employed to predict the future trajectory
of the vehicle. We use historical trajectories and known information about the future to
predict future trajectories, which is a sequence-to-sequence problem. To solve this problem,
an encoder-decoder network structure that uses two LSTM layers as the feature extraction
unit is proposed. As shown in Figure 4, we input two types of sequence data into the
prediction network. When entering history, take into account the past sequence of vehicle
position (x, y) and driving speed. An encoder-decoder prediction network based on LSTM
is constructed to construct the feature representation of the historical input and future
output. The encoder and decoder consist of two LSTM layers that capture long-term
dependencies in the sequence. Historical features are encoded into context vectors in the
encoder module and combined with future known features for decoding in the decoder
module. All features are then passed to the linear module to predict the position of the
target (x, y). In order to improve the nonlinear adaptability of the prediction network, we
added the ReLU activation unit at the end. Figure 4 shows the LSTM algorithm framework
for predicting vehicle trajectories.

Mathematics 2024, 12, 424 13 of 27

＋ ＋

 tanh

＋



＋

tanh1c −i

1h −i

ix

ih

ic
ty

Predicted
 traffic
data

Vehicle History Trajectory

...

Vehicle Predict Trajectory

...

Offloading decisions and resource allocationVehicle Trajectory Prediction

LSTM Module

xt

LSTM LSTM LSTM

LSTM LSTM LSTM

x1

LSTM LSTM LSTM

LSTM LSTM LSTM

Yt Yt+k

Linear 1

Relu

Decoder

Encoder

Figure 4. LSTM for vehicle trajectory prediction.

4.2. MADDPG-Based Optimal Offloading Decision

In tackling the computation offloading challenge, we incorporate the sophisticated
Multi-Agent Deep Deterministic Policy Gradients (MADDPG) algorithm. This innovative
approach is designed to craft decision-making policies for intelligent agents through the
application of reinforcement learning. We frame the computation offloading dilemma as a
Markov Decision Process (MDP), characterized by the four-tuple {S, A, P, R}. Here, S(state
space) encapsulates the local observations of all agents, capturing dynamic environmental
elements such as the workload on MEC servers and the computation resources. A(action
space) includes the spectrum of possible actions for each agent, encompassing crucial
decisions related to computation offloading and resource allocation, notably in the realms of
communication and computational resource distribution. P(transition probability) signifies
the likelihood of the environment transitioning between states in response to specific actions.
R(reward function) gauges the benefits accrued from executing particular actions in given
states. Through the MADDPG layer, agents are empowered to develop adaptive strategies
within this fluid environment, basing decisions on real-time insights and experiential
learning to optimize system efficiency. This framework represents a cutting-edge solution
for the computation offloading conundrum.

Firstly, we transform the system utility maximization objective into a reward max-
imization challenge. This is accomplished by employing a multi-agent variation of the
Markov Decision Process, termed the Markov Game, denoted by the tuple < N, S, A, O >.
This approach treats each vehicle as an intelligent agent, which hones its optimal strategy by
observing the L-MADRL environment and collaborating to maximize overall system utility.
We then define the fleet of mobile vehicles as N = {1, 2 . . . N}. Moreover, S = {s1, s2 . . . sN}
is designed as the set of states, A = {a1, a2 . . . aN} represents the agents’ action repertoire,
and O = {o1, o2 . . . oN} constitutes a sequence of observations available to the agents.
Given that the collaborative L-MADRL scheme operates within discrete, equal, and non-
overlapping time slots, and assuming consistent communication parameters within each
time slot T, we establish the tuple for each time slot T accordingly. Figure 5 illustrates
the framework for solving the computational offloading problem based on the MAD-
DPG algorithm.

Mathematics 2024, 12, 424 14 of 27

En
viro

n
m

en
t

Gaussian noise

＋

2

, ,n ~ (,)i e i e iN  

Actor network
Parameters

Actor network
Parameters

Actor target
network

Parameters

Actor target
network

Parameters

 

'

 

Adam Optimizer

Actor

Actor network
Parameters

Actor target
network

Parameters

 

'

 

Adam Optimizer

Actor

Critic network
Parameters

Critic network
Parameters

Critic target
network

Parameters

Critic target
network

Parameters

Adam Optimizer

Critic

Critic network
Parameters

Critic target
network

Parameters

Adam Optimizer

Critic

'Q

Q

1.Action
ia ()is

2. 1(, ,)i i is r s +

Experience Replay
Buffer

3.Store 1(, , ,)i i i is a r s +

4.Sample
mini-batch

'

1()js +

()ja s= 

jy

Update Q Q gradient w.r.t.
Q

Soft update

Policy gradient
w.r.t. 

1*(, , ,)i i i iN s a r s +

Policy gradient

Update  

Soft update

Vehicle Task Offloading Environment

Agent 1 (Mobile Vehicle)

Agent 2 Agent N

1a1s
1r

1 1 1(, ,)O S A
2 2 2(, ,)O S A

NrNsNa

Replay Memory

'(, , , ,)O S A R S

 Mobile
Vehicle

 Mobile
Vehicle

...

Figure 5. MADDPG Algorithm framework.

4.2.1. State S

The state environment within the L-MADRL network is a multifaceted construct,
comprising five distinct states: task state, channel state, resource state and vehicle state.
This composition is formally expressed as Equation (16):

S(t) = {Stask(t), Schannel(t), Sres(t), Svehicle(t)} (16)

The task state Stask(t) is defined by the tuple Stask(t) = [D(t), C(t), Tmax(t)], n ∈ N.
Here, D(t) represents the volume of task data generated by a vehicle at t, C(t) quantifies
the CPU cycles needed for task completion, and Tmax(t) indicates the latest permissible
completion time for the vehicle’s task.

The channel state Schannel(t) is articulated as Equation (17)

Schannel(t) = ck
n(t) =

 c1,1 · · · c1,K
...

. . .
...

cN,1 · · · cN,K

 (17)

In this matrix, ck
n(t) denotes whether vehicle n is utilizing sub-channel k at the moment

t, with ck
n(t) = 1, indicating usage and ck

n(t) = 0 otherwise.
The resource state is depicted as Sres(t)

Sres(t) = { f mec
1 (t), f mec

2 (t) . . . f mec
n (t)} (18)

In this context, f mec
i (t) represents the computing resources available at the edge server.

Svehicle(t) = {v
pos
1 (t), vpos

2 (t) . . . vpos
n (t), vspe

1 (t), vspe
2 (t) . . . vspe

n (t)} (19)

Svehicle(t) represents the status information of the vehicle, which consists of vehicle
position and speed.

4.2.2. Action A

In the dynamic environment of the L-MADRL system, each vehicle, informed by the
observed system state, must execute a sequence of critical actions at each discrete time

Mathematics 2024, 12, 424 15 of 27

step t. These actions are essential for the efficient management of task execution and
encompass offloading decisions, channel selection, transmit power determination, and
computational as well as CPU resource allocation. The action space is formally represented
as Equation (20):

A(t) = {xk
n(t), k(t), f mec

n,k (t)} (20)

The specific actions are defined as follows:

1. Offloading Decision xk
n(t): This binary decision, xk

n(t) ∈ {0, 1}, (n ∈ N, k ∈ K), is
made by each vehicle at time t, influenced by the current task state S(t). n represents
the number of vehicles within the service range of the edge server, k represents the
number of subchannels used for transmission through the wireless channel, and xk

n
represents the offloading decision of a particular vehicle within the service range of
the edge server for a specific wireless communication subchannel.The vehicle decides
whether to process the task locally xk

n(t) = 0 or to offload it to the MEC server via
channel k xk

n(t) = 1.

Upon deciding to offload the task, a series of resource allocations are required for
the vehicle.

2. Channel Selection k(t): The selection of k(t) from the range [1, 2, . . . K] is based on
the prevailing channel state Schannel(t) Each vehicle selects an appropriate channel to
transmit its task to the MEC server.

3. Computing Resource Allocation Sres(t): The allocation of computing resources, de-
noted by Sres(t) = [f mec

1 (t), f mec
2 (t). . . f mec

n (t)], is determined based on the current
computing resource state Sres(t) and task state Stask(t).This allocation ensures that
each vehicle is equipped with the necessary computational resources to execute the
computing task effectively.

4.2.3. Reward

In this study, we explore a system reward function that exhibits a positive correlation
with the objective function of our optimization challenge. The system reward for a given
time interval t is defined as the aggregate of the individual rewards R(Sn(t), An(t)) conse-
quent to the execution of an action An(t) in a distinct state Sn(t). This collective reward
mechanism is mathematically expressed as Equation (21):

r(S(t), A(t)) =
1
N ∑

n∈N
R(Sn(t), An(t)) =

1
N ∑

n∈N
Rn(t) (21)

5. Algorithm Design

To address these complexities, we propose and implement a hybrid approach that com-
bines centralized learning with decentralized execution in the L-MADRL algorithm. This
strategy ensures comprehensive learning by incorporating global information and influ-
ences while enabling individual agents to execute based on their specific, locally-obtained
insights. This dual approach aims to enhance the overall efficacy and adaptability of the
L-MADRL algorithm in managing the sophisticated demands of Vehicular Computing
Offloading and Resource Allocation.

Trajectory prediction and load prediction algorithms are important in self-driving
vehicle management systems. The high maneuverability of intelligent vehicles is the
main reason for the increase in the dynamic workload of RSUs, so it becomes crucial to
capture the motion patterns of intelligent vehicles to calculate the potential future RSU
workload. First, we use a trajectory prediction model to predict the future trajectories of
intelligent vehicles.

In Algorithm 1, our initial step involves acquiring the set of intelligent vehicles.
Subsequently, we gather both historical κhis

v (t) and future κ
f ut
v (t) trajectory data of these

vehicles. During the training phase, we input the historical trajectories of each intel-

Mathematics 2024, 12, 424 16 of 27

ligent vehicle for each period into our trajectory prediction model. This model then
outputs predicted trajectories. We assess the model’s accuracy by comparing these pre-
dicted trajectories against the actual future trajectories of each vehicle, using the formula

Losstrain
v = (κ

f ut
v (t)− κ

pre
v (t))

2
. The model is refined through a backpropagation-based

method, leveraging Lossv for updates.
Once the model training is complete, we introduce the historical trajectory κhis

v (t′) of
an intelligent vehicle into this trained model during the evaluation phase. This process
yields the predicted trajectory κ

pre
v (t′).The model’s performance is evaluated using the

mean square error (MSE) metric, and this error is utilized in the backpropagation of the

trained model to compute the loss Losstest
v = (κ

f ut
v (t′)− κ

pre
v (t′))

2
.

Building upon the intelligent vehicles’ trajectory prediction, we further devise a
method for forecasting their future workload. Initially, we acquire the set {1, 2 . . . , M} of
Road Side Unit (RSU) edge servers along with the respective positions Pm of each RSU. Next,
we feed the predicted traffic data into the region selector of each RSU to estimate the future
traffic zt′

m in RSU’s region zt′
m is then input into an RSU workload predictor. Consequently,

the anticipated RSU workload at time slot t′ is computed as Lpre
m (t′) = Lm(t′ − 1) + ζzt′

m,
where ζ is a coefficient that translates predicted traffic into the anticipated RSU workload.

Algorithm 1 Trajectory Prediction and Workload Prediction Algorithm

Input: Set of intelligent vehicles V, set of RSU edge servers{1, 2 . . . M}, and each RSU’s
corresponding position Pm

Output: Predict workload of RSU m
Training Process

2: for each intelligent vehicle v ∈ V do
Obtain the historical trajectory κhis

v (t) and future trajectory κ
f ut
v (t) of the vehicle;

4: Predict trajectory κ
pre
v (t) using Jv;

Compute MSE loss for each vehicle Losstrain
v = (κ

f ut
v (t)− κ

pre
v (t))

2
;

6: Update the trajectory prediction model Jv via backpropagation based on Losstrain
v ;

end for
8: Evaluating Process

for each intelligent vehicle v ∈ V do
10: Input the historical trajectory κhis

v (t′)into the trained trajectory prediction model to
obtain the predicted trajectory κ

pre
v (t′);

Compute the evaluation loss Losstest
v = (κ

f ut
v (t′)− κ

pre
v (t′))

2
;

12: end for
Workload Prediction

14: for m = 1, 2 . . . M do
Input predicted trajectories κ

pre
v (t′)into RSU m region selector to obtain the predicted

traffic volume zt′
m in the RSU m service region;

16: Calculate the predicted workload of RSU m: Lm(t′ − 1) + ζzt′
m;

end for

The LSTM module in our model is tasked with learning from historical data to predict
key network parameters like edge server load and bandwidth. Its ability to recognize
temporal patterns allows for accurate future state predictions. These predictions are then
utilized by the MADDPG module, an algorithm effective in multi-agent environments
for optimizing decision-making. MADDPG adapts each agent’s behavior—either an edge
server or network node—for optimal resource allocation and task scheduling. By integrat-
ing LSTM and MADDPG, our model not only responds to current network conditions but
also proactively adjusts to future changes, enhancing network efficiency and responsive-
ness, particularly in dynamic edge computing environments with fluctuating demands and
limited resources.

Mathematics 2024, 12, 424 17 of 27

In Algorithm 2, we introduce a Multi-Agent Deep Deterministic Policy Gradient (MA-
DDPG) approach, tailored to address the complexities of distributed vehicular network
computing offloading and resource allocation. This method, distinct from conventional
reinforcement learning techniques, incorporates Deep Neural Networks (DNNs) as non-
linear approximators. These networks sample the loss function, thereby reducing the
computational burden associated with large-scale offloading challenges. The agents in this
setup collaboratively offload tasks to Mobile Edge Computing (MEC) servers, establishing a
mutual learning environment that includes all agents and MEC servers. During centralized
training phases, MEC servers collate state-action data from all agents to train the DRL
model. This arrangement allows each agent to acquire a comprehensive understanding
of the learning environment, promoting collaborative learning, enhancing environmental
stability, and bolstering convergence efficiency.

In our framework, we define the decision set of all agents as π = {π1, π2, . . . , πN},
where θ = {θ1, θ2, . . . θN} represents the parameter set for each respective policy. Each
agent is tasked with updating its parameter set θn in pursuit of the optimal policy
π∗θn

= argmaxθn
J(θn). This involves maximizing its objective function J(θn), which is

the agent’s reward function, formulated as per Equation (21).

Algorithm 2 The MA-DDPG Training Procedure in MEC System

Input: Replay buffer D,time T,exploration probabilityϵ, discount factor γ, update step χ
Output: The optimal policy π∗θn

and maximum reward r∗(s, a)
for each episode do

Initialize the state s0 ← {Stask(t), Schannel(t), Sres(t), Svehicle(t)|t=0};
3: for t = 1, 2 . . . T do

Select a random action aj(t) with probability ϵ, Otherwise, choose action aj(t) by
executing the policy: aj(t) = πθj

(
sj(t)

)
;

Each vehicle intelligent agent executes actions a(t) = a1(t), a2(t),. . . , aN(t) by
performing offloading decision xk

n(t),channel selection k(t), computational resource
allocation f mec

n (t);
6: Get the system reward r(t) and the state s′;

Store (s(t), a(t), r(t), s′(t)) into the memory D;
for agent j = 1 to N do

9: Sample random mini batch of transitions (sj, aj, rj, s′j) from D;

Calculate yj = rj + γQπ
j

(
s′j, a′1, a′2, . . . a′N

)
|
a′j=π′j(oj)

;

Update the parameter matrix of critic’s online network by minimizing the loss

L(θj) =
1
S ∑

j
[yi −Qπ

j (sj, a1, . . . , aN)]
2

12: Update actor by using the sampled policy gradient:

∇θj J
(
πj
)
=

1
S
[∇θj Q

π
j (s
′
j, a1, . . . , aN)∇θj πj(aj|sj)]

end for
Update the target network parameters for each agent

θ′j ← ϵθj + (1− ϵ)θ′j

15: end for
end for

Our approach leverages the Multi-Agent Deep Deterministic Policy Gradient (MA-
DDPG), a deterministic policy gradient method particularly adept for continuous action
spaces within multi-agent environments. During the training phase, actors within this

Mathematics 2024, 12, 424 18 of 27

framework execute deterministic actions via their behavioral networks, while critics ap-
praise these actions using target networks. The actors subsequently refine their behav-
ioral networks by computing the gradient of the objective function J(θn) as detailed in
Equation (22):

∇θn J(πn) = Eo,a∼D[∇θn Qπ
n (o, a1, . . . , aN)∇θn πn(an|on)] (22)

Here, o = {o1, o2, . . . , oN} signifies the set of observations, Qπ
n (o, a1, a2 . . . an) is the

centralized action-value function, a1, a2 . . . an are the actions learned by the agents, with
D representing the experience replay memory buffer that contains multiple event sam-
ples (o, a, r, o′). Concurrently, the critic refines the Q function Qπ

n by minimizing the loss
function, as expressed in Equation (23):

L(θn) = Eo,a,r,o′ [(yn −Qπ
n (o, a1, . . . , aN))

2] (23)

where yn = rn + γQπ
n
(
o′, a′1, a′2, . . . a′N

)
|a′n=π′n(on)

represents the Temporal Difference (TD)
target, and π′n(on) defines the target policy with delayed parameters θ′n. Algorithm 2
outlines the training process, encompassing two primary phases: planning and updating.
In the planning phase, an ϵ-greedy strategy is employed to strike a balance between
exploration and exploitation. During this phase, the Q function is updated. Each mobile
device, at every time step T, executes an action, estimates the system reward, and records
training data in an experience replay pool. Subsequent to each action, the mobile device
advances to the next step, updating both the critic and actor networks, as well as their
respective target networks. This training is iterative, continuing until the desired system
reward performance is attained.

The update of the target network θn using the strategy gradient method ∇θn guides
the intelligent Edge Device (ED) in executing correct actions to achieve the optimal strategy.
The values of the Deep Neural Networks (DNNs) in the goal-based actor network remain
fixed over several iterations, while the weights of the DNNs in the actor-behavior network
are updated. In the distributed vehicular network’s MEC system, all intelligent EDs
aim to maximize their expected function J(θn) (i.e., user utility) by interacting with the
environment, thus attaining a stable strategy. This approach ensures stability in the learning
environment, even amidst strategy shifts, which enhances the quality of strategy evaluation
and, consequently, the overall utility of the system. Upon completing the training, the ED
downloads the learned policy network parameters from the MEC server and updates the
target network parameters of the actors and critics, following the update process outlined
in Equation (24):

θ′j ← ϵθj + (1− ϵ)θ′j (24)

6. Results

This section commences with an extensive overview of our experimental platform,
offering intricate details regarding the configuration of the experimental parameters. We
then proceed to demonstrate the efficacy of the L-MADRL method through a series of
convergence experiments. Building upon this foundational analysis, we delve into com-
prehensive evaluations, particularly focusing on energy consumption and latency, under
various system resource state scenarios for the L-MADRL approach. Moreover, a thorough
comparative study is conducted to juxtapose the L-MADRL method with other existing
service offloading techniques.

6.1. Simulation Settings and Dataset

The simulation experiments were executed on a system running the Windows 11
operating system. The central processing unit (CPU) employed in these experiments was
the Intel(R) Core(TM) i7-14700KF, operating at 3400 Mhz. Our experimental framework
was developed and implemented using Python 3.11 and Pytorch 2.1.0. For the purpose
of the simulation, we utilized the Shenzhen City vehicle dataset. Each data entry in the

Mathematics 2024, 12, 424 19 of 27

vehicular dataset is structured as a quaternion, encapsulating various aspects of in-vehicle
information: (ID, time, longitude, latitude, flag, speed) Here, ‘ID’ denotes the vehicle
number, ‘time’ specifies when the data was received, ‘longitude’ and ‘latitude’ pinpoint
the geographical coordinates of the user’s vehicle, and ‘flag’ indicates the association of a
vehicle user with a particular roadside unit.

In this experiment, the trajectory data of vehicles is real vehicle trajectory data from
Shenzhen city, while the remaining parameters are set based on simulation parameters
in real-world scenarios. We randomly generated coordinates for 10 base stations located
at different positions. Each generated base station establishes communication links with
vehicles within its coverage area, facilitating data transmission. All base stations collectively
form a mesh network structure. Tasks are randomly assigned to vehicles, assuming the
CPU frequency for local computation of vehicles is in the range [0.1, 1] GHz, the CPU
frequency for RSU is 5 GHz, and the CPU frequency required for each computing task is
in the range [0.05, 1.5] GHz. The number of vehicles within the service range of the edge
server varies from 10 to 50, and the transmission power ranges from 0 to 24 dBm. The
system bandwidth is 20 MHz. The specific simulation parameters are presented in Table 2.

Table 2. IoV parameters setting.

Definitions Notations Value

Number of EDs Nv [10, 50]
Size of Task Dn [0.1–5] MB

The transmit power Pk
n [0–24] dBm

The background noise
variances σ2 −100 dBm

The system bandwidth W 20 MHZ
The ED’s and MEC server’s

computing capability Fvec
n , Fmec

n [0.1–1] GHz, 5 GHz

The ED’s energy coefficient k 5× 10−27

The weights of time and
energy costs λT

n , λE
n 0.6, 0.4

Number of base stations Nb 10
Range of RSU Rn [100–500] m2

The experimental simulation setup is visually depicted in Figure 6, where the vehicle’s
trajectory position information is marked in red, and the randomly generated base station
information is highlighted in blue.

1

Figure 6. Base station and vehicle trajectory.

Mathematics 2024, 12, 424 20 of 27

6.2. Simulation Results
6.2.1. Trajectory Prediction Evaluation

In the preliminary phase of the experiment, we conducted a comprehensive assessment
of the LSTM prediction model. We carefully partitioned the dataset into training, testing,
and validation sets to ensure thorough and adequate model training. Post-training, our
prediction network exhibited outstanding performance on both the testing and validation
sets, particularly excelling in vehicle trajectory prediction. Figure 7 clearly illustrates a
gradual reduction in the loss function with an increasing number of training iterations,
reflecting the model’s gradual learning and adaptation to input data. Our experimental
results further validate the reliability and robustness of the LSTM model in the task of
vehicle trajectory prediction.

0 10 20 30 40 50
Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sc
al

ed
 L

os
s

Train Scaled Loss
Test Scaled Loss

Figure 7. The train and valid scaled loss.

6.2.2. Comparison with Traditional Algorithms

We engage four traditional non-Deep Reinforcement Learning (non-DRL) algorithms
to substantiate the efficiency of the L-MADRL algorithm in identifying optimal strategies
for task offloading and resource allocation:

1. Local computing: In this approach, the computational workload in each region is
managed directly by the vehicle side.

2. Edge computing: Here, vehicles in each region offload their computational workload
to the nearest edge server (ES) for processing.

3. Cloud computing: This method involves processing computational tasks at the cloud
server (CS), rather than at the local or edge level.

4. Random computing: In this strategy, decisions regarding task offloading and resource
allocation are made randomly, selecting between vehicles, ES, or CS. Additionally, the
allocation of resources and bandwidth for tasks is also randomized.

System Consumption and Success Rate
Figure 8 shows how system cost changes with varying vehicle numbers. Across all

methods, there is a consistent trend of increased processing cost for vehicle computation
tasks as the number of vehicles in the region increases. Notably, the random computing
strategy is the least efficient, relying on random selection for task offloading and resource
allocation, lacking the ability to make informed decisions in a dynamic network environ-
ment. In contrast, the L-MADRL algorithm consistently outperforms conventional task
offloading and resource allocation methods across different vehicle densities.

The relationship between the number of vehicles and their average completion rate
is illustrated in Figure 9. While the advantages of the L-MADRL algorithm may not be

Mathematics 2024, 12, 424 21 of 27

highly pronounced with a smaller vehicle count, its effectiveness becomes increasingly
apparent as the number of vehicles rises. In contrast, the Local algorithm, when dealing
with a large number of vehicles, faces substantial local computational strain, resulting in a
diminished number of completed tasks within the specified timeframe. Simultaneously,
both the Edge and Cloud algorithms encounter heightened transmission delays due to the
increased vehicle count, leading to elevated network congestion and a subsequent decline
in the timely completion of tasks. Conversely, the L-MADRL algorithm adeptly handles
task offloading to RSUs even under heavy task loads, thus maintaining a high and stable
task completion rate.

10 20 30 40 50
Number of Vehicles

0

10

20

30

40

Sy
st

em
 C

on
su

m
pt

io
n

(%
)

L-MADRL
Local
Edge
Cloud
Random

Figure 8. System Consumption.

10 20 30 40 50
Number of Vehicles

0

20

40

60

80

Su
cc

es
s R

at
e

(%
)

L-MADRL
Local
Edge
Cloud
Random

Figure 9. Success Rate.

Average delay time and energy consumption
Figure 10 illustrates the average processing latency across different methods for vary-

ing numbers of vehicles. A noticeable trend is the increase in processing latency correspond-
ing to the growing workload in each region. In this context, the L-MADRL algorithm stands
out by providing the lowest latency regardless of the number of vehicles. Conversely, the
Cloud algorithm records the highest average processing latency, primarily due to significant
transmission delays over wireless links when offloading computational tasks to the cloud
server. Meanwhile, the stochastic computing algorithm’s average processing delay exhibits
a degree of randomness, depending on the prevailing network conditions. Lower latency
is observed under favorable scenarios, while higher latency is noted in poorer conditions.

Mathematics 2024, 12, 424 22 of 27

Figure 11 presents the average energy consumption of various processing algorithms
across different numbers of vehicles. The Local algorithm maintains low energy consump-
tion by processing tasks directly at the vehicle terminals, eliminating the need for task
transfer. However, the system’s average energy consumption increases with a higher num-
ber of vehicles. The L-MADRL algorithm excels in energy efficiency, significantly reducing
average energy use by adapting to vehicle trajectories and edge server loads. This is a
result of its optimized task offloading and resource allocation strategies, tailored to specific
vehicle paths and server load dynamics.

10 15 20 25 30 35 40 45 50
Number of Vehicles

20

30

40

50

60

70

80

De
la

y
Co

st
(m

s)

L-MADRL
Local
Edge
Cloud
Random

Figure 10. Delay Cost.

10 15 20 25 30 35 40 45 50
Number of Vehicles

20

30

40

50

60

70

80

En
er

gy
 C

os
t

L-MADRL
Local
Edge
Cloud
Random

Figure 11. Energy Cost.

6.2.3. Comparison with Other Algorithms

DDPG: This algorithm employs the DDPG task offloading algorithm [31]. However, it
does not account for the communication time between the vehicle and the base station. In
scenarios where the vehicle departs before the computation concludes, the result cannot be
returned, leading to task failure.

MADDPG:This algorithm employs the MADDPG task offloading algorithm [26]. The
algorithm takes into account the perception of vehicle speed, but the actual relevance is
limited as the vehicle speeds are randomly generated.

In the comparative experiments, the assessment of the system’s overall cost involves
diverse factors such as latency, energy consumption, and load balancing rate. Latency
serves as a critical metric for gauging task execution speed, energy consumption directly

Mathematics 2024, 12, 424 23 of 27

influences the system’s efficiency, and the load balancing rate signifies the equilibrium of
resource utilization. We systematically consider these factors to thoroughly evaluate the
system’s performance across different task arrival rates ranging from 1.5 to 4 Mbps.

Concerning algorithmic comparison, we compare our proposed algorithm with DDPG
and MADDPG algorithms. DDPG is a conventional algorithm for task offloading and
resource allocation, while MADDPG is a multi-agent reinforcement learning algorithm.
Through this comparative analysis, we acquire a comprehensive understanding of the
superiority of our algorithm under varying load conditions, offering valuable insights
for system design and optimization. Figures 12 and 13 respectively show the changes in
system energy consumption and average reward as the vehicle task arrival ratio changes.
The experimental results prove that our proposed algorithm significantly reduces system
energy consumption and system average reward.

Impact of Range of RSU
In this experiment, we systematically investigate the impact of varying RSU coverage

ranges on load balancing and task success offloading rates. The experiment is designed to
compare the performance of our proposed algorithm with DDPG and MADDPG algorithms
under different RSU coverage scenarios. Figures 14 and 15 respectively depict the variations
in load balancing rate and task success completion rate of edge servers with the changing
coverage range. Experimental results demonstrate that our proposed algorithm achieves a
more balanced complexity and enhances the success completion rate of tasks compared to
other algorithms.

1.5 2.0 2.5 3.0 3.5 4.0
Task Arraival Rate / Mbps

5

6

7

8

9

10

Av
er

ag
e

Sy
st

em
 C

os
t

Ours
MADDPG
DDPG

Figure 12. Task Arrival rate of System Cost.

1.5 2.0 2.5 3.0 3.5 4.0
Task Arraival Rate / Mbps

16

14

12

10

8

6

4

2

Av
er

ag
e

Re
wa

rd

Ours
MADDPG
DDPG

Figure 13. Task Arrival Rate of Success Rate.

Mathematics 2024, 12, 424 24 of 27

100 200 300 400 500
Range of RSU (m2)

0

10

20

30

40

Lo
ad

 B
al

an
ce

 R
at

e
(%

)

Ours
MADDPG
DDPG

Figure 14. RSU of System Consumption.

100 200 300 400 500
Range of RSU (m2)

0

20

40

60

80

Su
cc

es
sf

ul
 R

at
e

(%
)

Ours
MADDPG
DDPG

Figure 15. RSU of Success Rate.

6.2.4. Parameters Performance Evaluation

In Figure 16, the experiment delves into the impact of varying discount factors on the
experimental reward values. We set three distinct discount factors—0.9, 0.95, and 0.99—and
conducted multiple training and testing sessions on a consistent reinforcement learning task
to evaluate their effects. The results clearly indicate that the discount factor significantly
influences the reinforcement learning task’s performance. With a discount factor of 0.9, the
agent registers the highest cumulative reward values.When the discount factors are set to
0.95 and 0.99, there is a marginal decline in the agent’s performance. Although these higher
discount factors still account for future rewards, they may, in this specific task, cause the
agent to overly prioritize long-term returns. This could potentially slow down the learning
process and affect the stability of the learning outcomes.

The experimental results, as delineated in Figure 17, highlight the profound impact
on system performance and learning efficacy that stems from varying the computational
cutoff time and learning rate for different tasks.

Initially, the experiment focusing on the variation in task completion deadlines demon-
strated a significant influence of the cutoff time on system performance. A trend was
observed where a shorter task deadline led to a gradual decrease in the overall system
reward, with the steepest decline noted at 0.6 s. This trend indicates that stringent time
constraints for completing computational tasks necessitate heightened real-time processing
capabilities, subsequently impacting the success rate of task execution and diminishing the
overall system reward. Conversely, extending the task deadline allows for a progressive
increase in the system reward, suggesting ample time for task processing and an enhanced

Mathematics 2024, 12, 424 25 of 27

success rate. The system reward stabilizes at a 1-s deadline, indicating an optimal balance
between real-time performance and task completion success within this timeframe.

0 200 400 600 800 1000 1200 1400
Episodes

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

Re
wa

rd
 V

al
ue

gamma=0.9
gamma=0.95
gamma=0.99

Figure 16. Different discount.

0 200 400 600 800 1000 1200 1400
Episodes

14

12

10

8

6

4

2

0

Re
wa

rd
 V

al
ue

Change DDL=0.60
Change DDL=0.70
Change DDL=0.80
Change DDL=0.90
Change DDL=1.00

Figure 17. Different deadline.

7. Conclusions

In response to the growing need for low-latency services in Telematics, this study
introduces L-MADRL, a distributed deep reinforcement learning-based approach for ser-
vice offloading in 5G Telematics edge computing. The primary objective is to minimize
the average service cost for Telematics users while ensuring a superior service experience.
The approach utilizes Long Short-Term Memory (LSTM) for predicting future user service
demands in Telematics, integrating this forecast into the L-MADRL algorithm to facilitate
intelligent offloading decisions. Comparative experiments conducted with a real-world
Telematics user service demand dataset demonstrate that the L-MADRL method signifi-
cantly reduces average service costs, validating the effectiveness of the proposed approach.
Future research will explore incorporating vehicles as computing service resources to
further reduce service energy consumption and enhance resource utilization and load
balancing at edge servers.

Author Contributions: Conceptualization, D.S., Y.C. and H.L.; methodology, D.S. and H.L.; software,
D.S.; validation, Y.C., H.L. and D.S.; formal analysis, D.S.; investigation, Y.C.; resources, D.S.; data
curation, Y.C.; writing—original draft preparation, D.S. and Y.C.; writing—review and editing, D.S.
and H.L.; visualization, Y.C.; supervision, H.L.; project administration, H.L.; funding acquisition, H.L.
All authors have read and agreed to the published version of the manuscript.

Mathematics 2024, 12, 424 26 of 27

Funding: This research was funded by the Yunnan Provincial Major Science and Technology Project:
Research and Application of Key Technologies for Resource Sharing and Collaboration Toward
Smart Tourism (Grant No. 202102AD080004) and supported in part by the Yunnan Provincial Major
Science and Technology Project: Research and Application of Key Technologies for Scale Processing
of Yunnan Characteristic Pre-Prepared Food (Grant No. 202202AE090019).

Data Availability Statement: The datasets used in this paper are public datasets. Datasets are
available on the relevent website: https://people.cs.rutgers.edu/~dz220/data.html (accessed on
15 August 2023). The datasets used and analyzed during the current study are available from the
corresponding website.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tian, S.; Deng, X.; Chen, P.; Pei, T.; Oh, S.; Xue, W. A dynamic task offloading algorithm based on greedy matching in vehicle

network. Ad Hoc Netw. 2021, 123, 102639. [CrossRef]
2. Alqarni, M.A.; Mousa, M.H.; Hussein, M.K. Task offloading using GPU-based particle swarm optimization for high-performance

vehicular edge computing. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 10356–10364. [CrossRef]
3. Shu, W.; Li, Y. Joint offloading strategy based on quantum particle swarm optimization for MEC-enabled vehicular networks.

Digit. Commun. Netw. 2023, 9, 56–66. [CrossRef]
4. Bozorgchenani, A.; Maghsudi, S.; Tarchi, D.; Hossain, E. Computation offloading in heterogeneous vehicular edge networks:

On-line and off-policy bandit solutions. IEEE Trans. Mob. Comput. 2021, 21, 4233–4248. [CrossRef]
5. Materwala, H.; Ismail, L.; Hassanein, H.S. QoS-SLA-aware adaptive genetic algorithm for multi-request offloading in integrated

edge-cloud computing in Internet of vehicles. Veh. Commun. 2023, 43, 100654. [CrossRef]
6. Wang, K.; Wang, X.; Liu, X. Sustainable Internet of Vehicles System: A Task Offloading Strategy Based on Improved Genetic

Algorithm. Sustainability 2023, 15, 7506. [CrossRef]
7. Wang, H.; Lin, Z.; Guo, K.; Lv, T. Computation offloading based on game theory in MEC-assisted V2X networks. In Proceedings

of the 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, QC, Canada, 14–23 June
2021; pp. 1–6.

8. Xu, X.; Jiang, Q.; Zhang, P.; Cao, X.; Khosravi, M.R.; Alex, L.T.; Qi, L.; Dou, W. Game theory for distributed IoV task offloading
with fuzzy neural network in edge computing. IEEE Trans. Fuzzy Syst. 2022, 30, 4593–4604. [CrossRef]

9. Zhang, K.; Yang, J.; Lin, Z. Computation Offloading and Resource Allocation Based on Game Theory in Symmetric MEC-Enabled
Vehicular Networks. Symmetry 2023, 15, 1241. [CrossRef]

10. Ashraf, S.; Ahmad, A.; Yahya, A.; Ahmed, T. Underwater routing protocols: Analysis of link selection challenges. AIMS Electron.
Electr. Eng 2020, 4, 234–248. [CrossRef]

11. Sundararajan, S.; Naduvil, M.K. Enhancing sensor linearity through the translinear circuit implementation of piecewise and
neural network models. AIMS Electron. Electr. Eng. 2023, 7, 196–217.

12. Khan, F.; Nguang, S.K. Location-based reverse data delivery between infrastructure and vehicles. AIMS Electron. Electr. Eng.
2021, 5, 158–175. [CrossRef]

13. Nguyen, D.; Ding, M.; Pathirana, P.; Seneviratne, A.; Li, J.; Poor, V. Cooperative task offloading and block mining in blockchain-
based edge computing with multi-agent deep reinforcement learning. IEEE Trans. Mob. Comput. 2021. [CrossRef]

14. Lang, P.; Tian, D.; Duan, X.; Zhou, J.; Sheng, Z.; Leung, V.C. Cooperative computation offloading in blockchain-based vehicular
edge computing networks. IEEE Trans. Intell. Veh. 2022, 7, 783–798. [CrossRef]

15. Lang, P.; Tian, D.; Duan, X.; Zhou, J.; Sheng, Z.; Leung, V.C. Blockchain-Based Cooperative Computation Offloading and Secure
Handover in Vehicular Edge Computing Networks. IEEE Trans. Intell. Veh. 2023, 8, 3839–3853. [CrossRef]

16. Liu, L.; Chen, C.; Pei, Q.; Maharjan, S.; Zhang, Y. Vehicular edge computing and networking: A survey. Mob. Netw. Appl. 2021,
26, 1145–1168. [CrossRef]

17. Ahmed, M.; Raza, S.; Mirza, M.A.; Aziz, A.; Khan, M.A.; Khan, W.U.; Li, J.; Han, Z. A survey on vehicular task offloading:
Classification, issues, and challenges. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 4135–4162. [CrossRef]

18. Liu, J.; Ahmed, M.; Mirza, M.A.; Khan, W.U.; Xu, D.; Li, J.; Aziz, A.; Han, Z. RL/DRL meets vehicular task offloading using edge
and vehicular cloudlet: A survey. IEEE Internet Things J. 2022, 9, 8315–8338. [CrossRef]

19. Hazarika, B.; Singh, K.; Biswas, S.; Li, C.P. DRL-based resource allocation for computation offloading in IoV networks. IEEE
Trans. Ind. Inform. 2022, 18, 8027–8038. [CrossRef]

20. Mirza, M.A.; Yu, J.; Raza, S.; Krichen, M.; Ahmed, M.; Khan, W.U.; Rabie, K.; Shongwe, T. DRL-assisted delay optimized task
offloading in Automotive-Industry 5.0 based VECNs. J. King Saud Univ. Comput. Inf. Sci. 2023, 35, 101512. [CrossRef]

21. Jia, Z.; Zhou, Z.; Wang, X.; Mumtaz, S. Learning-based queuing delay-aware task offloading in collaborative vehicular networks.
In Proceedings of the ICC 2021-IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021;
pp. 1–6.

22. Luo, Q.; Li, C.; Luan, T.H.; Shi, W. Minimizing the delay and cost of computation offloading for vehicular edge computing. IEEE
Trans. Serv. Comput. 2021, 15, 2897–2909. [CrossRef]

https://people.cs.rutgers.edu/~dz220/data.html
http://doi.org/10.1016/j.adhoc.2021.102639
http://dx.doi.org/10.1016/j.jksuci.2022.10.026
http://dx.doi.org/10.1016/j.dcan.2022.03.009
http://dx.doi.org/10.1109/TMC.2021.3082927
http://dx.doi.org/10.1016/j.vehcom.2023.100654
http://dx.doi.org/10.3390/su15097506
http://dx.doi.org/10.1109/TFUZZ.2022.3158000
http://dx.doi.org/10.3390/sym15061241
http://dx.doi.org/10.3934/ElectrEng.2020.3.234
http://dx.doi.org/10.3934/electreng.2021009
http://dx.doi.org/10.1109/TMC.2021.3120050
http://dx.doi.org/10.1109/TIV.2022.3190308
http://dx.doi.org/10.1109/TIV.2023.3271367
http://dx.doi.org/10.1007/s11036-020-01624-1
http://dx.doi.org/10.1016/j.jksuci.2022.05.016
http://dx.doi.org/10.1109/JIOT.2022.3155667
http://dx.doi.org/10.1109/TII.2022.3168292
http://dx.doi.org/10.1016/j.jksuci.2023.02.013
http://dx.doi.org/10.1109/TSC.2021.3064579

Mathematics 2024, 12, 424 27 of 27

23. Binh, T.H.; Vo, H.; Nguyen, B.M.; Binh, H.T.T. Reinforcement Learning for Optimizing Delay-Sensitive Task Offloading in
Vehicular Edge-Cloud Computing. IEEE Internet Things J. 2023, 11, 2058–2069. [CrossRef]

24. Shang, B.; Liu, L.; Tian, Z. Deep learning-assisted energy-efficient task offloading in vehicular edge computing systems. IEEE
Trans. Veh. Technol. 2021, 70, 9619–9624. [CrossRef]

25. Vemireddy, S.; Rout, R.R. Fuzzy Reinforcement Learning for energy efficient task offloading in Vehicular Fog Computing. Comput.
Netw. 2021, 199, 108463. [CrossRef]

26. Huang, X.; He, L.; Zhang, W. Vehicle speed aware computing task offloading and resource allocation based on multi-agent
reinforcement learning in a vehicular edge computing network. In Proceedings of the 2020 IEEE International Conference on
Edge Computing (EDGE), Beijing, China, 19–23 October 2020; pp. 1–8.

27. Zhao, L.; Zhang, E.; Wan, S.; Hawbani, A.; Al-Dubai, A.Y.; Min, G.; Zomaya, A.Y. MESON: A Mobility-aware Dependent Task
Offloading Scheme for Urban Vehicular Edge Computing. IEEE Trans. Mob. Comput. 2023, 1–15. [CrossRef]

28. Chen, J.; Kang, J.; Xu, M.; Xiong, Z.; Niyato, D.; Chen, C.; Jamalipour, A.; Xie, S. Multiagent Deep Reinforcement Learning
for Dynamic Avatar Migration in AIoT-Enabled Vehicular Metaverses with Trajectory Prediction. IEEE Internet Things J. 2024,
11, 70–83. [CrossRef]

29. Zeng, J.; Gou, F.; Wu, J. Task offloading scheme combining deep reinforcement learning and convolutional neural networks for
vehicle trajectory prediction in smart cities. Comput. Commun. 2023, 208, 29–43. [CrossRef]

30. Yan, R.; Gu, Y.; Zhang, Z.; Jiao, S. Vehicle Trajectory Prediction Method for Task Offloading in Vehicular Edge Computing. Sensors
2023, 23, 7954. [CrossRef] [PubMed]

31. Chen, Z.; Wang, X. Decentralized computation offloading for multi-user mobile edge computing: A deep reinforcement learning
approach. EURASIP J. Wirel. Commun. Netw. 2020, 2020, 1–21. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/JIOT.2023.3292591
http://dx.doi.org/10.1109/TVT.2021.3090179
http://dx.doi.org/10.1016/j.comnet.2021.108463
http://dx.doi.org/10.1109/TMC.2023.3289611
http://dx.doi.org/10.1109/JIOT.2023.3296075
http://dx.doi.org/10.1016/j.comcom.2023.05.021
http://dx.doi.org/10.3390/s23187954
http://www.ncbi.nlm.nih.gov/pubmed/37766013
http://dx.doi.org/10.1186/s13638-020-01801-6

	Introduction
	Related Work
	System Model
	Model Architecture
	Network Communications Model
	Computational Model
	Local Computing
	Offloading Calculations
	Load Calculation

	Problem Definition

	DRL-Based Vehicular Computation Offloading
	Vehicular Trajectory Prediction
	MADDPG-Based Optimal Offloading Decision
	State S
	Action A
	Reward

	Algorithm Design
	Results
	Simulation Settings and Dataset
	Simulation Results
	Trajectory Prediction Evaluation
	Comparison with Traditional Algorithms
	Comparison with Other Algorithms
	Parameters Performance Evaluation

	Conclusions
	References

