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Abstract: In this study, we proposed proximal analytic center cutting plane algorithms for solving
variational inequalities whose domains are normal regions. Our algorithms stop with a solution of
the variational inequality after a finite number of iterations, or we may find a sequence that converges
to the solution of the variational inequality. We introduced the definition of the Nash economic
equilibrium solution over a normal region and proved a sufficient condition for our Nash economic
solution. An example of Nash equilibrium over a normal region is also provided. Our proximal
analytic center cutting plane algorithms are constructive proofs of our Nash equilibrium problems.
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1. Preliminaries

Cutting plane methods for optimization have a long history that goes back at least to a
fundamental paper by Kelley [1]. The theoretical approach of the analytic center cutting
plane methods started from Gon and Vial [2]. du Merle [3] developed an implementation
of the method of the prototype, which was successfully applied to solve several nontrivial
convex optimization problems [4,5]. Some later developments of the analytic center cutting
plane methods have been proposed for solving various variational inequalities, e.g., [6–9].

We present two proximal analytic center cutting plane algorithms for solving varia-
tional inequalities whose domains are normal regions.

Our proximal analytic center cutting plane algorithms are also constructive solutions
to our Nash economic equilibrium problems.

This study contains a detailed description of computational schemes of algorithms
and provides the theoretical proofs of their convergence to the desired solution.

Suppose X is a non-empty subset of the n-dimensional Euclidean space Rn, and
F: X → Rn is a function. We call that a point x* ∈ X is a solution of the variational inequality
VI [F, X] if

F(x∗)T(x − x∗) ≥ 0, ∀x ∈ X. (1)

The point x* ∈ X is a solution of the dual variational inequality VID (F, X) if

F(x)T(x − x∗) ≥ 0, ∀x ∈ X.

Given VI[F, X] (VID[F, X]), the gap function is defined as

gX(x) = max
y∈X

F(x)T(x − y), x ∈ X ( fX(x) = max
y∈X

F(y)T(x − y), x ∈ X).

A point x∗ ∈ X is said to be a ε-solution of the variational inequality (1) if gX(x∗) ≥ ε,
for given ε > 0.
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A function F: X → Rn is pseudomonotone on X if ∀ x ∈ X

F(x)T(y − x) ≥ 0 ⇒ F(y)T(y − x) ≥ 0, ∀y ∈ X.

It is known that (see Auslender [10]), if F is continuous, then a solution x* ∈ X of VID
(F, X) is a solution of VI (F, X); and if F is continuous pseudomonotone, then x* ∈ X is a
solution of VI (F, X) if and only if it is a solution of VID (F, X).

It is known that the following Lemma 1 holds.

Lemma 1. A point x* ∈ X is a solution of VI[F, X] (VID[F, X]) if and only if
gX(x∗) = 0 ( fX(x∗) = 0).

The convex hull of a set B ⊆ Rn is the set

con(B) = {
l

∑
i=1

αixi; xi ∈ B,
l

∑
i=1

αi = 1, αi ≥ 0}.

A polytope is a set P ⊆ Rn which is the convex hull of a finite set.
A polyhedron is a set

{x ∈ Rn; ATx ≤ b} ⊆ Rn,

where b ∈ Rn, and A is an m × n matrix.
A polytope is a polyhedron. The following intuitively clear but nontrivial to prove

result is essentially due to Farkas [11], Minkowski [12], and Weyl [13]:

Lemma 2. P is a polytope if and only if it is a bounded polyhedron.

In the sequel, we assume that a polytope always has a non-empty interior.

Definition 1. A subset X ⊆ Rn is said to be a normal region if it is a closed bounded set and if
there exists a sequence of polytopes {Cj}, which satisfies

Cj ⊆ Cj+1 (j = 1, · · · ),

such that
(∪∞

j=1Cj)
c = X.

The proof of the following Theorem 1 is trivial.

Theorem 1. A closed, bounded, convex region X ⊆ Rn is a normal region.

We denote Xc the topological closure of X.

Theorem 2. A subset X ⊆ Rn is a normal region if there exists a uniformly bounded sequence of
polytopes {Cj}, Cj ⊆ X (j = 1, · · · ), such that

(∪∞
j=1Cj)

c = X.

Proof. Actually, let
Cj

′ = con(∪j
i=1Cj).

Then, the sequence {Cj
′} satisfies the conditions in Definition 1. □
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Definition 2. A subset X ⊆ Rn is a unbounded normal region if there exists a sequence of bounded
normal regions Xj ⊆ X(j = 1, 2, . . .), such that each Xj contains all boundary points of X, and

∪∞
j=1Xj = X.

Actually, a subset X ⊆ Rn is a bounded or unbounded normal region if and only if it is
a bounded or unbounded convex region.

2. Proximal Analytic Center Cutting Plane Algorithms

This section modifies the method in Shen and Pang [6] and presents proximal analytic
center cutting plane algorithms for solving variational inequality VI[F, X], whose domains
are normal regions.

From now on, we make the following assumptions: for each x, y ∈ X, given any
ε = (ε, ε, · · · , ε)T ∈ Rn, δ = (δ, δ, · · · , δ)T ∈ Rn, where ε, δ ∈ (0, 1), we can always find
Fx ∈ Rn and Fy ∈ Rn such that

(i) F(x) ≤ Fx ≤ F(x) + ε, F(y) ≤ Fy ≤ F(y) + δ

(ii) Fy → Fx if y → x , no matter the relationship between ε and δ,
(iii) ∥Fy − Fx∥ ≤ L ∥y − x∥, where L is a constant.

Assume the auxiliary Γ(x, y) : Rn × Rn → Rm be a mapping that is continuous in x
and y, strong monotone with respect to y with a constant M > 0, i.e.,

(Γ(y, x)− Γ(z, x))T(y − z) ≥ M∥y − z∥2, ∀y, z ∈ X,

Consider the auxiliary variational inequality associated with Γ, whose solution ω(x)
satisfies

(Γ(ω(x), x)− Γ(x, x) + Fx)
T
(y − ω(x)) ≥ 0, ∀y, z ∈ X.

In view of the strong monotonicity of Γ(x, y) with respect to y, this auxiliary variational
inequality has a unique solution (Goffin, Luo, and Ye [7]).

For any polytope {x ∈ Rn; ATx ≤ b}, {x ∈ Rn; ATx + s = b, s = (s1, s2, · · · , sn), si ≥ 0}
is associated with the potential function φ = ∑n

i=1 lnsi. An approximate analytic center,
introduced by Goffin, Luo, and Ye [7], is the maximizer of the potential function φ and the
unique solution of the system

ATz = 0
ATx + s = b
∥ZTs − e∥ ≤ η < 1,

where z is a dual vector, and Z the diagonal matrix built upon z.
Let X ⊆ Rn be a normal region, there exists a sequence of polytopes {Cj} satisfying

Cj ⊆ Cj+1 (j = 1, 2, · · · ) such that

(∪∞
j=1Cj)

c = X.

Then, there is a sequence of variational inequalities VI[F, Cj] (j = 1, 2, · · · ) from
the original variational inequality VI[F, X], where the polytope Cj is given by the linear
inequalities Ajx = bj, x, bj ∈ Rn, and Aj is an m × n matrix, (j = 1, 2, · · · ).

The following Algorithm 1 extends Algorithm 3.1 in Shen and Pang [6] from a feasible
region of polytope to a normal region.

Theorem 3. Algorithm 1 either stops with a solution of the variational inequality VI(F, X) after a
finite number of iterations, or there exists a sequence in X that converges to the solution of VI(F, X).
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Algorithm 1

Assume X is a bounded normal region. Let ε ∈ (0, 1) and α ∈ (0, M) be two constant. Set k = 0,
j = 1, Ak = Aj, bk = bj, εk = ε, and
Ck

j = {x ∈ Rn : Ak
j x ≤ bk

j }.
Step 1 (Computation of the approximate analytic center). Find an approximate
analytic center xk

j of Ck
j = {x ∈ Rn : Ak

j x ≤ bk
j }.

Step 2 (Stopping criterion). If gX(xk
j ) = 0, then stop.

Else go to Step 3.
Step 3 (Computation of a 1/j solution). Find xk

j of Ck
j = {x ∈ Rn : Ak

j x ≤ bk
j }

If gCk
j
(xk

j ) ≤ 1/j then increase j by 1 and go to Step 1.

Else go to Step 4.
Step 4 (Solving the approximate auxiliary variational inequality problem). Find ω(xk

j ),
such that
(Γ(ω(xk

j ), xk
j )− Γ(xk

j , xk
j ) + Fxk )

T
(y − ω(xk

j )) ≥ 0, ∀y ∈ X,

where Fxk
j

satisfies F(xk
j ) ≤ Fxk

j
≤ F(xk

j ) + εxk
j
, εxk

j
= (εk, εk, · · · , εk)

T ∈ Rn.

Step 5 (construction of the approximate cutting plane). Let
yk

j = xk
j + ρlk,j (ω(xk

j )− xk
j ) and Gxk

j
= Fyk

j
, where lk,j is the smallest integer

that satisfies
FT

xk
j +ρ

lk ,j(ω(xk
j )−xk

j )
(xk

j − ω(xk
j )) ≥ α

∥∥∥ω(xk
j )− xk

j

∥∥∥2
,

where FT

xk
j +ρ

lk ,j(ω(xk
j )−xk

j )
satisfies

F(xk
j ) + ρlk (ω(xk

j )− xk
j )) ≤ F

xk+ρ
lk,j (ω(xk

j )−xk
j )
≤F(xk

j + ρlk,j (ω(xk
j )− xk

j )) + εk

where εk = εxk+ρlk (ω(xk)−xk) =(εk, εk, · · · , εk)
T

Let Hk
j = {x : GT

xk
j
(x − xk

j ) = 0},

Ak+1
j =

(
Ak

j
Gxk

j

)
, bk+1

j =

(
bk

j
Gxk

j
xk

j

)
.

Increase k by 1 and go to Step 1.
End of Algorithm 1.

Proof. For any given j, ∃xj ∈ Cj, such that gCj(xj) < 1/j, (j = 1, 2, . . .), then

gCj(xj) → 0, j → ∞.

Because X is a bounded set, there exists a subsequence of {xj} and a point x* ∈ X such
that the subsequence converges to x∗ ∈ X. We may assume that lim

j→∞
xj = x∗.

Since X is closed, ∃y0 ∈ X such that gX(xj) = max
y∈X

F(xj)(xj − y) = F(xj)(xj − y0). And

noting that (∪∞
j=1Cj)

c = X, ∃yi ∈ ∪∞
j=1Cj such that lim

i→∞
yi = y0, and for given j

→ F(xj)(xj − y0), i → ∞.

So, ∀ε > 0, ∃N, for i ≥ N

0 ≤ F(xj)(xj − y0)− F(xj)(xj − yi) < ε.

There is a subsequence of {Cj}, and without a loss of generosity, we may assume {Cj}
itself, which satisfies that yj ∈ Cj, j = 1, 2, · · · . Therefore, for j ≥ N

0 ≤ gX(xj)− gCj(xj)
= F(xj)(xj − y0)− max

y∈Cj
F(xj)(xj − y)

≤ gX(xj)− F(xj)(xj − yj) < ε.
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On the other hand, the continuity of gX implies that

∥ gX(x∗)− gX(xj)∥ → 0, j → ∞.

Consequently,

∥ gX(x∗)∥ ≤ ∥ gX(x∗)− gX(xj)∥+ ∥ gX(xj)− gCj(xj)∥+ ∥ gCj(xj)∥ → 0, j → ∞.

Therefore,
gX(x∗) = max

y∈X
F(x∗)(x∗ − y) = 0.

Which concludes that x* is a solution of VI(F, X). The proof is complete. □

By use of our Algorithm 1, we are going to present the following Algorithm 2 to solve
variational inequality VI(F, X) over an unbounded normal region X.

We can find a sequence of bounded normal regions Xj (j = 1, 2, . . .), such that each Xj
contains all boundary points of X and

∪∞
j=1Xj = X.

We note that each variational inequality VI [F, Xj] has a unique solution x∗j ∈ Xj (j = 1, 2,
. . .). And, when j is large enough, say j > N, the unique solution x∗ of the VI[F, X] satisfies
that x∗ ∈ Xj, j > N.

Algorithm 2

Assume X is an unbunded normal region. Set j = 1.
Step 1 (Computation of a sequence xl

j ⊆Xj such that ∥ x1
j − xl

j ∥ ≤ 1/j, (l = 2, 3, · · · ))

By use of Algorithm 1, computing a sequence {xl
j}

∞

l=1
⊆ Xj such that

lim
l→∞

xl
j = x∗j and ∥ x1

j − xl
j ∥ ≤ 1/j, (l = 2, 3, · · · .), (and let l → ∞ , one

has ∥ x1
j − x∗j ∥ ≤ 1/j, although x∗j is still unknown yet).

Step 2 (Stopping criterion). If gX(xl
j) = 0 for any of l = 1, 2, · · · , then stop.

Else go to Step 1.
End of Algorithm 2.

Theorem 4. Algorithm 2 either stops with a solution of the variational inequality VI(F, X) after a
finite number of iterations, or there exists a sequence in X that converges to the solution of VI(F, X).

Proof. Algorithm 2 stops with a solution of VI(F, X), or we can find sequences {xl
j}

∞

l=1
⊆

Xj ⊆ X such that lim
l→∞

xl
j = x∗j (j = 1, 2, . . .), and x∗j = x∗ if j > N, i.e., lim

k→∞
xk

j = x∗ (although x∗

is still unknown) if j > N. Therefore, from Step 1, one obtains

∥ x1
j − x∗ ∥ ≤ 1/j, ∀j > N. (2)

Then, take the sequence {x1
j }

∞

j=1
⊆ X (consisting of the first term of each sequence

{xl
j}

∞

l=1
⊆ Xj, j = 1, 2, . . .), and one has

∥ x1
j − x1

k ∥ ≤ ∥ x1
j − x∗ ∥+ ∥ x∗ − x1

k ∥ ≤ 1/j + 1/k → 0, j, k → ∞.

Hence, {x1
j }

∞

j=1
⊆ X is a Cauchy sequence and so is convergent. From (2), one obtains

lim
j→∞

x1
j = x∗, which completes the proof. □
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3. Nash Economic Equilibrium Application

Economic equilibrium is a condition or state in which economic forces are balanced.
These economic variables remain unchanged from their equilibrium values in the absence
of external influences. Economic equilibrium may also be defined as the point at which
supply equals demand for a product, with the equilibrium price existing where the hypo-
thetical supply and demand curves intersect. Economists can usually explain the past and
sometimes predict the future, but not without help. One of the most important tools at
their disposal is the Nash equilibrium, named after John Nash [14], who won a Nobel Prize
in 1994 for his discovery. There were plenty of discussions followed after Nash, e.g., some
recent approaches can be seen in Fischer [15], Faraci [16], and Boilan [17].

In this section, we explain that our proximal analytic center cutting plane algorithms
can be used to solve some practical problems whose domains are normal regions, e.g., Nash
economic equilibrium problems over normal regions.

Consider an oligopolistic economy in which a homogeneous product is supplied by n
firms. Let p(σ) denote the inverse demand function, which is the price at which consumers
will purchase a quantity σ. If each firm supplies qi units of the product, then the total
supply is

σq =
n

∑
i=1

qi. (3)

We denote by hi(qi) the i-th firm’s total cost of supplying qi units of the product; the
profit of the i-th firm is given by

φi(q) = qi p(σq)− hi(qi).

A vector q∗ = (q∗1 , q∗2 , . . . , q∗n) is a said to be a Nash equilibrium solution if it is an
optimal solution to the problem

max
q∈K

φi(q) = max
q∈K

[qi p(σq + σ∗
i )− hi(qi)].

where K is the box-constrained set (see Konnov and Volotskaya [18]),

K = {x ∈ Rn; 0 ≤ aj ≤ xj ≤ bj ≤ +∞},

aj are constants, bj are either constants or +∞ (j = 1, . . ., n). And σ∗
i = ∑n

j=1,j ̸=i q∗j (i = 1, 2,
. . ., n).

The Clarke–Rokafellar generalized derivatives of h at p0 in the direction d is defined by

h↑(p0, d) = sup
ε>0

limsup
p → (h, p0)
t → 0+

inf
e∈Bε(d)

h(p + te)− h(p)
t

,

where Bε(d) = {e ∈ X : ∥e − d∥ < ε}, t → 0+ means that t > 0 and t → 0 , p → (h, p0)
indicates that both p → p0 and h(p) → h(p0) .

The Clarke–Rokafellar subdifferential of h at p0 is given by

∂h(p0) = {p ∈ X : (p, d) ≤ h↑(p0, d), ∀d ∈ X}.

Let
Gi(q) = −p(σq)− qi p′(σq ), (i = 1, 2, . . . , m).
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From Golshtein and Tretyakov [19], as well as Murphy, Sherali, and Soyster [20], a
vector is a Nash equilibrium solution in the oligopolistic economy if and only if it is a
solution to the problem

G(q∗)T(q − q∗) +
n

∑
i=1

∂hi(q∗i )(qi − q∗i ) ≥ 0, ∀q ∈ K.

where K = {x ∈ Rn; 0 ≤ aj ≤ xj ≤ bj ≤ +∞}.
Write F(q) = G(q) + ∂h(q), then

F(q∗)T(q − q∗) ≥ 0, ∀q ∈ K.

Similarly, we can introduce the Nash equilibrium solution in the oligopolistic economy
if the domain is a normal region X:

A Nash equilibrium solution in the oligopolistic economy can be defined as a solution
of the variational inequality VI[F, X]

F(q∗)T(q − q∗) ≥ 0, ∀q ∈ X, (4)

if X is a normal region.

Example 1. The following mathematical model is used to calculate the remaining loan balance of a
fixed mortgage loan. The mortgage payment amount should be paid periodically for m periods on a
mortgage amount L at a periodic interest rate of r1. After r2 periods for full amortization m periods
(r2 ≤ m), the remaining balance B of the loan is given by

B = L
(1 + r1)

m − (1 + r1)
r2

(1 + r1)
m − 1

.

Assume one would like to consider a selling price r3 that satisfies

r3 ≥ D + L − B = D + L − L
(1 + r1)

m − (1 + r1)
r2

(1 + r1)
m − 1

≥ L − L
(1 + r1)

m − (1 + r1)
r2

(1 + r1)
m − 1

, (5)

where D is the down payment at the beginning of the mortgage.
If there are n = (l1, l2, . . ., ln) mortgage providers in the same mortgage rate, p = r1 =

p(σ). Mortgage provider li provides a mortgage amount of qi (i = 1, 2, . . ., n). Then, qi are all
functions of r1, r2, and r3. Let Y = Y (r1, r2, r3) be the convex region given by (5), where
0 < q1 ≤ M < ∞ for a given M. Then,

max
q∈K

φi(q) = max
q∈K

[qi p(qi + σ∗
i )− hi(qi)]= max

y∈Y
[qi p(qi + σ∗

i )− hi(qi)]

which is an example of Nash equilibrium over a convex region.
Therefore, by Example 1, a domain of a Nash equilibrium problem may be a normal

region, and so our proximal analytic center cutting plane methods can be applied to solve it.
A function F: X → Rn is said to be strictly pseudomonotone on X if ∀q∗ ∈ X

F(q∗)T(q − q∗) ≥ 0 ⇒ F(q)T(q − q∗) > 0, ∀q ∈ X , q ̸= q∗.

Theorem 5. Let X ⊆ Rn be a normal region and F: X →Rn a continuous and strictly pseudomono-
tone function, then the Nash equilibrium (4) has one and only one solution.
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Proof. ∀q′, q′′ ∈ ∪∞
j=1Cj, ∃i, j such that q′′ ∈ Ci and q′ ∈ Cj. Without loss of generality, we

suppose that i ≥ j, then q′, q′′ ∈ Ci. Due to the convexity of Ci, we have

αq′ + (1 − α)q′′ ∈ Ci ⊆ ∪∞
j=1Cj, ∀α ∈ [0, 1].

Which means that ∪∞
j=1Cj is convex. It is easy to see that the closure of any convex set

is convex. Therefore, X = (∪∞
j=1Cj)

c is a convex and compact set in Rn. From Hartman and
Stampacchia [21], the Nash equilibrium (4) has solutions.

On the other hand, assume that q∗ is a solution of the Nash equilibrium (4); then,

F(q∗)T(q − q∗) ≥ 0, ∀q ∈ X.

Due to the strict pseudomonotonicity of F, we have

F(q)T(q − q∗) > 0, ∀q ∈ X, q ̸= q∗.

i.e.,
F(q)T(q∗ − q) < 0, ∀q ∈ X, q ̸= q∗

Which indicates that ∀q ∈ X∗ with q ̸= q∗ is not a solution of (2). Therefore, the Nash
equilibrium (2) has at most one solution. We complete the proof. □

4. Final Remarks

Remark 1. The study is connected with the application of the proposed proximal analytic center
cutting plane techniques to the analysis of the Nash equilibrium problems in models of oligopolistic
economy stated as problems of variational inequalities. Our proximal analytic center cutting plane
algorithms are constructive proof of the existence of our Nash equilibrium solutions in Section 3.

Remark 2. We presented proximal analytic center cutting plane algorithms for solving variational
inequalities, which extended the algorithms over polytopes in [6] to normal regions.

Remark 3. Compared with [22], in this article, we dropped off the conditions of “Lipschitz
continuous”, “pseudomonotone plus”, and/or “strongly pseudomonotone” in corresponding results.

Remark 4. Similar to [23,24], our algorithms can be used in Machine Learning and Artificial
Intelligence.
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