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Abstract: This study considers the optimal debt ratio and dividend payment policies for an insurer
concerned about model misspecification. We assume that the insurer can invest all of its asset to the
financial market and the ambiguity may exist in the risky asset. Taking into account the ambiguous
situation, the insurer aims to maximize the expected utility of a discounted dividend payment until it
ruins. Under some assumption, we prove that there exists classical solutions of the optimal debt ratio,
dividend payment policies, and value functions that show that the existence of ambiguity can affect
the optimal debt ratio and dividend policies significantly.
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1. Introduction

Both dividends and debt are crucial factors in an insurance company. Dividends are
a critical component of shareholder returns. Their demonstration shows the company’s
financial strength and ability to generate profits. Dividends also serve as a signal to in-
vestors about the company’s future prospects. If the dividend payout ratio is consistent and
reliable, it indicates a stable and profitable business model. On the other hand, insurance
company debt is also crucial. It is a crucial element in risk management and a key factor in
ensuring solvency. The debt-to-asset ratio indicates how well the company manages its
balance sheet and risks. A debt ratio that is too high may indicate a leveraged balance sheet
and potentially increase the default risk. Conversely, a debt ratio that is too low may indi-
cate underutilized capital and potentially missed opportunities for growth. Therefore, both
dividends and debt are important factors to consider when analyzing insurance company
performance and financial health.

Due to the nature of their insurance product, insurers sometimes collect substantial
sums of cash, cash equivalents, and pursue capital gains in order to cover future claims
and prevent bankruptcy. The appropriate debt level and prospective insurance liabili-
ties is of great importance for an insurer. In actuarial science, the appropriate debt level
and prospective insurance liabilities of an insurance company should be discussed in
detail. Many researchers have investigated the optimal debt policy of an insurer in the
last decade. For example, Jin et al. (2015) [1] studied the optimal debt ratio problem
considering reinsurance, where they used the subsolution–supersolution method to deal
with the existence of solutions of the optimal debt ratio policy. Zhao et al. (2018) [2]
considered optimal debt ratio policies for an insurer with a regime-switching model.
Qian et al. (2018) [3] investigated the optimal liability ratio under catastrophic risk. In
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continuous-time setting, Li et al. (2023) [4] researched a state-dependent optimal asset–
liability management problem. The optimal debt ratio problem can be seen in other words
such as Zhu and Yin (2018) [5], Zhang et al. (2020) [6], Meng and Bi (2020) [7], Abid and
Abid (2023) [8], and the references therein.

The seminal work of De Finetti (1957) [9] has led to the classical problem of optimal
dividend payment in insurance mathematics. Paulsen and Gjessing (1997) [10] analyzed
a risk process with stochastic return on investments and obtained the optimal dividend
barrier policy. Cai et al. (2006) [11] investigated the Ornstein–Uhlenbeck-type model with
credit and debit interest for the optimal dividend problem. Cheung and Wong (2017) [12]
studied the dividend payment in the dual risk model considering delays. Xie and Zhang
(2021) [13] researched the finite-time dividend problems in a Levy risk model under periodic
observation. Chakraborty et al. (2023) [14] considered a diffusive model for optimally
distributing dividends under the situation of Knightian model ambiguity. For more studies
on the optimal dividend problem for an insurer, we refer the reader to Avanzi (2009) [15],
Yao et al. (2011) [16], Yin and Wen (2013) [17], Bi and Meng (2016) [18], Marciniak and
Palmowski (2016) [19], Feng et al. (2021) [20], and so on.

Actuarial research has recently revealed a pattern of diverse development. It is
clear that there are growing connections between risk theory and mathematics and some
optimum control issues are also becoming more significant and fascinating. As a result,
scholars have studied the optimal debt ratio combined with optimal dividend problems
in great detail. For example, see Meng et al. (2016) [21], Jin et al. (2022) [22], etc. In the
above studies, the scholars did not consider the existence of ambiguity and assumed that
the models used are exactly true. In reality, the insurance business uses a wealth of data
and a variety of technology to predict actuarial models. It is clear that the insurer is unsure
whether a model is the correct model or whether there is a misspecification error. Thus, the
aim of this study is to analyze the optimal debt ratio and dividend payment policies for an
insurer that is concerned about model misspecification. We assume that the insurer has
the ability to invest all of its assets in the financial market and that there may be ambiguity
in the risky asset. The insurer’s goal is to maximize the expected utility of a discounted
dividend payment until it ruins, taking into account the ambiguous situation. Based on
some assumptions, we prove that there exists classical solutions of the optimal debt ratio,
dividend payment policies, and value functions.

2. Model Formulation

We firstly describe an insurer’s surplus process as follows

X(t) = K(t)− L(t), (1)

where K(t) and L(t) denote asset value and liabilities at time t, respectively. Denote πt as a
debt ratio, i.e.,

πt =
L(t)
X(t)

. (2)

Then, we have

1 + πt =
K(t)
X(t)

. (3)

Intuitively, if the insurer holds a liability, it will earn premium. Denote α as the premium
rate, which means that the insurer can earn α dollars when it has provided a dollar insurance
protection. Thus, the increase in the asset value of insurance sales during [t, t + dt] can be
determined by αL(t)dt. Consequently, the insurer aims to know how much of the debt
ratio is suitable. For the sake of simplicity, we assume that there is only one risky asset in
the financial market. Thus, the price of the risky asset M(t) satisfies that

dM(t)
M(t)

= µdt + σdB1(t), (4)
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where µ > 0 and σ > 0 are real numbers. We assume that the insurer invests all of its asset
value K(t) into the financial market. Without considering claims and dividend payment,
the surplus process of the insurer can be written as

dX1(t) = dK(t) = [αL(t) + K(t)][µdt + σdB1(t)]. (5)

Then, we assume the accumulated claims up to time t are proportional to the insurer’s
liabilities L(t), denoted as S(t),

S(t) =
∫ t

0
c(s)L(s)dt. (6)

where c(t) is served as a claim rate which can be described by a diffusion process as

dc(t) = h(c(t))dt + υdB2(t), (7)

with c(0) = c, where h(c(t)): R → R is an expected claim rate, and υ > 0 is the volatility of
the claim rate. Cov(B1(t), B2(t)) = ρt, −1 < ρ < 1 represents the correlation between the
future claims and the risky asset. Using Gaussian linear regression, we can obtain that

dB1(t) = ρdB2(t) +
√

1 − ρ2dB3(t), (8)

where B3(t) is a standard Brownian motion, and B2(t) and B3(t) are independent.
What is more, we also consider the dividend payment in this paper, and we denote

D(t) as accumulated dividend payments up to time t,

dD(t) = ztX(t)dt, with D(0−) = 0. (9)

where 0 < zt < M is Ft-adapted, and M is a positive constant. Thus, the wealth process of
the insurer considering claims and dividend payments can be given in the following

dX(t) = dX1(t)− dS(t)− dD(t), X(0) = x. (10)

Substituting (5)–(8) into (10), we have

dX(t)
X(t)

= (απt + πt + 1)µdt − c(t)πtdt − ztdt + (απt + πt + 1)σρdB2(t) + (απt + πt + 1)σ
√

1 − ρ2dB3(t). (11)

The value function is usually set to maximize the expected utility of a discounted dividend
payment until it ruins (for example, see Jin et al. (2015) [1]).

V1(x, c) = sup
π,z

EP
[∫ τ

0
U(zsX(s))ds

∣∣X(0) = x, c(0) = c
]

, (12)

where τ is the time of ruin and τ = inf{t ≥ 0 : X(t) < 0}, where EP denotes the expectation
operator under probability measure P, U is a utility function satisfying U′ > 0, U′′ < 0, π,
and z are some admissible policies that will be described later. The insurer’s understanding
of the true probability measure (P) used in computing the equation above is the basic
assumption behind this model. The assumption being too strong has been argued by some
researchers. Insurers should be permitted to consider optimal policies for other measures
of probability. Otherwise, if an insurer ignores the ambiguity of the probability measure
and trusts P completely, the insurer may make some mistakes in some decision problems.
It is our assumption that the insurer’s ambiguity about the financial market model is only
due to its limited information about the financial market. The purpose of this paper is to
examine the optimal debt ratio and dividend strategy policy with ambiguity in the model
against the financial market only. The model ambiguity in our optimal control problem is
presented in the following.
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We are aware that the probability measure P mentioned above is created using the
insurer’s limited information. The insurance company computes P by utilizing a vast
amount of data and various technologies. This P is referred to as the reference model or
reference probability. It is clear that the insurer is unsure whether P is the correct model
or whether there was a misspecification error. Naturally, the insurer would take other
models into account. We call the aforementioned phenomenon ambiguity. Additionally,
we presumptively believe that the model ambiguity is limited to the financial market. The
alternative models that the insurer considers should then be identical to the reference
model and cannot affect the (7) that corresponds to the claims’ arrival rate, so we define the
alternative models by a class of probability measures that are equivalent to P:

Q := {Q|Q ∼ P, Q will not change (7)},∼ means equivalent (13)

In a probability space, two measures, P and Q, are equivalent, denoted by Q ∼ P, if they
have same null sets, i.e., Q(A) = 0, if and only if P(A) = 0)

By Girsanov’s theorem (Klebaner (2008) [23]), Q satisfies the following conditions

dQ
dP

(B3[0, T]) = Λ(T), (14)

where

Λ(t) = exp
{∫ t

0
m(s)dB3(s)−

1
2

∫ t

0
m(s)2

}
is a P-martingale with filtration {Ft}t∈[0,T], and m(t) is a regular adapted process satisfying
Novikov’s condition, i.e.,

EP
[

exp
(

1
2

∫ T

0
[m(t)]2ds

)]
< ∞.

Then, we have
dB3(t) = m(t)dt + dBQ

3 (t), (15)

where BQ
3 (t) is the standard Brownian motion corresponding to the probability measure Q.

We use relative entropy to calculate the difference between each alternative model and
the reference model in order to take the alternative model Q into consideration. Relative
entropy is a tried-and-true method for calculating the difference between Q and P. Relative
entropy has been employed to measure it in numerous research; for examples, see Uppal
and Wang (2003) [24], Maenhout (2004) [25], and Yi et al. (2013) [26]. The following is the
relative entropy between Q and P.

H(Q ∥ P) = EQ
[

ln
dQ
dP

]
= EQ

{∫ T

0
m(s)dB3(s)−

1
2

∫ T

0
m(s)2ds

}
= EQ

{∫ T

0
m(s)dBQ

3 (s) +
1
2

∫ T

0
m(s)2ds

}
.

Given that standard Brownian motion is defined by BQ
3 (t) under the probability measure

Q, we have

H(Q ∥ P) = EQ
{∫ T

0
Z(s)ds

}
=

∫ T

0

1
2

m(s)2ds, (16)

where Z(t) = 1
2 m(t)2. Therefore, the H(Q ∥ P) is measured by Z(t). A penalty is charged

if the insurer chooses to use the alternative model Q instead of the reference model P.
Naturally, the penalty is increased by the size of the H(Q ∥ P). In a manner similar to
Uppal and Wang (2003) [24], the following is how we design a robust control problem:
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V(x, c) = sup
π,z∈V

inf
Q∈Q

EQ
c,x

[∫ τ

0
[ξϕ(V(x, c))Z(s) + U(zsX(s))ds]

]
, (17)

where EQ
c,x[·] = EQ[·|c(0) = c, X(0) = x]. The standardizing function ϕ(V(t, x)) > 0

converts the penalty to the same order of magnitude as V(x, c), where this specific version
of ϕ(·) is typically chosen for analytical simplicity. The size of the ξ indicates how confident
the insurer is in the reference model P, where the larger the ξ is, the more confident the
insurer is in P, which we assume as 0 < ξ < ∞ in this paper. The inf term shows the
insurer’s aversion to ambiguity. In other words, the insurer is conservative and will take
into account the worst outcome with ambiguity; it will be further explained that the V is
the set of admissible policies.

3. Main Results

For the purpose of solving (17), the wealth process should be derived under Q. Substi-
tuting (15) into (11), we can obtain that

dX(t)
X(t)

= (απt + πt + 1)µdt − c(t)πtdt − ztdt + (απt + πt + 1)σm(t)
√

1 − ρ2dt

+(απt + πt + 1)σρdB2(t) + (απt + πt + 1)σ
√

1 − ρ2dBQ
3 (t). (18)

The authors of (18) show that the alternative models only change the drift coefficient, which
exactly corresponds to the use of Girsanov’s theorem. Let the generator of (18) be

A f (x, c) =

[
(απt + πt + 1)µdt − cπt − zt + (απt + πt + 1)σm(t)

√
1 − ρ2

]
x

∂

∂x
f (x, c)

+
1
2
(απt + πt + 1)2σ2x2 ∂2

∂x2 f (x, c) + h(c)
∂

∂c
f (x, c) +

1
2

υ2 ∂2

∂c2 f (x, c)

+(απt + πt + 1)συρx
∂2

∂c∂x
f (x, c). (19)

We also provide a definition of the set that includes all admissible policies.

Definition 1. V = {πt, zt} is admissible, if

(i) The process z = {zt, t ≥ 0} is a predictable and satisfy that 0 ≤ zt ≤ M;
(ii) The process π = {πt, t ≥ 0} is a predictable and satisfy that

EQ
∫ T

0
π2

s ds < ∞, 0 < T < ∞, Q ∈ Q;

(iii) The stochastic differential Equation (18) determines a unique strong solution.

Additionally, we state that a pair of policies (π, z) is admissible if (π, z) ∈ V.

It is obvious that zt = 0 for t ≥ τ. So, we rewrite function (17) as

V(x, c) = sup
π,z∈V

inf
Q∈Q

EQ
c,x

[∫ ∞

0
[ξϕ(V(x, c))Z(s) + U(zsX(s))ds]

]
, (20)

The Hamilton–Jacobi–Bellman(HJB) (See Fleming and Soner (2006) [27]) equation, which is
satisfied by the value function (20), can be given as follows.

max
π,z

inf
m

{
AV(x, c)− rV(x, c) + U(ztx) +

1
2

ξϕ(V(x, c))m2
}

= 0 (21)
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Let Gt := απt + πt + 1, then πt = Gt−1
α+1 . Additionally, as previously noted, we select a

suitable form of ϕ(·) (the form has been employed in Uppal and Wang (2003) [24] and other
instances),

ϕ(V(x, c)) = V(x, c).

Hence, the Equation (21) can be simplified as

max
G,z

inf
m

{[
Gtµdt − c(Gt − 1)

α + 1
− zt + Gtσm(t)

√
1 − ρ2

]
x

∂

∂x
V(x, c)

+
1
2

G2
t σ2x2 ∂2

∂x2 V(x, c) + h(c)
∂

∂c
V(x, c) +

1
2

υ2 ∂2

∂c2 V(x, c)

+Gtσυρx
∂2

∂c∂x
V(x, c)− rV(x, c) + U(ztx) +

1
2

ξV(x, c)m2
}

= 0 (22)

Since 1
2 ξV(x, c) > 0, the function m∗ minimizes (22) according to the first-order condition,

which takes the following form.

m∗ =
−Gtσ

√
1 − ρ2x ∂

∂x V(x, c)
ξV(x, c)

. (23)

Substituting (23) into (22) yields

max
G

{
1
2

G2
t σ2x2 ∂2

∂x2 V(x, c)−
G2

t σ2(1 − ρ2)x2[ ∂
∂x V(x, c)]2

2ξV(x, c)
+ [Gtµ − cGt

α + 1
]x

∂

∂x
V(x, c)

+Gtσυρx
∂2

∂c∂x
V(x, c)

}
+ max

z

{
− ztx

∂

∂x
V(x, c) + U(ztx)

}
+

1
2

υ2 ∂2

∂c2 V(x, c) + h(c)
∂

∂c
V(x, c)− rV(x, c) +

cx
α + 1

∂

∂x
V(x, c) = 0 (24)

Assume that the utility function has the following form

U(x) =
xγ

γ
, (25)

where 0 < γ < 1. We speculate that the value function has the following form given the
utility function.

V(x, c) = Y(c)
xγ

γ
, (26)

where Y(c) is a function of c. To determine Y(c), we derive the following functions

∂

∂x
V(x, c) = Y(c)xγ−1,

∂2

∂x2 V(x, c) = Y(c)(γ − 1)xγ−2,

∂

∂c
V(x, c) = Y′(c)

xγ

γ
,

∂2

∂c2 V(x, c) = Y′′(c)
xγ

γ
,

∂2

∂x∂c
V(x, c) = Y′(c)xγ−1.

(27)

Substituting (27) into (24) and simplifying it, we can obtain that
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max
G

{
1
2

G2
t [σ

2(γ − 1)Y(c)− γ

ξ
σ2(1 − ρ2)Y(c)] + Gt

[
(µ − c

α + 1
)Y(c) + συρY′(c)

]}
+max

z

{
− ztY(c) +

zγ
t

γ

}
+

1
2

υ2Y′′(c)
1
γ
+ h(c)Y′(c)

1
γ
− rY(c)

1
γ
+

c
α + 1

Y(c) = 0. (28)

According to the first-order conditions, we can obtain that
Gt∗ =

(µ − c
α+1 )Y(c) + σνρY′(c)

σ2Y(c)[(1 − γ) + (1−ρ2)γ
ξ ]

,

z∗t = Y(c)
1

γ−1 .

(29)

Substituting (29) into (28), we have

1
2
[(µ − c

α+1 )Y(c) + σνρY′(c)]2

σ2Y(c)[(1 − γ) + (1−ρ2)γ
ξ ]

+ (
1
γ
− 1)Y(c)

γ
γ−1

+
1
2

υ2Y′′(c)
1
γ
+ h(c)Y′(c)

1
γ
− rY(c)

1
γ
+

c
α + 1

Y(c) = 0. (30)

Multiplying both sides by γ in the above equation and simplifying it, (30) can be represented
as

1
2

ν2Y′′(c) +
[
h(c) +

νργ(µ − c
α+1 )

σ[(1 − γ) + γ(1−ρ2)
ξ ]

]
Y′(c) +

[1
2

γ(µ − c
α+1 )

2

σ2[(1 − γ) + (1−ρ2)γ
ξ ]

+
cγ

α + 1
− r

]
Y(c)

+
1
2

ν2ρ2γ

(1 − γ) + (1−ρ2)γ
ξ

Y′(c)2

Y(c)
+ (1 − γ)Y(c)

γ
γ−1 = 0. (31)

For the sake of simplicity, denote Λ(c) = ln Y(c). Additionally, let

H(c) = h(c) +
νργ(µ − c

α+1 )

σ[(1 − γ) + γ(1−ρ2)
ξ ]

,

K(c) =
1
2

γ(µ − c
α+1 )

2

σ2[(1 − γ) + (1−ρ2)γ
ξ ]

+
cγ

α + 1
,

L =
1
2

ν2ρ2γ

(1 − γ) + (1−ρ2)γ
ξ

.

(32)

Then (31) can be represented as

1
2

ν2Λ′′(c) + H(c)Λ′(c) + [L +
ν2

2
]Λ′(c)2 + N(c) = 0, (33)

where N(c) = K(c)− r + (1 − γ)e
Λ(c)
γ−1 . Next, we will verify the existence of the classical

solution of Λ(c). Naturally, from Y(c) = eΛ(c), we can also obtain Y(c). In order to obtain
the classical solution of (33), we apply the method that Jin et al. (2015) [1] used named
subsolution and supersolution. The definition of subsolution and supersolution can be
presented in the following.
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Definition 2. A solution Λ1(c) is said to be a subsolution of (33) if ∀c ∈ R, Λ1(c) ∈ C2(R) and
Λ1(c) satisfies

1
2

ν2Λ′′
1 (c) + H(c)Λ′

1(c) + [L(c) +
ν2

2
]Λ′

1(c)
2 + N(c) ≥ 0 (34)

A solution Λ2(c) is said to be a supersolution of (33) if ∀ c ∈ R, Λ2(c) ∈ C2(R) and Λ2(c) satisfies

1
2

ν2Λ′′
2 (c) + H(c)Λ′

2(c) + [L(c) +
ν2

2
]Λ′

2(c)
2 + N(c) ≤ 0. (35)

Furthermore, if ∀c ∈ R Λ1(c) ≤ Λ2(c), we say Λ1(c) and Λ2(c) are an ordered pair of subsolution
and supersolution, respectively.

In order to obtain the existence of the classical solution of (33), we give the following
lemmas.

Lemma 1. Suppose that

r > γ[µ −
σ2(1 − γ) + (1−ρ2)γ

ξ

2
], (36)

then

Λ = (γ − 1) ln
{

2
γ − 1

[r − γ(µ −
σ2(1 − γ) + (1−ρ2)γ

ξ

2
)]

}
(37)

is a subsolution of (33).

Proof. Since

K(c) =
1
2

γ(µ − c
α+1 )

2

σ2[(1 − γ) + (1−ρ2)γ
ξ ]

+
cγ

α + 1

=
γ
(
µ − c

α+1 − σ2[(1 − γ) + (1−ρ2)γ
ξ ]

)2

2σ2[(1 − γ) + (1−ρ2)γ
ξ ]

+ γµ −
γσ2[(1 − γ) + (1−ρ2)γ

ξ ]

2

≥γµ −
γσ2[(1 − γ) + (1−ρ2)γ

ξ ]

2
, (38)

hence

N(c) =K(c)− r + (1 − γ)e
Λ(c)
γ−1 ≥ γµ −

γσ2[(1 − γ) + (1−ρ2)γ
ξ ]

2
− r + 2[r − γ(µ −

σ2(1 − γ) + (1−ρ2)γ
ξ

2
)]

=r − [γµ −
γσ2[(1 − γ) + (1−ρ2)γ

ξ ]

2
] > 0. (39)

Combining with 1
2 ν2Λ′′ + H(c)Λ′ + [L + ν2

2 ]Λ
′2 = 0, we complete the proof.

Let

l1 = 2ν2(
γρ2

1 − γ + γ(1−ρ2)
ξ

+ 1),

l2 = −2
νργ 1

α+1

σ[(1 − γ) + γ(1−ρ2)
ξ ]

+ 2κ,

l3 =
γ

2σ2(1 − γ + (1−ρ2)γ
ξ )(α + 1)2

,



Mathematics 2024, 12, 40 9 of 12

where κ > νργ

σ[(1−γ)+
γ(1−ρ2)

ξ ](α+1)
−

ν

√
γ[γρ2+1−γ+

γ(1−ρ2)
ξ ]

σ[1−γ+
(1−ρ2)γ

ξ ](α+1)
. Then the equation l1k2 + l2k + l3 =

0 has two positive real roots denoted by k1 and k2.
Obviously, l1, l3 > 0, l2 < 0 and l2

2 − 4l1l3 > 0. So the equation has two positive roots.

Lemma 2. Let k0 = k1+k2
2 , then k0 > 0. Additionally, assume that h′(c) < κ and

r > K1(k0), (40)

where K1(k0) will be given later. Then

Λ̃(c) = k0c2 + K0 (41)

is a supersolution of (33), where K0 is a constant which is large enough such that Λ̃(c) > Λ1 and
satisfies that K0 > (γ − 1) ln

( r−K1(k0)
1−γ

)
.

Proof. From (33) and (41), we have

1
2

ν2Λ̃′′(c) + H(c)Λ̃′(c) + [L +
ν2

2
]Λ̃′(c)2

= k0ν2 + 2H(c)k0c + [L +
ν2

2
](2k0c)2

= k0ν2 + [2h(c) + 2
νργ(µ − c

α+1 )

σ[(1 − γ) + γ(1−ρ2)
ξ ]

]k0c + [
ν2ρ2γ

(1 − γ) + (1−ρ2)γ
ξ

+ ν2]2k2
0c2

= 2k2
0c2ν2[

ρ2γ

(1 − γ) + (1−ρ2)γ
ξ

+ 1] + k0ν2 + 2k0c[
νργ(µ − c

α+1 )

σ[(1 − γ) + γ(1−ρ2)
ξ ]

] + 2h(c)k0c (42)

We know that ∃ ĉ s.t.
h(c) = h(0) + ch′(ĉ) < h(0) + cκ. (43)

Hence,

1
2

ν2Λ̃′′(c) + H(c)Λ̃′(c) + [L +
ν2

2
]Λ̃′(c)2

< 2k2
0c2ν2[

ρ2γ

(1 − γ) + (1−ρ2)γ
ξ

+ 1] + k0ν2 + 2k0c[
νργ(µ − c

α+1 )

σ[(1 − γ) + γ(1−ρ2)
ξ ]

] + 2(h(0) + cκ)k0c.

= c2(k2
0l1 + k0l2) + 2k0c[

νργµ

σ[(1 − γ) + γ(1−ρ2)
ξ ]

+ h(0)] + k0ν2. (44)

So
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1
2

ν2Λ̃′′(c) + H(c)Λ̃′(c) + [L +
ν2

2
]Λ̃′(c)2 + N(c)

< c2(k2
0l1 + k0l2) + 2k0c[

νργµ

σ[(1 − γ) + γ(1−ρ2)
ξ ]

+ h(0)] + k0ν2

+
1
2

γ(µ − c
α+1 )

2

σ2[(1 − γ) + (1−ρ2)γ
ξ ]

+
cγ

α + 1
− r + (1 − γ)e

Λ̃(c)
γ−1

= c2(k2
0l1 + k0l2) + 2k0c[

νργµ

σ[(1 − γ) + γ(1−ρ2)
ξ ]

+ h(0)] + k0ν2

+
1
2

γ

{
c2

(α+1)2 +
{

µ − σ2[1 − γ + (1−ρ2)γ
ξ ]

}2 − 2c
α+1

{
µ − σ2[1 − γ + (1−ρ2)γ

ξ ]
}}

σ2[(1 − γ) + (1−ρ2)γ
ξ ]

+γ(µ − c
α + 1

)−
γσ2[1 − γ + (1−ρ2)γ

ξ ]

2
+

cγ

α + 1
− r + (1 − γ)e

Λ̃(c)
γ−1

= c2 φ2
1 + cφ2 + φ3 − r + (1 − γ)e

Λ̃(c)
γ−1 , (45)

where

φ1 = k2
0l1 + k0l2 + l3,

φ2 = 2k0[
νργµ

σ[(1 − γ) + γ(1−ρ2)
ξ ]

+ h(0)]−
γ[µ − σ2[(1 − γ) + (1−ρ2)γ

ξ ]]

σ2[(1 − γ) + (1−ρ2)γ
ξ ](α + 1)

,

φ3 = k0ν2 +
1
2

γ
{

µ − σ2[1 − γ + (1−ρ2)γ
ξ ]

}2

σ2[(1 − γ) + (1−ρ2)γ
ξ ]

+ γµ −
γσ2[1 − γ + (1−ρ2)γ

ξ ]

2
.

Let K1(k0) = φ3 −
φ2

2
4φ1

, we obtain that

1
2

ν2Λ̃′′(c) + H(c)Λ̃′(c) + [L +
ν2

2
]Λ̃′(c)2 + N(c)

< K(k0)− r + (1 − γ)e
k0c2+K0

γ−1

< (r − K(k0))[e
k0c2

γ−1 − 1] < 0 (46)

By Lemmas 1 and 2 , we have Theorem 1.

Theorem 1. There exists a classical solution of (33) denoted by Λ̂(c) such that

Λ ≤ Λ̂(c) ≤ Λ̃(c). (47)

Proof. An ordered pair of subsolution and supersolution of (42) are obtained by
Lemmas 1 and 2. Then the existence of a classical solution can be proved by Theorem 3.4
in Jin et al. (2015) [1].

Then, the value function, optimal debt ratio strategy and optimal dividend strategy
are given as follows.
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Theorem 2. Suppose that a function Λ̂(c) solves (33), then there exists Ŷ(c) that solves (31).
Additionally, assume that (36) and (40) hold. Then,

(i)

V̂(x, c) = Ŷ(c)
xγ

γ
, (48)

is the value function of (20);

(ii) The optimal debt ratio and optimal dividend policies are given by
π∗

t =
G∗

t − 1
α + 1

,

z∗t = Ŷ(c)
1

γ−1 ,
(49)

where G∗
t =

(µ− c
α+1 )Ŷ(c)+σνρŶ′(c)

σ2Ŷ(c)[(1−γ)+
(1−ρ2)γ

ξ ]
.

Remark 1. We can see that in Theorem 2, the optimal policies and the value function can be affected
by the ambiguity parameter ξ, which means that the existence of the ambiguity can affect the optimal
debt ratio and dividend policies and that insurers cannot ignore the existence of ambiguity when
making their decisions.

4. Conclusions

In the modern field of actuarial science, optimal debt ratio decisions and dividend
problems are extremely important. Most of the existing works only deal with this interesting
topic under the assumption of an accurate model. We investigate the optimal debt ratio
and dividend payment policies for an insurer concerned about model misspecification
and prove that there exists classical solutions of the optimal debt ratio, dividend payment
policies, and value functions.
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