
Citation: Aljalaud, F.; Kurdi, H.;

Youcef-Toumi, K. Autonomous

Multi-UAV Path Planning in Pipe

Inspection Missions Based on Booby

Behavior. Mathematics 2023, 11, 2092.

https://doi.org/10.3390/

math11092092

Academic Editor: Xiaosong Du

Received: 20 March 2023

Revised: 13 April 2023

Accepted: 19 April 2023

Published: 28 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Autonomous Multi-UAV Path Planning in Pipe Inspection
Missions Based on Booby Behavior
Faten Aljalaud 1,2,*, Heba Kurdi 1,3 and Kamal Youcef-Toumi 3

1 Computer Science Department, College of Computer and Information Sciences, King Saud University,
Riyadh 11451, Saudi Arabia; hkurdi@ksu.edu.sa

2 Computer Science Department, Imam Mohammad Ibn Saud Islamic University, Riyadh 11564, Saudi Arabia
3 Mechanical Engineering Department, Massachusetts Institute of Technology (MIT),

Cambridge, MA 02139, USA; youcef@mit.edu
* Correspondence: 438203858@student.ksu.edu.sa

Abstract: This paper presents a novel path planning heuristic for multi-UAV pipe inspection missions
inspired by the booby bird’s foraging behavior. The heuristic enables each UAV to find an optimal path
that minimizes the detection time of defects in pipe networks while avoiding collisions with obstacles
and other UAVs. The proposed method is compared with four existing path planning algorithms
adapted for multi-UAV scenarios: ant colony optimization (ACO), particle swarm optimization
(PSO), opportunistic coordination, and random schemes. The results show that the booby heuristic
outperforms the other algorithms in terms of mean detection time and computational efficiency under
different settings of defect complexity and number of UAVs.

Keywords: inspection; bio-inspired algorithms; unmanned aerial vehicle; booby; multi-UAV; path
planning; pipes

MSC: 68V

1. Introduction

Unmanned aerial vehicles (UAVs) and multi-UAVs have opened up new possibilities
for various applications in both military and civil domains. However, most UAVs still
require human operators to control and guide them, which limits their autonomy and
efficiency. To achieve full autonomy, UAVs need to be able to make decisions without
human intervention [1,2], which requires optimizing their path planning algorithms [3,4].

One of the emerging civil applications of multi-UAVs is in construction and infrastruc-
ture inspection [5], which accounts for 45% of the UAV net market value [2]. In particular,
the pipe inspection field is one of the areas with prevailing growth rates among numerous
UAV applications. This is especially true because most civil defense schemes globally
mandate automatic or fixed sprinklers in buildings [6]. To inspect such indoor pipe net-
works, human operators are usually employed. However, some companies have started
automating the process using UAVs. For instance, a UK-based UAV inspection services
company [7] is presenting a UAV specifically designed for indoor environments. The UAV
has a camera and a protective frame surrounding the indoor drone. It is used to inspect
pipes by an operator to take high-definition photos. Another example is the new fire
sprinkler system at the Amazon warehouse in Ajax which started to leak randomly, requir-
ing a building-wide shut down and evacuation. Amazon inspected the system by hiring
a photography company to inspect the sprinkler network for potential damage or poor
installation [8]. These cases are not autonomous and require constant human operation. As
a result, real-life cases like these show the need for studies like ours, especially autonomous
solutions.

Mathematics 2023, 11, 2092. https://doi.org/10.3390/math11092092 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11092092
https://doi.org/10.3390/math11092092
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-6110-9657
https://doi.org/10.3390/math11092092
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11092092?type=check_update&version=1

Mathematics 2023, 11, 2092 2 of 23

In this field, corrosion detection is a critical task, as corrosion causes almost 50%
of steel pipeline failures [9–11], and steel pipes are widely used in automated sprinkler
systems [12,13]. Corrosion tends to form localized pits that concentrate the corrosive
attack [14], so small UAVs, known as micro air vehicles (MAVs), are preferred for their
reachability and easy deployment [1]. However, MAVs have limited resources and battery
capacity [4], which poses a challenge for path planning optimization [2], an NP-hard
problem [15]. The multi-UAV path planning problem is a particular case of the multirobot
path planning problem, where robots can fly in a k-dimensional space. Multi-UAV systems
outperform single-UAV systems in parallelism, robustness, simplicity, and cost [16]. While
a great deal of research has been conducted on UAV applications, very few studies have
considered multi-UAV applications for construction and infrastructure inspection [2].

Metaheuristics are general optimization methods that explore the problem space
iteratively to find an optimal or near-optimal solution [17,18]. However, metaheuristics are
often resource-intensive, as they require evaluating an objective function repeatedly with a
group of search agents [18]. This poses a challenge for MAVs, which have limited resources.
Therefore, metaheuristics should only be used when no problem-specific heuristics are
available. A problem-specific heuristic is a customized solution that tries to find a “good”
solution on the first attempt [19]. The proposed research fills a gap in the literature by
developing a problem-specific heuristic for multi-UAV systems in inspection missions.
Moreover, it introduces a novel technique inspired by the foraging behavior of the booby
bird to overcome complex optimization problems.

The main contributions of this paper can be summarized as follows:

1. A novel booby-inspired heuristic for the path planning problem in multi-UAV systems.
2. Successful implementation of the proposed approach in the context of inspection

missions.
3. A rigorous evaluation framework for the proposed approach against rival multi-UAV

path planning algorithms.

The paper is structured as follows. Previous methods for multi-UAV path planning
inspection using bio-inspired techniques are introduced in Section 2. The problem definition
and path planning model are defined in Section 3. Section 4 explains the booby motivation
for this work and the system concept, and provides the booby algorithms. Section 5 explains
the evaluation process and results, while Section 6 contains the concluding remarks and
identifies some future study directions.

2. Related Studies
2.1. UAV Inspection Missions

The navigation of a robot or UAV involves several stages: localization, mapping, path
planning, and motion control [20,21]. These stages have been addressed differently by vari-
ous studies on inspection missions using UAVs. For example, some studies have focused
on path planning [22], while others have explored localization methods [23,24]. A common
goal of UAV inspection mission planning is to optimize the quality of visual information
captured by UAVs and create efficient mission plans for data collection. However, most of
the existing studies have mainly dealt with image processing techniques [25], as reviewed
by [26,27]. One exception is the study by Quenzel et al. [24], which presented an integrated
chimney inspection system using a UAV. They combined laser localization and visual
odometry for navigation and allowed the user to select points of interest for subsequent
inspection rounds. The UAV then used a traveling salesman problem solver to find an
optimal order of visiting those points for a shorter flight duration.

UAV inspection applications can be divided into two types: indoor and outdoor
missions. While most of the existing research on UAV inspection missions has focused
on outdoor environments [28], such as power lines [29,30], chimneys [24], bridges [31,32],
railways [25], and construction sites [28], there is a lack of studies on multi-UAV applica-
tions for indoor environments. Multi-UAV inspection path planning is a challenging and
important problem that deserves more attention. Bono et al. [31] proposed a trajectory

Mathematics 2023, 11, 2092 3 of 23

planning method for a UAV fleet based on a digital twin of a bridge inspection, where the
user selects waypoints on the digital model corresponding to the points of interest. The
method computes noncolliding trajectories for each UAV around the centroid trajectory
using a swarm-distributed model predictive control strategy. However, this method is not
suitable for inspecting pipes in an indoor environment, which is the focus of our work.
We present a novel multi-UAV path planning algorithm for pipe inspection that considers
constraints and collision avoidance in an indoor environment.

2.2. Bio-Inspired Approaches to the Multi-UAV Path Planning Problem

The UAV path planning problem has been addressed by various methods in the
literature [33,34]. Among them, bio-inspired approaches have shown more potential to
handle this complex and dynamic problem [33]. However, most of the existing studies have
focused on single-UAV scenarios [34]. Multi-UAV path planning is a more challenging and
realistic problem that requires further investigation. For instance, Ismail et al. [22] proposed
a fruit fly optimization algorithm to find the optimal number and paths of UAVs for oilfield
inspection. They assumed one depot and multiple goals for each UAV, and they optimized
the initial paths using an improved fruit fly algorithm. Their results indicated that three
UAVs were optimal for their problem setting. However, they only used one map and two
performance measures (cost function and running time), which limits the generalization of
their approach. Another related work by Pan et al. [35] formulated the multi-UAV path
planning problem as a multiple traveling salesman problem (m-TSP). They developed a
deep learning model trained by a genetic algorithm to collect data from distributed sensors
using UAVs. Their objective was to minimize the path length and the solving time in
challenging scenarios. They studied how different numbers of data nodes affected their
model’s performance. The performance measures were the average total distance of UAVs,
the average required number of UAVs, and the average solving time. They tested their
algorithm against random and genetic algorithms only.

Previous studies on multi-UAV path planning using bio-inspired approaches have
some limitations in the inspection domain. They do not show how their approaches
scale with different settings and numbers of UAVs, nor do they measure the inspection
effectiveness with metrics such as detection time. In contrast, our work demonstrates our
approach’s performance under various settings and multiple UAVs, and considers several
performance measures.

3. Problem Definition and Path Planning Model
3.1. Problem Definition

We considered a multi-UAV inspection mission. As shown in Figure 1, a set of UAVs
should inspect a network of pipelines to locate defects and report them to a base station.
The mission starts with homogenous UAVs taking off from one location to cooperatively
inspect all parts of the pipes externally to detect defects. During the execution of the
mission, the UAVs will fly to different locations, given that no two UAVs can be at one
location simultaneously. Once a UAV has inspected a location, no other UAV will re-inspect
it again. The locations and number of defects are unknown a priori, while the pipeline
network’s dimensions and altitude are known.

Mathematics 2023, 11, 2092 4 of 23Mathematics 2023, 11, x FOR PEER REVIEW 4 of 22

Figure 1. An operational scenario of a multi-UAV inspection mission.

3.2. Path Planning Model
Several assumptions must first be made to solve the multi-UAV cooperative inspec-

tion mission planning problem:
1. UAVs move in straight lines.
2. A network location (cell) can have a maximum of one defect which simplifies the

process of detecting and localizing defects.
3. Each location can only have one UAV active at any given time to avoid collisions and

ensure that each location is covered by at most one UAV [36].
4. Altitude layering [37]: Pipes and other UAVs cannot collide with one another. Thus,

UAVs must fly higher or lower than pipelines. UAVs will use altitude layering once
they fly. Then, the z dimension remains constant after UAV takeoff. Note that takeoff
and landing times are negligible.

5. Because this is an indoor inspection mission, the weather does not affect UAVs.
6. UAVs can sense changes in the pipeline and find defects within a certain distance of

the pipe.
7. The cell dimensions are smaller or equal to the UAV’s detection range.
8. The baĴery swapping time is neglected [2].

Variables of the proposed model:
ܷ—total number of UAVs;
 ;index of a UAV—ݑ

௨ܰ,௪—number of waypoints in a feasible trajectory for UAV ݑ;
 ;௜,௝—distance traveled by UAV between the ݅th waypoint and ݆th waypointܦ
 ;௜,௝—energy consumption between the ݅th waypoint and ݆th waypointݎ
∑ ௨,௝௝ݎ —total energy consumption of the ݑth UAV;
 ;ݑ ℎ௨—feasible trajectory for a UAVݐܽܲ
 ;ℎ௨ݐܽܲ ௉௔௧௛ೠ—total distance traveled corresponding toݐݏ݋ܥ
 ;௠—initial energy of every UAVߜ
 ;௨—UAV’s energy at a given timeߜ
 .coefficient to denote energy consumption—ߤ
In our work, the optimization algorithm generates a series of three-dimensional way-

points [38]. A feasible path ܲܽݐℎ௨ is stored as a vector in which an element ݓ௨,௜ =
௨,௜ݔ) , ,௨,௜ݕ ℎ௨ݐܽܲ Equation (1) defines .ݑ ௨,௜) denotes the ݅-th waypoint of UAVݖ :

ℎ௨ݐܽܲ = ൫ݓ௨,ଵ, ,௨,ଶݓ … , ௨,ேೠ,ೢ൯ (1)ݓ

Our objective (ܨை௕௝௘௖௧௜௩௘) is to improve the trajectory planning quality by minimizing
the UAV’s total traveled distance. We formulated our problem as a complicated traveling
salesman problem (TSP) [35], where there may be more than one salesman. Additionally,

Figure 1. An operational scenario of a multi-UAV inspection mission.

3.2. Path Planning Model

Several assumptions must first be made to solve the multi-UAV cooperative inspection
mission planning problem:

1. UAVs move in straight lines.
2. A network location (cell) can have a maximum of one defect which simplifies the

process of detecting and localizing defects.
3. Each location can only have one UAV active at any given time to avoid collisions and

ensure that each location is covered by at most one UAV [36].
4. Altitude layering [37]: Pipes and other UAVs cannot collide with one another. Thus,

UAVs must fly higher or lower than pipelines. UAVs will use altitude layering once
they fly. Then, the z dimension remains constant after UAV takeoff. Note that takeoff
and landing times are negligible.

5. Because this is an indoor inspection mission, the weather does not affect UAVs.
6. UAVs can sense changes in the pipeline and find defects within a certain distance of

the pipe.
7. The cell dimensions are smaller or equal to the UAV’s detection range.
8. The battery swapping time is neglected [2].

Variables of the proposed model:
U—total number of UAVs;
u—index of a UAV;
Nu,w—number of waypoints in a feasible trajectory for UAV u;
Di,j—distance traveled by UAV between the ith waypoint and jth waypoint;
ri,j—energy consumption between the ith waypoint and jth waypoint;
∑j ru,j—total energy consumption of the uth UAV;
Pathu—feasible trajectory for a UAV u;
CostPathu —total distance traveled corresponding to Pathu;
δm—initial energy of every UAV;
δu—UAV’s energy at a given time;
µ—coefficient to denote energy consumption.
In our work, the optimization algorithm generates a series of three-dimensional

waypoints [38]. A feasible path Pathu is stored as a vector in which an element wu,i =
(xu,i, yu,i, zu,i) denotes the i-th waypoint of UAV u. Equation (1) defines Pathu:

Pathu =
(
wu,1, wu,2, . . . , wu,Nu,w

)
(1)

Our objective (FObjective

)
is to improve the trajectory planning quality by minimizing

the UAV’s total traveled distance. We formulated our problem as a complicated traveling

Mathematics 2023, 11, 2092 5 of 23

salesman problem (TSP) [35], where there may be more than one salesman. Additionally,
we added the energy constraint to consider while choosing the path. The UAV u cannot
choose a path that exceeds its energy δu. Equation (2) describes the above model.

FObjective =


Min

((
∑U

i=1 CostPathi

))
s.t.


∑j r1,j < δ1

. . .
∑j rU,j < δU

. (2)

The following Equation (3) computes the total distance traveled corresponding to
Traju. As a result, the equation will find the cost associated with each trajectory.

CostTraju =
Nu,w−1

∑
j=1

DWu,j ,Wu,j+1 (3)

Assuming the velocity is 1 m/s in the energy consumption (EC), as denoted as r above,
we computed this in our experiments as follows [35,39,40]:

ri,j = µ ∗ Di,j (4)

4. Proposed Method
4.1. Booby Inspiration

Many biological studies focus on marine bird colonies and foraging. Marine birds
modify their foraging techniques to maximize prey encounters in high-prey-density areas.
The booby bird’s foraging behavior yields many insights that may aid multi-UAV path
planning [41,42]. In a booby colony, reproduction depends on breeding location and partner.
Females choose partners, and males compete for nesting spots. Birds should choose the
finest mates and locations (near to forage, safe from weather and predators, and easy entry
and exit for breeders) [43]. There are three phases to the foraging trip. First, the booby bird
leaves its colony to forage rapidly away from it at a high and constant speed along a linear
path. The bird continues this behavior until it reaches a foraging zone. Second, once it
reaches a foraging zone, it will change direction and speed frequently [44,45]. The foraging
zone is an area with a high likelihood of encountering prey or where the bird has already
detected prey. During foraging activity, the birds will land on the water or dive [44]. Hence,
individual birds adjust their traveling behavior in response to prey density and maximize
their prey encounters by increasing turning rates and reducing travel speeds. The term for
this adaptive response to prey density is area-restricted search (ARS) behavior [42,44–46].
Finally, the booby will return to the colony at a more constant flight speed and with a
relatively straight route or path parallel to the outgoing path [44,45]. Note that there can be
one or more ARS zones during a trip [45]. When the booby lays eggs, it usually only lays
three [43].

4.2. System Model

In our implementation, we discretize the pipes’ map to enclose the pipes in small unit
areas called cells, as shown in Figure 2. Each cell represents a network location (point) that
should be visited exactly once. UAVs should scan all network locations (cells with circles)
to find defects (cells with circles and squares). Each UAV plans its route to visit several cells
and inspect them. Once the mission ends, each cell corresponding to a network location
must have been visited exactly once by a UAV. Additionally, all defects should have been
identified while minimizing the total travelled distance by all UAVs.

Mathematics 2023, 11, 2092 6 of 23
Mathematics 2023, 11, x FOR PEER REVIEW 6 of 22

Figure 2. Grid representation of the environment (blue circles represent a location, and red squares
represent defects).

The world map is clustered into different zones. The number of zones is determined
during the initialization phase. Each zone can be in one of the following states: available,
unavailable, inspected, and uninspected. All zones are available and uninspected states
during the initialization phase.

Available UAVs are categorized into three dynamically formed sets: primary, second-
ary, and temporary. The UAVs have different flying modes while executing the mission:
default inspection mode and ARS inspection mode. In the default mode, the UAV scans
the network location by moving to the closest point from its current position. If it detects
a defect in any location, it switches to the ARS mode. In this mode, the UAV examines the
surrounding areas of the defect more closely for a certain period before returning to the
default mode. The UAVs adjust their roles dynamically according to the inspection cover-
age of each zone. The mission ends when all zones are inspected.

4.3. From Inspiration to Algorithm
We began by investigating the feasibility of defining the process of assigning UAVs

to a network location (looking for defects and then detecting them) in an inspection mis-
sion that is comparable to the foraging process in a booby colony. The booby system has
two inspection modes: default inspection mode and ARS inspection mode; this mimics
the foraging behavior of the booby once it finds prey. Moreover, the UAV has three differ-
ent roles in our system: primary, secondary, and temporary, which represent the male,
female, and booby egg, respectively. Table 1 shows the mapping between the booby col-
ony and our system.

Table 1. Biological inspiration: mapping between a booby colony and the booby system.

Booby Colony Our System
Ground Virtual map of the network area

Nest Zone
Male booby Primary UAV

Female booby Secondary UAV
Egg Temporary UAV

Foraging Inspection
Prey Defect

The male booby is responsible for choosing a nest location on the ground and dis-
playing it for potential female partners. Utilizing this behavior, we make the primary UAV
choose a location in the assigned zone and send a request for a secondary UAV. Addition-
ally, since the booby can have a limited number of eggs, the primary UAV can request a

Figure 2. Grid representation of the environment (blue circles represent a location, and red squares
represent defects).

The world map is clustered into different zones. The number of zones is determined
during the initialization phase. Each zone can be in one of the following states: available,
unavailable, inspected, and uninspected. All zones are available and uninspected states
during the initialization phase.

Available UAVs are categorized into three dynamically formed sets: primary, sec-
ondary, and temporary. The UAVs have different flying modes while executing the mission:
default inspection mode and ARS inspection mode. In the default mode, the UAV scans
the network location by moving to the closest point from its current position. If it detects
a defect in any location, it switches to the ARS mode. In this mode, the UAV examines
the surrounding areas of the defect more closely for a certain period before returning to
the default mode. The UAVs adjust their roles dynamically according to the inspection
coverage of each zone. The mission ends when all zones are inspected.

4.3. From Inspiration to Algorithm

We began by investigating the feasibility of defining the process of assigning UAVs to
a network location (looking for defects and then detecting them) in an inspection mission
that is comparable to the foraging process in a booby colony. The booby system has two
inspection modes: default inspection mode and ARS inspection mode; this mimics the
foraging behavior of the booby once it finds prey. Moreover, the UAV has three different
roles in our system: primary, secondary, and temporary, which represent the male, female,
and booby egg, respectively. Table 1 shows the mapping between the booby colony and
our system.

Table 1. Biological inspiration: mapping between a booby colony and the booby system.

Booby Colony Our System

Ground Virtual map of the network area
Nest Zone

Male booby Primary UAV
Female booby Secondary UAV

Egg Temporary UAV
Foraging Inspection

Prey Defect

The male booby is responsible for choosing a nest location on the ground and display-
ing it for potential female partners. Utilizing this behavior, we make the primary UAV
choose a location in the assigned zone and send a request for a secondary UAV. Additionally,
since the booby can have a limited number of eggs, the primary UAV can request a limited
number of temporary UAVs to help inspect the current zone. Additionally, the booby can
make longer foraging trips, so the primary UAV can step away from the assigned zone if

Mathematics 2023, 11, 2092 7 of 23

there is a secondary UAV in the current zone once the remaining uninspected locations are
below a certain threshold.

Exploiting the method of choosing the highest quality partner for the female booby,
we let the primary UAV send one request for a secondary UAV to join it in the zone. If there
are many join requests for one secondary UAV, it will evaluate the requests and choose the
one with the highest fitness value.

Simultaneously, the chicks of the booby stay temporarily in the nest. Therefore, we
take advantage of this behavior by having temporary UAVs help inspect a specific zone
for a limited duration. Once each UAV is assigned a temporary role, it will calculate
the maximum number of rounds, which means the maximum number of locations to
be inspected. Since the primary UAV queries the temporary UAVs if the number of
uninspected locations is high, the maximum number of rounds of the temporary UAVs
depends on the number of uninspected locations remaining in the zone corresponding to
the primary UAV’s request.

4.3.1. Central Control Algorithm

The central control algorithm has several tasks, mainly during the initialization phase
of the system. First, the central control algorithm will cluster the map into a predefined
number of nonoverlapping zones using the K-means clustering algorithm. Next, it will
assign roles to UAVs by dividing them into two groups of primary and secondary UAVs
using Equations (5) and (6).

Primary UAVs# =

⌈
U
2

⌉
(5)

Secondary UAVs# =

⌊
U
2

⌋
(6)

Then, the algorithm assigns primary UAVs to available zones as follows:

1. Sort zones in descending order of their number of network locations.
2. Randomly select a primary UAV and assign it to the largest available zone.
3. Keep assigning primary UAVs in the same manner until all zones are unavailable or

there are no more primary UAVs.
4. If all zones are unavailable and there are still some unassigned primary UAVs, change

their roles to secondary UAVs.

It is important to note that if there are still some available zones but no more primary
UAVs, this case is handled by the primary UAV algorithm where once a primary UAV
completes inspecting an area of current zone larger than a certain threshold, it leaves for
another zone with no primary UAV (the zones that were left out in the beginning), as
explained in Section 4.3.2

4.3.2. Primary UAV Algorithm

Each primary UAV will be assigned to one available zone, and the zone cannot have
more than one primary UAV assigned to it. As the algorithm in Figure 3 shows, the primary
UAV will choose a location in the assigned zone (at random if it is the first time inspecting
this zone). In addition, each primary UAV is allowed to send one request for a secondary
UAV to join it in the inspection process of the assigned zone. Even if this request has been
fulfilled, the primary UAV cannot send more requests to the secondary UAV.

Once the current location of the primary UAV is inspected, the UAV will check whether
the whole state of the zone has been inspected. If the zone is still uninspected, it will check
if the remaining locations are more than a certain threshold X. If so, the primary UAV will
request a temporary UAV. Each primary UAV is permitted to request a certain number of
temporary UAVs. The number of temporary UAVs to be requested is calculated depending
on the size of the zone assigned to the primary UAV. This value is calculated once for
each primary UAV assignment. Intuitively, the larger the zone, the more chances there

Mathematics 2023, 11, 2092 8 of 23

are of getting more UAVs assigned as temporary UAVs. In Equation (7), a min–max
normalization [47] is used to normalize the total number of locations in the assigned zone
to be in the range [1, U].

Z′total =

(
Ztotal −minvalue o f Ztotal

maxvalue o f Ztotal −minvalue o f Ztotal

)
∗ (1−U) + 1, (7)

where Ztotal is the total number of locations in the assigned zone; (min value o f Ztotal) and
(max value o f Ztotal) are the size of the smallest and largest zones, respectively. Z′total is the
normalized value of the total number of locations in the assigned zone in the range [1, U].
If the primary UAV is assigned to the largest zone, it can send as many temporary UAV
requests as U. However, if the primary UAV is assigned to the smallest zone, it will get a
chance to send one temporary request.

If the current zone is in the inspected state, the primary UAV will withdraw any
previous request the primary UAV has made. Then, the primary UAV will take what is
applicable first from the below options:

1. Stay as a primary UAV if there is an available zone. In this option, our system builds
a k-dimensional (k-d) tree data structure to hold the available zones’ locations and
queries each zone to find the nearest neighbor efficiently.

2. Change the role to secondary UAV if there is a join request.
3. Change the role to temporary UAV if there is a temporary UAV request.
4. Change the role to secondary if there is an uninspected zone.

If none of the above options apply, the primary UAV will return to the depot if all
zones are inspected.

4.3.3. Secondary UAV Algorithm

The secondary UAVs will be assigned initially by the central control algorithm. Once
they start execution, they will check the number of join requests from the primary UAVs, as
the algorithm shows in Figure 4. If there is more than one request, the secondary UAV will
evaluate these requests and choose the one that maximizes the fitness value. We followed
the fitness calculations used by Teng et al. [40]. Suppose the secondary UAV is at location
i, the primary UAV of the join request is at location j, the number of defects detected in
the zone corresponding to the primary UAV is Dnum, and the distance between location i
and j is given by Costi,j. Equation (8) calculates the fitness of each available join request
(req f itness).

req f itness = w1(Dnum)− w2
(
Costi,j

)
, (8)

wi(i = 1, 2) is each component’s weight, reflecting the essential differences while evaluating
a candidate request. When calculating the weights of the fitness function components, the
item that is more significant in the fitness computation is given a greater weight [40]. A
secondary UAV seeks to select a primary UAV within a shorter distance (minimization goal)
while simultaneously seeking a primary UAV with more defects detected (maximization
goal). We therefore assigned a value of one to the distance weight, but with a negative sign
as it should be minimized, while we gave a positive value of two to the total number of
discovered defects.

Once the inspection algorithm inspects the current location of the secondary UAV, it
will check whether the whole zone state has been inspected. If the zone is still uninspected,
the secondary UAV will stay in the current zone for further location inspection. However,
if the zone state is checked, the secondary UAV will select the first option that applies from
the list below:

1. Evaluate join requests, if any, then select the request with the highest fitness value.
2. Change the role to primary UAV if there is an available zone.
3. Change the role to temporary UAV if there is a temporary UAV request.

Mathematics 2023, 11, 2092 9 of 23

If none of the above options apply, the secondary UAV will return to the depot if all
zones are inspected.

Mathematics 2023, 11, x FOR PEER REVIEW 9 of 22

3. Change the role to temporary UAV if there is a temporary UAV request.
If none of the above options apply, the secondary UAV will return to the depot if all

zones are inspected.

Figure 3. Flowchart of the primary unmanned aerial vehicle (UAV) algorithm. Figure 3. Flowchart of the primary unmanned aerial vehicle (UAV) algorithm.

Mathematics 2023, 11, 2092 10 of 23Mathematics 2023, 11, x FOR PEER REVIEW 10 of 22

Figure 4. Flowchart of the secondary UAV algorithm.

4.3.4. Temporary UAV Algorithm
The temporary UAVs are not assigned during the initialization phase. In addition,

any primary or secondary UAVs not needed at any phase of the execution can change their
roles to temporary UAVs and fulfill the need for temporary UAVs.

The number of rounds the temporary UAV will perform is calculated depending on
the number of uninspected locations in the assigned zone for the primary UAV. This value
is calculated once for each temporary UAV assignment. Essentially, the more uninspected
locations there are, the more likely it is that a higher number of rounds will be assigned
as maximum rounds. In Equation (9), a min–max normalization [47] is used to normalize
the number of uninspected locations in the assigned zone to be in the range [1, U].

ܼ௨௡௜௡௦௣௘௖௧௘ௗ
ᇱ = ൬ ௓ೠ೙೔೙ೞ೛೐೎೟೐೏ି୫୧୬ ௩௔௟௨௘ ௢௙ ௓ೠ೙೔೙ೞ೛೐೎೟೐೏

୫ୟ୶ ௩௔௟௨௘ ௢௙ ௓ೠ೙೔೙ೞ೛೐೎೟೐೏ି୫୧୬ ௩௔௟௨௘ ௢௙ ௓ೠ೙೔೙ೞ೛೐೎೟೐೏
൰ ∗ (1 − ܷ) + 1, (9)

where ܼ௨௡௜௡௦௣௘௖௧௘ௗ is the number of uninspected locations in the assigned zone;
(min ௨௡௜௡௦௣௘௖௧௘ௗ) and (maxܼ ݂݋ ݁ݑ݈ܽݒ ௨௡௜௡௦௣௘௖௧௘ௗ) are zero and the zone’s totalܼ ݂݋ ݁ݑ݈ܽݒ
number of locations, respectively. ܼ௨௡௜௡௦௣௘௖௧௘ௗ

ᇱ is the normalized value of the number of
uninspected locations in the assigned zone in the range [1, U]. If the temporary UAV is
assigned to a zone with many uninspected locations, it will be allowed to have maximum
rounds as U. However, if the temporary UAV is assigned to a zone with a smaller percent-
age of uninspected locations, it will inspect fewer locations.

The algorithm of the temporary UAV is shown in Figure 5. As the algorithm shows,
once the temporary UAV starts execution, it will take the first temporary request in a FIFO

Figure 4. Flowchart of the secondary UAV algorithm.

4.3.4. Temporary UAV Algorithm

The temporary UAVs are not assigned during the initialization phase. In addition, any
primary or secondary UAVs not needed at any phase of the execution can change their
roles to temporary UAVs and fulfill the need for temporary UAVs.

The number of rounds the temporary UAV will perform is calculated depending on
the number of uninspected locations in the assigned zone for the primary UAV. This value
is calculated once for each temporary UAV assignment. Essentially, the more uninspected
locations there are, the more likely it is that a higher number of rounds will be assigned as
maximum rounds. In Equation (9), a min–max normalization [47] is used to normalize the
number of uninspected locations in the assigned zone to be in the range [1, U].

Z′uninspected =

(
Zuninspected −minvalue o f Zuninspected

maxvalue o f Zuninspected −minvalue o f Zuninspected

)
∗ (1−U) + 1, (9)

where Zuninspected is the number of uninspected locations in the assigned zone; (min value o f

Zuninspected) and (max value o f Zuninspected

)
are zero and the zone’s total number of loca-

tions, respectively. Z′uninspected is the normalized value of the number of uninspected
locations in the assigned zone in the range [1, U]. If the temporary UAV is assigned to a
zone with many uninspected locations, it will be allowed to have maximum rounds as

Mathematics 2023, 11, 2092 11 of 23

U. However, if the temporary UAV is assigned to a zone with a smaller percentage of
uninspected locations, it will inspect fewer locations.

The algorithm of the temporary UAV is shown in Figure 5. As the algorithm shows,
once the temporary UAV starts execution, it will take the first temporary request in a FIFO
manner. Then, it will find the nearest location to the primary UAV that requested the
temporary UAV and start inspecting that zone. Once the inspection algorithm inspects the
current location of the temporary UAV, the temporary UAV will check if the maximum
number of rounds has been reached. If the temporary UAV reaches its maximum range or
the current zone state is inspected, it will be removed from the current zone and select the
first option from the list below:

1. Stay as the temporary UAV if there is any temporary request. If this option applies,
the temporary UAV will rest itself. Reassigning the temporary UAV removes it from
the current zone and allows it to be assigned to another zone by selecting the available
temporary UAV.

2. Change the role to primary UAV if there is an available zone.
3. If a join UAV request is received, change the role to a secondary UAV.

Mathematics 2023, 11, x FOR PEER REVIEW 11 of 22

manner. Then, it will find the nearest location to the primary UAV that requested the tem-
porary UAV and start inspecting that zone. Once the inspection algorithm inspects the
current location of the temporary UAV, the temporary UAV will check if the maximum
number of rounds has been reached. If the temporary UAV reaches its maximum range or
the current zone state is inspected, it will be removed from the current zone and select the
first option from the list below:
1. Stay as the temporary UAV if there is any temporary request. If this option applies,

the temporary UAV will rest itself. Reassigning the temporary UAV removes it from
the current zone and allows it to be assigned to another zone by selecting the availa-
ble temporary UAV.

2. Change the role to primary UAV if there is an available zone.
3. If a join UAV request is received, change the role to a secondary UAV.

If none of the above options apply, the temporary UAV will return to the depot if all
zones are inspected.

Figure 5. Flowchart of temporary UAV algorithm.

4.3.5. Inspection and Go to Next Location Algorithms
Whenever a UAV wants to inspect its current location, it will send that location to the

inspection algorithm. The inspection algorithm is shown in Figure 6. The inspection algo-
rithm is responsible for marking a location as inspected and turning on ARS inspection
mode once a defect in the location is detected.

After the current location is inspected, the UAV will move to another location in the
current zone unless assigned to another zone. The algorithm responsible for choosing the
next location is shown in Figure 7. During the initialization phase of the system, all UAV
inspection modes are the default ones. In the default inspection, the UAV only inspects

Figure 5. Flowchart of temporary UAV algorithm.

If none of the above options apply, the temporary UAV will return to the depot if all
zones are inspected.

4.3.5. Inspection and Go to Next Location Algorithms

Whenever a UAV wants to inspect its current location, it will send that location to
the inspection algorithm. The inspection algorithm is shown in Figure 6. The inspection
algorithm is responsible for marking a location as inspected and turning on ARS inspection
mode once a defect in the location is detected.

Mathematics 2023, 11, 2092 12 of 23

Mathematics 2023, 11, x FOR PEER REVIEW 12 of 22

the four locations adjacent to the current locations. When a UAV detects a defect, the ARS
inspection mode will be on. In the ARS mode, the UAV concentrates on the neighbors’
locations of the defect from all eight adjacent cells (including diagonal ones).

Figure 6. Flowchart of the location inspection algorithm.

Figure 7. Flowchart of the go to the next location algorithm.

5. Experiments
5.1. Evaluation Framework

The scope of this paper is limited to detecting corrosion in indoor steel pipe networks
using a system of multi-MAVs. We evaluated the performance of our system using a rig-
orous empirical methodology based on simulation experiments. We employed the

Figure 6. Flowchart of the location inspection algorithm.

After the current location is inspected, the UAV will move to another location in the
current zone unless assigned to another zone. The algorithm responsible for choosing the
next location is shown in Figure 7. During the initialization phase of the system, all UAV
inspection modes are the default ones. In the default inspection, the UAV only inspects
the four locations adjacent to the current locations. When a UAV detects a defect, the ARS
inspection mode will be on. In the ARS mode, the UAV concentrates on the neighbors’
locations of the defect from all eight adjacent cells (including diagonal ones).

Mathematics 2023, 11, x FOR PEER REVIEW 12 of 22

the four locations adjacent to the current locations. When a UAV detects a defect, the ARS
inspection mode will be on. In the ARS mode, the UAV concentrates on the neighbors’
locations of the defect from all eight adjacent cells (including diagonal ones).

Figure 6. Flowchart of the location inspection algorithm.

Figure 7. Flowchart of the go to the next location algorithm.

5. Experiments
5.1. Evaluation Framework

The scope of this paper is limited to detecting corrosion in indoor steel pipe networks
using a system of multi-MAVs. We evaluated the performance of our system using a rig-
orous empirical methodology based on simulation experiments. We employed the

Figure 7. Flowchart of the go to the next location algorithm.

Mathematics 2023, 11, 2092 13 of 23

5. Experiments
5.1. Evaluation Framework

The scope of this paper is limited to detecting corrosion in indoor steel pipe networks
using a system of multi-MAVs. We evaluated the performance of our system using a
rigorous empirical methodology based on simulation experiments. We employed the
Crazyswarm package [48], which is a comprehensive quadrotor autonomous research
testbed that integrates hardware and software components. It enables seamless transition
from simulation to real-world deployment [49]. We implemented all algorithms in Python
3.9 and ran all simulations on MAC studio M1 Ultra with 128 GB RAM. Our system adopted
Crazyflie as the UAV model and Crazyswarm as the simulation platform; therefore, we
selected an appropriate sensor for the mission and UAV and tuned the parameters to match
realistic conditions. Following previous literature [50], we used Crazyflie and an ultrasonic
sensor (LV-MaxSonar-EZ2), which can detect objects within a range of 0–254 inches (6.75 m).
Figure 8 illustrates the Crazyflie UAV, and Figure 9 depicts the ultrasonic sensor. We also
considered the specifications of the Crazyflie when estimating the energy consumption of
the UAVs [51,52]. Table 2 summarizes the values of the parameters related to UAV energy.

Mathematics 2023, 11, x FOR PEER REVIEW 13 of 22

Crazyswarm package [48], which is a comprehensive quadrotor autonomous research
testbed that integrates hardware and software components. It enables seamless transition
from simulation to real-world deployment [49]. We implemented all algorithms in Python
3.9 and ran all simulations on MAC studio M1 Ultra with 128 GB RAM.. Our system
adopted Crazyflie as the UAV model and Crazyswarm as the simulation platform; there-
fore, we selected an appropriate sensor for the mission and UAV and tuned the parameters
to match realistic conditions. Following previous literature [50], we used Crazyflie and an
ultrasonic sensor (LV-MaxSonar-EZ2), which can detect objects within a range of 0–254
inches (6.75 m). Figure 8 illustrates the Crazyflie UAV, and Figure 9 depicts the ultrasonic
sensor. We also considered the specifications of the Crazyflie when estimating the energy
consumption of the UAVs [51,52]. Table 2 summarizes the values of the parameters related
to UAV energy.

Figure 8. Crazyflie UAV.

Figure 9. Ultrasonic sensor (LV-MaxSonar-EZ2).

Table 2. Parameters related to energy.

Parameter Value
Speed 1 m/s

 ௠ 2430 Jߜ
 J/s 5.8 ߤ

To evaluate the inspection mission, a template of the fire sprinkler system RCP using
the Edrawmax tool was used as an input map to mimic a realistic scenario as much as
possible [53]. The input map is shown in Figure 10 and is handled as an occupancy matrix
after preprocessing (as per Figure 11) it to form a 500 × 500 grid with cell size 0.5 m × 0.5
m.

Figure 8. Crazyflie UAV.

Mathematics 2023, 11, x FOR PEER REVIEW 13 of 22

Crazyswarm package [48], which is a comprehensive quadrotor autonomous research
testbed that integrates hardware and software components. It enables seamless transition
from simulation to real-world deployment [49]. We implemented all algorithms in Python
3.9 and ran all simulations on MAC studio M1 Ultra with 128 GB RAM.. Our system
adopted Crazyflie as the UAV model and Crazyswarm as the simulation platform; there-
fore, we selected an appropriate sensor for the mission and UAV and tuned the parameters
to match realistic conditions. Following previous literature [50], we used Crazyflie and an
ultrasonic sensor (LV-MaxSonar-EZ2), which can detect objects within a range of 0–254
inches (6.75 m). Figure 8 illustrates the Crazyflie UAV, and Figure 9 depicts the ultrasonic
sensor. We also considered the specifications of the Crazyflie when estimating the energy
consumption of the UAVs [51,52]. Table 2 summarizes the values of the parameters related
to UAV energy.

Figure 8. Crazyflie UAV.

Figure 9. Ultrasonic sensor (LV-MaxSonar-EZ2).

Table 2. Parameters related to energy.

Parameter Value
Speed 1 m/s

 ௠ 2430 Jߜ
 J/s 5.8 ߤ

To evaluate the inspection mission, a template of the fire sprinkler system RCP using
the Edrawmax tool was used as an input map to mimic a realistic scenario as much as
possible [53]. The input map is shown in Figure 10 and is handled as an occupancy matrix
after preprocessing (as per Figure 11) it to form a 500 × 500 grid with cell size 0.5 m × 0.5
m.

Figure 9. Ultrasonic sensor (LV-MaxSonar-EZ2).

Table 2. Parameters related to energy.

Parameter Value

Speed 1 m/s
δm 2430 J
µ 5.8 J/s

To evaluate the inspection mission, a template of the fire sprinkler system RCP using
the Edrawmax tool was used as an input map to mimic a realistic scenario as much as
possible [53]. The input map is shown in Figure 10 and is handled as an occupancy matrix
after preprocessing (as per Figure 11) it to form a 500 × 500 grid with cell size 0.5 m ×
0.5 m.

Mathematics 2023, 11, 2092 14 of 23Mathematics 2023, 11, x FOR PEER REVIEW 14 of 22

Figure 10. Input map of the pipe network.

Figure 11. Input map after preprocessing.

The network locations were used as inspection points, and the defect locations were
randomized within the inspection points to ensure representative samples in all the ex-
periments. Furthermore, the defect locations were generated randomly using multivariate
normal distributions to simulate hotspots within the specified radius where defects clus-
tered together and were more likely to be found.

The controlled parameters in the simulation were as follows:
1. The number of UAVs varied between 2, 4, 6, 8, 10, 12, 14, and 16.
2. The number of defects (including hotspots and defect concentration within a single

hotspot). The values of the different severity levels of the defects are shown in Table
3.

Table 3. Values of the different severity levels of the defects.

Severity Level Number of Hotspots Radius of Hotspot Number of Defects
Simple 3 30 10

Average 9 30 20
Advanced 27 30 30

Figure 10. Input map of the pipe network.

Mathematics 2023, 11, x FOR PEER REVIEW 14 of 22

Figure 10. Input map of the pipe network.

Figure 11. Input map after preprocessing.

The network locations were used as inspection points, and the defect locations were
randomized within the inspection points to ensure representative samples in all the ex-
periments. Furthermore, the defect locations were generated randomly using multivariate
normal distributions to simulate hotspots within the specified radius where defects clus-
tered together and were more likely to be found.

The controlled parameters in the simulation were as follows:
1. The number of UAVs varied between 2, 4, 6, 8, 10, 12, 14, and 16.
2. The number of defects (including hotspots and defect concentration within a single

hotspot). The values of the different severity levels of the defects are shown in Table
3.

Table 3. Values of the different severity levels of the defects.

Severity Level Number of Hotspots Radius of Hotspot Number of Defects
Simple 3 30 10

Average 9 30 20
Advanced 27 30 30

Figure 11. Input map after preprocessing.

The network locations were used as inspection points, and the defect locations were
randomized within the inspection points to ensure representative samples in all the exper-
iments. Furthermore, the defect locations were generated randomly using multivariate
normal distributions to simulate hotspots within the specified radius where defects clus-
tered together and were more likely to be found.

The controlled parameters in the simulation were as follows:

1. The number of UAVs varied between 2, 4, 6, 8, 10, 12, 14, and 16.
2. The number of defects (including hotspots and defect concentration within a single

hotspot). The values of the different severity levels of the defects are shown in Table 3.

Table 3. Values of the different severity levels of the defects.

Severity Level Number of Hotspots Radius of Hotspot Number of Defects

Simple 3 30 10
Average 9 30 20

Advanced 27 30 30

To evaluate the performance of our proposed approach, we adapted the performance
metrics from recent studies [54], such as total travel distance (cost/fitness value), maximum

Mathematics 2023, 11, 2092 15 of 23

tour length, running time, mean detection time, and average consumed energy. We devel-
oped 120 scenarios by varying the number of heuristics (5), the number of UAVs (8), and
the severity levels of defects (3). Each scenario was run 30 times to reduce the variability in
the performance measures [54].

We used four well-established benchmark algorithms: ACO, PSO, OTA, and the
random algorithm. The ACO algorithm was based on Dorigo’s original paper [55] and
followed the parameters listed in Table 4. The termination conditions for ACO were either
no improvement in 30 iterations or reaching 1000 iterations [54].

Table 4. Parameter settings of the ACO algorithm.

Parameter Value

α 1
β 5
ρ 0.5
Q 1

Number of ants U
Maximum iterations 1000

For the second benchmark, we implemented a discrete version of PSO following the
approach in [56] that represents the solutions (paths) as vectors. The cost is the total distance
of the path of all UAVs (the vectors). We computed this value using a distance matrix
saved for all locations. The number of particles is equal to the number of UAVs, according
to literature studies [57]. However, in each particle, the local solution is composed of
sub-vectors, each corresponding to one UAV. The sub-vectors do not have conflicts between
them, and each network location is visited once in one and only one sub-vector. This
ensures that if a location has a defect, it will be detected by only one UAV. We used the
same suggested values for the algorithm parameters as in [56]. Furthermore, we followed
the same termination conditions as the ACO. The PSO algorithm parameters are shown in
Table 5.

Table 5. Parameters of PSO algorithm.

Parameter Value

α A random number between 0 and 1
β 1 − α

Number of population U
Maximum iterations 1000

The third algorithm implements an OTA strategy [58], instructing an agent to search
for its nearest unexplored cell in the zone. The final algorithm implements a random
choosing strategy [35], instructing an agent to search for its nearest unexplored cell in the
zone. The OTA and random algorithms were utilized as baseline performance metrics.

Table 6 shows the particular parameters of the booby system. The value of the thresh-
old X of the primary UAV algorithm was chosen empirically. Furthermore, we used
k-means as the clustering algorithm. We found the optimal number of the cluster after
plotting all possible k values against their internal evaluation indicators and choosing the
best one [59].

Table 6. Booby parameter values.

Parameter Value

X 70%
k 7

Mathematics 2023, 11, 2092 16 of 23

5.2. Results and Discussion

We conducted each experiment at least 30 times and plotted the results using a linear
scale for the number of UAVs on the x-axis and a logarithmic base-2 scale for the perfor-
mance metrics on the y-axis. The performance metrics included mean detection time, total
traveled distance, maximum tour length, running time, and average energy used. We
calculated these metrics for all benchmarks except for PSO and mean detection time. PSO
does not support time inference because it defines the UAV paths as vectors during the
initialization phase. Therefore, we cannot determine when a defect was found. All UAVs
had a uniform battery energy level of δm and consumed energy at a constant rate for all
movements.

5.2.1. Mean Detection Time

The mean detection time of a defect is an important metric to evaluate the performance
of different algorithms for UAV-based inspection. It measures how long it takes for any UAV
to detect a defect from the start of the simulation. We computed this value for each defect
in each scenario and averaged it over multiple runs of each experiment. Figure 12 shows
the results for our booby algorithm and three other benchmarks. The booby algorithm
consistently outperformed the other algorithms in all settings, reducing the mean detection
time by at least 13% compared to the random algorithm, which had the shortest running
time among the benchmarks. This indicates that our approach can efficiently detect defects
regardless of their number and distribution complexity.

Mathematics 2023, 11, x FOR PEER REVIEW 16 of 22

5.2. Results and Discussion
We conducted each experiment at least 30 times and ploĴed the results using a linear

scale for the number of UAVs on the x-axis and a logarithmic base-2 scale for the perfor-
mance metrics on the y-axis. The performance metrics included mean detection time, total
traveled distance, maximum tour length, running time, and average energy used. We cal-
culated these metrics for all benchmarks except for PSO and mean detection time. PSO
does not support time inference because it defines the UAV paths as vectors during the
initialization phase. Therefore, we cannot determine when a defect was found. All UAVs
had a uniform baĴery energy level of δm and consumed energy at a constant rate for all
movements.

5.2.1. Mean Detection Time
The mean detection time of a defect is an important metric to evaluate the perfor-

mance of different algorithms for UAV-based inspection. It measures how long it takes for
any UAV to detect a defect from the start of the simulation. We computed this value for
each defect in each scenario and averaged it over multiple runs of each experiment. Figure
12 shows the results for our booby algorithm and three other benchmarks. The booby al-
gorithm consistently outperformed the other algorithms in all seĴings, reducing the mean
detection time by at least 13% compared to the random algorithm, which had the shortest
running time among the benchmarks. This indicates that our approach can efficiently de-
tect defects regardless of their number and distribution complexity.

According to a thorough analysis, the booby algorithm outperforms other algorithms
for several reasons. First, it clusters the map into a well-chosen number of zones based on
the locations of defects. Second, it assigns UAVs to the zones in a way that considers their
size and priority. Specifically, it allocates more UAVs to larger zones sooner than smaller
zones, as larger zones may have more defects. Third, it inspects the zones efficiently and
adapts its behavior when a defect is found. For instance, the secondary UAV prioritizes
joining a zone that has more defects detected by another UAV. These reasons enable the
booby system to discover defects faster than other algorithms. As the number of UAVs
increased, the booby, OTA, and random algorithms demonstrated a decrease in mean de-
tection time. In contrast, the ACO performance is much worse than random and OTA. The
ACO’s mean detection time increases with the number of UAVs due to its solution con-
struction method. Each ant updates its tour with an amount inversely proportional to the
distance of the tour. As a result, more ants follow shorter paths with more pheromones
and neglect remote areas, which delays most defect detections. Furthermore, the ACO
algorithm iterates through many paths before finding the solution, which negatively af-
fects the mean detection time.

(a) (b) (c)

Figure 12. Mean detection time in different seĴings: (a) simple severity (3 × 10 defects); (b) average
severity (9 × 20 defects); (c) advanced severity (27 × 30 defects).

Figure 12. Mean detection time in different settings: (a) simple severity (3 × 10 defects); (b) average
severity (9 × 20 defects); (c) advanced severity (27 × 30 defects).

According to a thorough analysis, the booby algorithm outperforms other algorithms
for several reasons. First, it clusters the map into a well-chosen number of zones based on
the locations of defects. Second, it assigns UAVs to the zones in a way that considers their
size and priority. Specifically, it allocates more UAVs to larger zones sooner than smaller
zones, as larger zones may have more defects. Third, it inspects the zones efficiently and
adapts its behavior when a defect is found. For instance, the secondary UAV prioritizes
joining a zone that has more defects detected by another UAV. These reasons enable the
booby system to discover defects faster than other algorithms. As the number of UAVs
increased, the booby, OTA, and random algorithms demonstrated a decrease in mean
detection time. In contrast, the ACO performance is much worse than random and OTA.
The ACO’s mean detection time increases with the number of UAVs due to its solution
construction method. Each ant updates its tour with an amount inversely proportional to
the distance of the tour. As a result, more ants follow shorter paths with more pheromones
and neglect remote areas, which delays most defect detections. Furthermore, the ACO
algorithm iterates through many paths before finding the solution, which negatively affects
the mean detection time.

Mathematics 2023, 11, 2092 17 of 23

5.2.2. Total Traveled Distance (Cost)

Figure 13 shows that the booby algorithm produced tours with lower costs than the
benchmarks, especially when more than two UAVs were involved. The random algorithm
performed poorly as expected due to its naive nature. PSO also had low performance in
this problem because it requires continuous solution values for its velocity update, but TSP
is a discrete problem [60–63]. Clerc’s study in 2004 was one of the first to propose discrete
PSO and it is still widely cited in the recent literature [64]. However, Clerc himself reported
that discrete PSO was not as efficient as other algorithms [65]. Similarly, recent studies have
indicated that PSO is more suitable for continuous optimization problems [63].

Mathematics 2023, 11, x FOR PEER REVIEW 17 of 22

5.2.2. Total Traveled Distance (Cost)
Figure 13 shows that the booby algorithm produced tours with lower costs than the

benchmarks, especially when more than two UAVs were involved. The random algorithm
performed poorly as expected due to its naive nature. PSO also had low performance in this
problem because it requires continuous solution values for its velocity update, but TSP is a
discrete problem [60–63]. Clerc’s study in 2004 was one of the first to propose discrete PSO
and it is still widely cited in the recent literature [64]. However, Clerc himself reported that
discrete PSO was not as efficient as other algorithms [65]. Similarly, recent studies have in-
dicated that PSO is more suitable for continuous optimization problems [63].

The metric cost analysis revealed that the booby algorithm had similar performance
to OTA and ACO when U = 2. In these cases, there were fewer UAVs than clusters. This
resulted in a limited number of primary UAVs initially and increased travel costs for the
primary UAV later as it had to visit many available zones. Likewise, each zone was as-
signed a certain number of UAVs. This affected the total cost of each UAV because it had
to cover most of the zone by itself.

(a) (b) (c)

Figure 13. Total traveled distance in different seĴings: (a) simple severity (3 × 10 defects); (b) average
severity (9 × 20 defects); (c) advanced severity (27 × 30 defects).

5.2.3. Running Time
We measured the running time of each algorithm for every scenario by recording the

time when the execution started and ended. Figure 14 shows the results, which indicate
that booby outperformed all benchmarks in terms of speed. It solved all scenario instances
faster than the other algorithms, with an average speedup of at least three times over ran-
dom in simple seĴings (Figure 14a), three times over random in average seĴings (Figure
14b), and 1.2 times over random in advanced seĴings (Figure 14c). Moreover, booby’s
running time did not increase exponentially as the number of UAVs increased, unlike PSO
and ACO. This can be aĴributed to its efficient use of data structures such as k-d tree and
dictionaries, as well as its ability to find a “good” solution within one iteration, unlike
metaheuristic algorithms that require multiple iterations to converge.

(a) (b) (c)

Figure 14. Running time in distance in different seĴings: (a) simple severity (3 × 10 defects); (b)
average se-verity (9 × 20 defects); (c) complex severity (27 × 30 defects).

Figure 13. Total traveled distance in different settings: (a) simple severity (3× 10 defects); (b) average
severity (9 × 20 defects); (c) advanced severity (27 × 30 defects).

The metric cost analysis revealed that the booby algorithm had similar performance
to OTA and ACO when U = 2. In these cases, there were fewer UAVs than clusters. This
resulted in a limited number of primary UAVs initially and increased travel costs for the
primary UAV later as it had to visit many available zones. Likewise, each zone was assigned
a certain number of UAVs. This affected the total cost of each UAV because it had to cover
most of the zone by itself.

5.2.3. Running Time

We measured the running time of each algorithm for every scenario by recording the
time when the execution started and ended. Figure 14 shows the results, which indicate that
booby outperformed all benchmarks in terms of speed. It solved all scenario instances faster
than the other algorithms, with an average speedup of at least three times over random in
simple settings (Figure 14a), three times over random in average settings (Figure 14b), and
1.2 times over random in advanced settings (Figure 14c). Moreover, booby’s running time
did not increase exponentially as the number of UAVs increased, unlike PSO and ACO.
This can be attributed to its efficient use of data structures such as k-d tree and dictionaries,
as well as its ability to find a “good” solution within one iteration, unlike metaheuristic
algorithms that require multiple iterations to converge.

Mathematics 2023, 11, 2092 18 of 23

Mathematics 2023, 11, x FOR PEER REVIEW 17 of 22

5.2.2. Total Traveled Distance (Cost)
Figure 13 shows that the booby algorithm produced tours with lower costs than the

benchmarks, especially when more than two UAVs were involved. The random algorithm
performed poorly as expected due to its naive nature. PSO also had low performance in this
problem because it requires continuous solution values for its velocity update, but TSP is a
discrete problem [60–63]. Clerc’s study in 2004 was one of the first to propose discrete PSO
and it is still widely cited in the recent literature [64]. However, Clerc himself reported that
discrete PSO was not as efficient as other algorithms [65]. Similarly, recent studies have in-
dicated that PSO is more suitable for continuous optimization problems [63].

The metric cost analysis revealed that the booby algorithm had similar performance
to OTA and ACO when U = 2. In these cases, there were fewer UAVs than clusters. This
resulted in a limited number of primary UAVs initially and increased travel costs for the
primary UAV later as it had to visit many available zones. Likewise, each zone was as-
signed a certain number of UAVs. This affected the total cost of each UAV because it had
to cover most of the zone by itself.

(a) (b) (c)

Figure 13. Total traveled distance in different seĴings: (a) simple severity (3 × 10 defects); (b) average
severity (9 × 20 defects); (c) advanced severity (27 × 30 defects).

5.2.3. Running Time
We measured the running time of each algorithm for every scenario by recording the

time when the execution started and ended. Figure 14 shows the results, which indicate
that booby outperformed all benchmarks in terms of speed. It solved all scenario instances
faster than the other algorithms, with an average speedup of at least three times over ran-
dom in simple seĴings (Figure 14a), three times over random in average seĴings (Figure
14b), and 1.2 times over random in advanced seĴings (Figure 14c). Moreover, booby’s
running time did not increase exponentially as the number of UAVs increased, unlike PSO
and ACO. This can be aĴributed to its efficient use of data structures such as k-d tree and
dictionaries, as well as its ability to find a “good” solution within one iteration, unlike
metaheuristic algorithms that require multiple iterations to converge.

(a) (b) (c)

Figure 14. Running time in distance in different seĴings: (a) simple severity (3 × 10 defects); (b)
average se-verity (9 × 20 defects); (c) complex severity (27 × 30 defects).
Figure 14. Running time in distance in different settings: (a) simple severity (3 × 10 defects);
(b) average se-verity (9 × 20 defects); (c) complex severity (27 × 30 defects).

5.2.4. Maximum Tour Length

The maximum tour length is an important metric for evaluating the performance
of UAV inspection algorithms. It measures the longest distance any UAV travels after
completing its assigned mission. To compare our approach with OTA and ACO, we
calculated the average maximum tour length for all scenarios based on each algorithm’s
results. Figure 15 shows that our approach consistently achieved the lowest average
maximum tour length while maintaining a low running time and minimizing the total
traveled distance. To further illustrate this advantage, we also compared the maximum
tour length of each scenario for our approach and OTA, which had a tradeoff between this
metric and the running time. Table 7 displays the percentage difference between these
two algorithms, as well as their time ratio. The data indicates that our approach not only
reduced the maximum tour length by more than 10% in most scenarios (highlighted in the
table), but also enhanced the runtime in all cases. The main reason for this improvement
is that our approach assigns distinct roles to UAVs and uses efficient data structures to
select candidate zones based on proximity and availability. Finally, our approach requests
a temporary UAV to assist in inspecting a zone only if a certain percentage of the zone
remains uninspected after a certain amount of time has elapsed. This way, our approach
ensures that all zones are inspected thoroughly and quickly by utilizing UAVs optimally.

Mathematics 2023, 11, x FOR PEER REVIEW 18 of 22

5.2.4. Maximum Tour Length
The maximum tour length is an important metric for evaluating the performance of

UAV inspection algorithms. It measures the longest distance any UAV travels after com-
pleting its assigned mission. To compare our approach with OTA and ACO, we calculated
the average maximum tour length for all scenarios based on each algorithm’s results. Fig-
ure 15 shows that our approach consistently achieved the lowest average maximum tour
length while maintaining a low running time and minimizing the total traveled distance.
To further illustrate this advantage, we also compared the maximum tour length of each
scenario for our approach and OTA, which had a tradeoff between this metric and the
running time. Table 7 displays the percentage difference between these two algorithms, as
well as their time ratio. The data indicates that our approach not only reduced the maxi-
mum tour length by more than 10% in most scenarios (highlighted in the table), but also
enhanced the runtime in all cases. The main reason for this improvement is that our ap-
proach assigns distinct roles to UAVs and uses efficient data structures to select candidate
zones based on proximity and availability. Finally, our approach requests a temporary
UAV to assist in inspecting a zone only if a certain percentage of the zone remains unin-
spected after a certain amount of time has elapsed. This way, our approach ensures that
all zones are inspected thoroughly and quickly by utilizing UAVs optimally.

(a) (b) (c)

Figure 15. Average maximum tour length in different seĴings: (a) simple severity (3 × 10 defects);
(b) average severity (9 × 20 defects); (c) complex severity (27 × 30 defects).

Table 7. Maximum tour length for booby versus OTA.

Defect No. U % Diff. in Length Time Ratio

3 × 10

2 19.1 8
4 −6.7 8
6 −12.6 8
8 −19.5 8

10 −26.2 9
12 −16.6 8
14 −36.1 8
16 −35.4 7

9 × 20

2 22 4
4 −13.5 4
6 −19.2 4
8 −19.1 4

10 −26.2 4
12 −20.7 4
14 −36.5 4
16 −32.5 4

27 × 30
2 23.4 2
4 −6.7 2
6 −14.7 2

Figure 15. Average maximum tour length in different settings: (a) simple severity (3 × 10 defects);
(b) average severity (9 × 20 defects); (c) complex severity (27 × 30 defects).

Mathematics 2023, 11, 2092 19 of 23

Table 7. Maximum tour length for booby versus OTA.

Defect No. U % Diff. in Length Time Ratio

3 × 10

2 19.1 8
4 −6.7 8
6 −12.6 8
8 −19.5 8

10 −26.2 9
12 −16.6 8
14 −36.1 8
16 −35.4 7

9 × 20

2 22 4
4 −13.5 4
6 −19.2 4
8 −19.1 4

10 −26.2 4
12 −20.7 4
14 −36.5 4
16 −32.5 4

27 × 30

2 23.4 2
4 −6.7 2
6 −14.7 2
8 −18.3 2

10 −25.4 2
12 −16.1 2
14 −35.5 2
16 −38 2

5.2.5. UAV’s Average Consumed Energy

Initially, the energy levels of all UAVs are identical. As each UAV navigates to a new
position, it consumes some energy for this movement. The average energy consumption is
the ratio of the total energy consumption to the number of UAVs at the end of the execution.
Figure 16 shows how the average energy levels vary with different numbers of UAVs.
There is a negative correlation between these two variables: more UAVs mean less average
energy consumption. This trend is evident in the PSO and random results, but not in other
benchmarks (OTA and ACO). A possible explanation is that adding more UAVs in PSO
and random algorithms reduces some long tours taken by individual UAVs, which require
more energy. However, such a reduction is not observed in other algorithms because they
already favor shorter tours over longer ones regardless of the number of UAVs. This result
confirms that PSO and random algorithms have lower average maximum tour lengths
when more UAVs are added. Moreover, our approach has comparable results to OTA and
ACO when there are few UAVs (U = 2, 4, and 6). However, our approach is more scalable
because it minimizes the average energy consumption as more UAVs are added.

Mathematics 2023, 11, x FOR PEER REVIEW 19 of 22

8 −18.3 2
10 −25.4 2
12 −16.1 2
14 −35.5 2
16 −38 2

5.2.5. UAV’s Average Consumed Energy
Initially, the energy levels of all UAVs are identical. As each UAV navigates to a new

position, it consumes some energy for this movement. The average energy consumption
is the ratio of the total energy consumption to the number of UAVs at the end of the exe-
cution. Figure 16 shows how the average energy levels vary with different numbers of
UAVs. There is a negative correlation between these two variables: more UAVs mean less
average energy consumption. This trend is evident in the PSO and random results, but
not in other benchmarks (OTA and ACO). A possible explanation is that adding more
UAVs in PSO and random algorithms reduces some long tours taken by individual UAVs,
which require more energy. However, such a reduction is not observed in other algo-
rithms because they already favor shorter tours over longer ones regardless of the number
of UAVs. This result confirms that PSO and random algorithms have lower average max-
imum tour lengths when more UAVs are added. Moreover, our approach has comparable
results to OTA and ACO when there are few UAVs (U = 2, 4, and 6). However, our ap-
proach is more scalable because it minimizes the average energy consumption as more
UAVs are added.

(a) (b) (c)

Figure 16. Average consumed energy in different seĴings: (a) simple severity (3 × 10 defects); (b)
average se-verity (9 × 20 defects); (c) advanced severity (27 × 30 defects).

6. Conclusions
In this paper, we propose a multi-UAV path planning method that is based on the

behavior of the booby. In our system, the UAVs are automatically divided into different
roles and assigned to different zones on the map. Later, the UAVs can independently
switch roles to maximize the system’s objective by minimizing the total distance traveled
by the UAVs. We used ACO, PSO, OTA, and random, which are all well-known and com-
peting path planning algorithms, and turned them into multi-UAV path planning algo-
rithms to compare with our approach. In our experiments, we controlled the number of
UAVs and defects. In addition, we measured different performance metrics, such as total
traveled distance, mean detection time, the maximum tour length, running time, and av-
erage energy consumed. Our results show that the proposed method uses less energy and
can efficiently find defects with a shorter travel distance and in less time. In the simple
seĴings of severity levels, an 59% enhancement in mean detection over all benchmarks
and at least a three-fold speed increase compared to the random algorithm (which has the
shortest running time of all benchmarks) were achieved. However, in the advanced set-
tings of severity levels, a 13% enhancement in mean detection over all benchmarks and a
1.2-fold faster running time than the random algorithm (which has the shortest running
time of all benchmarks) were achieved. In addition, the mean detection time of our ap-
proach decreased with the addition of UAVs. Our algorithm has been shown to be scalable

Figure 16. Average consumed energy in different settings: (a) simple severity (3 × 10 defects);
(b) average se-verity (9 × 20 defects); (c) advanced severity (27 × 30 defects).

Mathematics 2023, 11, 2092 20 of 23

6. Conclusions

In this paper, we propose a multi-UAV path planning method that is based on the
behavior of the booby. In our system, the UAVs are automatically divided into different
roles and assigned to different zones on the map. Later, the UAVs can independently switch
roles to maximize the system’s objective by minimizing the total distance traveled by the
UAVs. We used ACO, PSO, OTA, and random, which are all well-known and competing
path planning algorithms, and turned them into multi-UAV path planning algorithms to
compare with our approach. In our experiments, we controlled the number of UAVs and
defects. In addition, we measured different performance metrics, such as total traveled
distance, mean detection time, the maximum tour length, running time, and average energy
consumed. Our results show that the proposed method uses less energy and can efficiently
find defects with a shorter travel distance and in less time. In the simple settings of severity
levels, an 59% enhancement in mean detection over all benchmarks and at least a three-fold
speed increase compared to the random algorithm (which has the shortest running time
of all benchmarks) were achieved. However, in the advanced settings of severity levels,
a 13% enhancement in mean detection over all benchmarks and a 1.2-fold faster running
time than the random algorithm (which has the shortest running time of all benchmarks)
were achieved. In addition, the mean detection time of our approach decreased with the
addition of UAVs. Our algorithm has been shown to be scalable for different numbers of
UAVs and severity levels of defects, and it outperforms all the benchmarks significantly
when increasing the number of UAVs.

In future research, it would be beneficial to consider environmental conditions in
the optimization process as well as different environment maps. Additionally, defects
can be classified into risk levels, and UAVs can be instructed to take appropriate actions
depending on the defect’s risk level. Furthermore, it would be interesting to extend the
booby-inspired multi-UAV path planning method to more complex and realistic scenarios,
such as dynamic environments with moving obstacles or targets, heterogeneous UAVs with
different capabilities and constraints, and uncertain communication and sensing models.
Another possible direction is to investigate the theoretical properties and guarantees of the
proposed method, such as optimality, robustness, and scalability. Finally, a practical valida-
tion of the proposed method using real UAVs in an industrial inspection setting would be
desirable to demonstrate its feasibility and effectiveness in real-world applications.

Author Contributions: Conceptualization, F.A. and H.K.; Formal analysis, F.A.; Funding acquisition,
H.K.; Investigation, H.K. and K.Y.-T.; Methodology, F.A., H.K. and K.Y.-T.; Software, F.A.; Supervision,
H.K. and K.Y.-T.; Validation, F.A. and H.K.; Visualization, F.A.; Writing—original draft, F.A.; Writing—
review and editing, H.K. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the International Scientific Partnership Program ISPP (ISPP-
119) at King Saud University.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Aggarwal, S.; Kumar, N. Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges. Comput.

Commun. 2020, 149, 270–299. [CrossRef]
2. Shakhatreh, H.; Sawalmeh, A.H.; Al-Fuqaha, A.; Dou, Z.; Almaita, E.; Khalil, I.; Othman, N.S.; Khreishah, A.; Guizani, M.

Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges. IEEE Access 2019, 7, 48572–
48634. [CrossRef]

3. Skorobogatov, G.; Barrado, C.; Salamí, E. Multiple UAV Systems: A Survey. Unmanned Syst. 2020, 8, 149–169. [CrossRef]
4. Hassanalian, M.; Abdelkefi, A. Classifications, applications, and design challenges of drones: A review. Prog. Aerosp. Sci. 2017, 91,

99–131. [CrossRef]
5. Ahmed, F.; Mohanta, J.C.; Keshari, A.; Yadav, P.S. Recent Advances in Unmanned Aerial Vehicles: A Review. Arab. J. Sci. Eng.

2022, 47, 7963–7984. [CrossRef]

https://doi.org/10.1016/j.comcom.2019.10.014
https://doi.org/10.1109/ACCESS.2019.2909530
https://doi.org/10.1142/S2301385020500090
https://doi.org/10.1016/j.paerosci.2017.04.003
https://doi.org/10.1007/s13369-022-06738-0

Mathematics 2023, 11, 2092 21 of 23

6. Civil Defense Safety Conditions, Means of Prevention, and Alarm and Extinguishing Equipment That Must Be Available in Hotels,
Youth Hostels and Similar Establishments. Available online: https://gdcd.998.gov.sa/Ar/CivilDefenseLists/Documents/22.pdf
(accessed on 30 October 2021).

7. Indoor Drone Surveys for Confined and Enclosed Indoor Spaces. Balmore Inspection Services. Available online: https://balmoreuav.
co.uk/indoor-drone-confined-spaces/ (accessed on 4 January 2023).

8. AERIAL INSPECTIONS. Stature Films. Available online: https://www.staturefilms.com/drone-inspections (accessed on 4
January 2023).

9. Maruschak, P.; Prentkovskis, O.; Bishchak, R. Defectiveness of external and internal surfaces of the main oil and gas pipelines
after long-term operation. J. Civ. Eng. Manag. 2016, 22, 279–286. [CrossRef]

10. Al-Moubaraki, A.H.; Obot, I.B. Top of the line corrosion: Causes, mechanisms, and mitigation using corrosion inhibitors. Arab. J.
Chem. 2021, 14, 103116. [CrossRef]

11. Popescu, C.; Gabor, M.R. Quantitative Analysis Regarding the Incidents to the Pipelines of Petroleum Products for an Efficient
Use of the Specific Transportation Infrastructure. Processes 2021, 9, 1535. [CrossRef]

12. Panossian, Z.; de Almeida, N.L.; de Sousa, R.M.F.; Pimenta, G.d.S.; Marques, L.B.S. Corrosion of carbon steel pipes and tanks by
concentrated sulfuric acid: A review. Corros. Sci. 2012, 58, 1–11. [CrossRef]

13. Hassan, N.S. The Effect of Different Operating Parameters on the Corrosion Rate of Carbon Steel in Petroleum Fractions. Eng.
Technol. J. 2013, 31, 1182–1193.

14. Baker, M.; Fessler, R.R. Pipeline Corrosion; U.S. Department of Transportation: Washington, DC, USA, 2008.
15. Raja, P. Optimal path planning of mobile robots: A review. Int. J. Phys. Sci. 2012, 7, 1314–1320. [CrossRef]
16. Bono, A.; D’Alfonso, L.; Fedele, G.; Filice, A.; Natalizio, E. Path Planning and Control of a UAV Fleet in Bridge Management

Systems. Remote Sens. 2022, 14, 1858. [CrossRef]
17. Boussaïd, I.; Lepagnot, J.; Siarry, P. A survey on optimization metaheuristics. Inf. Sci. 2013, 237, 82–117. [CrossRef]
18. Siddique, N.; Adeli, H. Nature Inspired Computing: An Overview and Some Future Directions. Cogn. Comput. 2015, 7, 706–714.

[CrossRef]
19. Kurdi, H.A.; Aloboud, E.; Alalwan, M.; Alhassan, S.; Alotaibi, E.; Bautista, G.; How, J.P. Autonomous task allocation for multi-UAV

systems based on the locust elastic behavior. Appl. Soft Comput. 2018, 71, 110–126. [CrossRef]
20. Mac, T.T.; Copot, C.; Tran, D.T.; De Keyser, R. Heuristic approaches in robot path planning: A survey. Robot. Auton. Syst. 2016, 86,

13–28. [CrossRef]
21. Lamini, C.; Benhlima, S.; Elbekri, A. Genetic Algorithm Based Approach for Autonomous Mobile Robot Path Planning. Procedia

Comput. Sci. 2018, 127, 180–189. [CrossRef]
22. Li, K.; Ge, F.; Han, Y.; Wang, Y.; Xu, W. Path planning of multiple UAVs with online changing tasks by an ORPFOA algorithm.

Eng. Appl. Artif. Intell. 2020, 94, 103807. [CrossRef]
23. Worley, R.; Ma, K.; Sailor, G.; Schirru, M.M.; Dwyer-Joyce, R.; Boxall, J.; Dodd, T.; Collins, R.; Anderson, S. Robot Localization in

Water Pipes Using Acoustic Signals and Pose Graph Optimization. Sensors 2020, 20, 5584. [CrossRef]
24. Quenzel, J.; Nieuwenhuisen, M.; Droeschel, D.; Beul, M.; Houben, S.; Behnke, S. Autonomous MAV-based Indoor Chimney

Inspection with 3D Laser Localization and Textured Surface Reconstruction. J. Intell. Robot. Syst. 2019, 93, 317–335. [CrossRef]
25. Máthé, K.; Buşoniu, L. Vision and Control for UAVs: A Survey of General Methods and of Inexpensive Platforms for Infrastructure

Inspection. Sensors 2015, 15, 14887–14916. [CrossRef] [PubMed]
26. Guan, S.; Zhu, Z.; Wang, G. A Review on UAV-Based Remote Sensing Technologies for Construction and Civil Applications.

Drones 2022, 6, 117. [CrossRef]
27. Zhou, H.; Xu, C.; Tang, X.; Wang, S.; Zhang, Z. A Review of Vision-Laser-Based Civil Infrastructure Inspection and Monitoring.

Sensors 2022, 22, 5882. [CrossRef] [PubMed]
28. Hamledari, H.; Sajedi, S.; McCabe, B.; Fischer, M. Automation of Inspection Mission Planning Using 4D BIMs and in Support of

Unmanned Aerial Vehicle-Based Data Collection. J. Constr. Eng. Manag. 2021, 147, 04020179. [CrossRef]
29. Han, J.; Yang, Z.; Zhang, Q.; Chen, C.; Li, H.; Lai, S.; Hu, G.; Xu, C.; Xu, H.; Wang, D.; et al. A Method of Insulator Faults Detection

in Aerial Images for High-Voltage Transmission Lines Inspection. Appl. Sci. 2019, 9, 2009. [CrossRef]
30. Liu, Y.; Shi, J.; Liu, Z.; Huang, J.; Zhou, T. Two-Layer Routing for High-Voltage Powerline Inspection by Cooperated Ground

Vehicle and Drone. Energies 2019, 12, 1385. [CrossRef]
31. Bolourian, N.; Hammad, A. LiDAR-equipped UAV path planning considering potential locations of defects for bridge inspection.

Autom. Constr. 2020, 117, 103250. [CrossRef]
32. Ayele, Y.Z.; Aliyari, M.; Griffiths, D.; Droguett, E.L. Automatic Crack Segmentation for UAV-Assisted Bridge Inspection. Energies

2020, 13, 6250. [CrossRef]
33. Israr, A.; Ali, Z.A.; Alkhammash, E.H.; Jussila, J.J. Optimization Methods Applied to Motion Planning of Unmanned Aerial

Vehicles: A Review. Drones 2022, 6, 126. [CrossRef]
34. Ait Saadi, A.; Soukane, A.; Meraihi, Y.; Benmessaoud Gabis, A.; Mirjalili, S.; Ramdane-Cherif, A. UAV Path Planning Using

Optimization Approaches: A Survey. Arch. Comput. Methods Eng. 2022, 29, 4233–4284. [CrossRef]
35. Pan, Y.; Yang, Y.; Li, W. A Deep Learning Trained by Genetic Algorithm to Improve the Efficiency of Path Planning for Data

Collection with Multi-UAV. IEEE Access 2021, 9, 7994–8005. [CrossRef]

https://gdcd.998.gov.sa/Ar/CivilDefenseLists/Documents/22.pdf
https://balmoreuav.co.uk/indoor-drone-confined-spaces/
https://balmoreuav.co.uk/indoor-drone-confined-spaces/
https://www.staturefilms.com/drone-inspections
https://doi.org/10.3846/13923730.2015.1100672
https://doi.org/10.1016/j.arabjc.2021.103116
https://doi.org/10.3390/pr9091535
https://doi.org/10.1016/j.corsci.2012.01.025
https://doi.org/10.5897/IJPS11.1745
https://doi.org/10.3390/rs14081858
https://doi.org/10.1016/j.ins.2013.02.041
https://doi.org/10.1007/s12559-015-9370-8
https://doi.org/10.1016/j.asoc.2018.06.006
https://doi.org/10.1016/j.robot.2016.08.001
https://doi.org/10.1016/j.procs.2018.01.113
https://doi.org/10.1016/j.engappai.2020.103807
https://doi.org/10.3390/s20195584
https://doi.org/10.1007/s10846-018-0791-y
https://doi.org/10.3390/s150714887
https://www.ncbi.nlm.nih.gov/pubmed/26121608
https://doi.org/10.3390/drones6050117
https://doi.org/10.3390/s22155882
https://www.ncbi.nlm.nih.gov/pubmed/35957439
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001995
https://doi.org/10.3390/app9102009
https://doi.org/10.3390/en12071385
https://doi.org/10.1016/j.autcon.2020.103250
https://doi.org/10.3390/en13236250
https://doi.org/10.3390/drones6050126
https://doi.org/10.1007/s11831-022-09742-7
https://doi.org/10.1109/ACCESS.2021.3049892

Mathematics 2023, 11, 2092 22 of 23

36. Dewangan, R.K.; Shukla, A.; Godfrey, W.W. Three dimensional path planning using Grey wolf optimizer for UAVs. Appl. Intell.
2019, 49, 2201–2217. [CrossRef]

37. Yan, F.; Zhu, X.; Zhou, Z.; Chu, J. A Hierarchical Mission Planning Method for Simultaneous Arrival of Multi-UAV Coalition.
Appl. Sci. 2019, 9, 1986. [CrossRef]

38. Yang, L.; Guo, J.; Liu, Y. Three-Dimensional Uav Cooperative Path Planning Based on the Mp-Cgwo Algorithm. Int. J. Innov.
Comp. Inf. Control 2020, 16, 991–1006. [CrossRef]

39. Ahmed, N.; Pawase, C.J.; Chang, K. Distributed 3-D Path Planning for Multi-UAVs with Full Area Surveillance Based on Particle
Swarm Optimization. Appl. Sci. 2021, 11, 3417. [CrossRef]

40. Teng, H.; Ahmad, I.; Alamgir, M.S.M.; Chang, K. 3D Optimal Surveillance Trajectory Planning for Multiple UAVs by Using
Particle Swarm Optimization with Surveillance Area Priority. IEEE Access 2020, 8, 86316–86327. [CrossRef]

41. Sommerfeld, J.; Kato, A.; Ropert-Coudert, Y.; Garthe, S.; Wilcox, C.; Hindell, M.A. Flexible foraging behaviour in a marine
predator, the Masked booby (Sula dactylatra), according to foraging locations and environmental conditions. J. Exp. Mar. Biol.
Ecol. 2015, 463, 79–86. [CrossRef]

42. Sommerfeld, J.; Kato, A.; Ropert-Coudert, Y.; Garthe, S.; Hindell, M.A. Foraging Parameters Influencing the Detection and
Interpretation of Area-Restricted Search Behaviour in Marine Predators: A Case Study with the Masked Booby. PLoS ONE 2013,
8, e63742. [CrossRef]

43. Schreiber, E.A.; Burger, J. (Eds.) Biology of Marine Birds; CRC Marine Biology Series; CRC Press: Boca Raton, FL, USA, 2002; ISBN
978-0-8493-9882-7.

44. Weimerskirch, H.; Le Corre, M.; Jaquemet, S.; Marsac, F. Foraging strategy of a tropical seabird, the red-footed booby, in a dynamic
marine environment. Mar. Ecol. Prog. Ser. 2005, 288, 251–261. [CrossRef]

45. Weimerskirch, H.; Le Corre, M.; Bost, C. Foraging strategy of masked boobies from the largest colony in the world: Relationship
to environmental conditions and fisheries. Mar. Ecol. Prog. Ser. 2008, 362, 291–302. [CrossRef]

46. Bairos-Novak, K.R.; Crook, K.A.; Davoren, G.K. Relative importance of local enhancement as a search strategy for breeding
seabirds: An experimental approach. Anim. Behav. 2015, 106, 71–78. [CrossRef]

47. Patro, S.G.K.; Sahu, K.K. Normalization: A Preprocessing Stage. Int. Adv. Res. J. Sci. Eng. Technol. 2015, 20–22. [CrossRef]
48. Preiss, J.A.; Honig, W.; Sukhatme, G.S.; Ayanian, N. Crazyswarm: A large nano-quadcopter swarm. In Proceedings of the 2017

IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; IEEE: Piscataway, NJ, USA,
2017; pp. 3299–3304. [CrossRef]

49. Official Crazyswarm Tutorial. Available online: https://crazyswarm.readthedocs.io/en/latest/tutorials/tutorials.html (accessed
on 12 November 2022).

50. Helland, J.; Whitaker, J.; Cowan, P.; Glass, S. Autonomous Drone; University of Utah Abstract: Salt Lake City, UT, USA, 2015;
Available online: https://my.ece.utah.edu/~kstevens/3992/reports/death-ray.pdf (accessed on 23 November 2022).

51. Datasheet Crazyflie 2.1. Available online: https://www.bitcraze.io/documentation/hardware/crazyflie_2_1/crazyflie_2_1-
datasheet.pdf (accessed on 22 February 2023).

52. Battery and Charger for Crazyflie 2.1 Drone. Available online: https://www.generationrobots.com/en/403752-240-mah-battery-
and-charger-for-crazyflie-21-drone.html (accessed on 22 February 2023).

53. Anderson, L. Fire Sprinkler System Rcp. Available online: https://www.edrawmax.com/templates/1021321/ (accessed on 15
December 2022).

54. Chen, X.; Zhang, P.; Du, G.; Li, F. Ant Colony Optimization Based Memetic Algorithm to Solve Bi-Objective Multiple Traveling
Salesmen Problem for Multi-Robot Systems. IEEE Access 2018, 6, 21745–21757. [CrossRef]

55. Dorigo, M.; Maniezzo, V.; Colorni, A. The Ant System: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man
Cybern. 1992, 26, 1–13. [CrossRef]

56. Wang, K.-P.; Huang, L.; Zhou, C.-G.; Pang, W. Particle swarm optimization for traveling salesman problem. In Proceedings of the
2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.03EX693), Xi’an, China, 5 November 2003;
IEEE: Piscataway, NJ, USA, 2003; pp. 1583–1585. [CrossRef]

57. Ziyang, Z.; Dongjing, X.; Chen, G. Cooperative search-attack mission planning for multi-UAV based on intelligent self-organized
algorithm. Aerosp. Sci. Technol. 2018, 76, 402–411. [CrossRef]

58. Kurdi, H.; How, J.; Bautista, G. Bio-Inspired Algorithm for Task Allocation in Multi-UAV Search and Rescue Missions. In
Proceedings of the AIAA Guidance, Navigation, and Control Conference, San Diego, CA, USA, 4–8 January 2016; American
Institute of Aeronautics and Astronautics: Reston, VA, USA, 2016. [CrossRef]

59. Liu, Y.; Li, Z.; Xiong, H.; Gao, X.; Wu, J. Understanding of Internal Clustering Validation Measures. In Proceedings of the 2010
IEEE International Conference on Data Mining, Sydney, Australia, 13–17 December 2010; IEEE: Piscataway, NJ, USA, 2010;
pp. 911–916. [CrossRef]

60. Strasser, S.; Goodman, R.; Sheppard, J.; Butcher, S. A New Discrete Particle Swarm Optimization Algorithm. In Proceedings of
the Genetic and Evolutionary Computation Conference 2016, Denver, CO, USA, 20–24 July 2016; ACM: Rochester, NY, USA, 2016;
pp. 53–60. [CrossRef]

61. Goldbarg, E.F.; Goldbarg, M.C.; de Souza, G.R. Particle Swarm Optimization Algorithm for the Traveling Salesman Problem; INTECH
Open Access Publisher: London, UK, 2008; ISBN 978-953-7619-10-7.

https://doi.org/10.1007/s10489-018-1384-y
https://doi.org/10.3390/app9101986
https://doi.org/10.24507/ijicic.16.03.991
https://doi.org/10.3390/app11083417
https://doi.org/10.1109/ACCESS.2020.2992217
https://doi.org/10.1016/j.jembe.2014.11.005
https://doi.org/10.1371/journal.pone.0063742
https://doi.org/10.3354/meps288251
https://doi.org/10.3354/meps07424
https://doi.org/10.1016/j.anbehav.2015.05.002
https://doi.org/10.17148/IARJSET.2015.2305
https://doi.org/10.1109/ICRA.2017.7989376
https://crazyswarm.readthedocs.io/en/latest/tutorials/tutorials.html
https://my.ece.utah.edu/~kstevens/3992/reports/death-ray.pdf
https://www.bitcraze.io/documentation/hardware/crazyflie_2_1/crazyflie_2_1-datasheet.pdf
https://www.bitcraze.io/documentation/hardware/crazyflie_2_1/crazyflie_2_1-datasheet.pdf
https://www.generationrobots.com/en/403752-240-mah-battery-and-charger-for-crazyflie-21-drone.html
https://www.generationrobots.com/en/403752-240-mah-battery-and-charger-for-crazyflie-21-drone.html
https://www.edrawmax.com/templates/1021321/
https://doi.org/10.1109/ACCESS.2018.2828499
https://doi.org/10.1109/3477.484436
https://doi.org/10.1109/ICMLC.2003.1259748
https://doi.org/10.1016/j.ast.2018.01.035
https://doi.org/10.2514/6.2016-1377
https://doi.org/10.1109/ICDM.2010.35
https://doi.org/10.1145/2908812.2908935

Mathematics 2023, 11, 2092 23 of 23

62. Hoffmann, M.; Muhlenthaler, M.; Helwig, S.; Wanka, R. Discrete Particle Swarm Optimization for TSP: Theoretical Results and
Experimental Evaluations. In Adaptive and Intelligent Systems; Springer: Berlin/Heidelberg, Germany, 2011; pp. 416–427.

63. Moghtadernejad, S.; Adey, B.T.; Hackl, J. Prioritizing Road Network Restorative Interventions Using a Discrete Particle Swarm
Optimization. J. Infrastruct. Syst. 2022, 28, 04022039. [CrossRef]

64. Strąk, Ł.; Skinderowicz, R.; Boryczka, U.; Nowakowski, A. A Self-Adaptive Discrete PSO Algorithm with Heterogeneous
Parameter Values for Dynamic TSP. Entropy 2019, 21, 738. [CrossRef]

65. Clerc, M. Discrete Particle Swarm Optimization, illustrated by the Traveling Salesman Problem. In New Optimization Techniques in
Engineering; Springer: Berlin/Heidelberg, Germany, 2004; p. 22.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1061/(ASCE)IS.1943-555X.0000725
https://doi.org/10.3390/e21080738

	Introduction
	Related Studies
	UAV Inspection Missions
	Bio-Inspired Approaches to the Multi-UAV Path Planning Problem

	Problem Definition and Path Planning Model
	Problem Definition
	Path Planning Model

	Proposed Method
	Booby Inspiration
	System Model
	From Inspiration to Algorithm
	Central Control Algorithm
	Primary UAV Algorithm
	Secondary UAV Algorithm
	Temporary UAV Algorithm
	Inspection and Go to Next Location Algorithms

	Experiments
	Evaluation Framework
	Results and Discussion
	Mean Detection Time
	Total Traveled Distance (Cost)
	Running Time
	Maximum Tour Length
	UAV’s Average Consumed Energy

	Conclusions
	References

