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Abstract: Low-temperature plasma is a new agricultural green technology, which can improve the
yield and quality of rice. How to identify the harvest rice grown by plasma seed treatment plays an
important role in the popularization and application of low-temperature plasma in agriculture. This
study collected hyperspectral data of harvest rice, including plasma seed treated rice, and constructed
a recognition model based on the hyperspectral image (HSI) by 3D ResNet (HSI-3DResNet), which
extracts spatial spectral features of HSI data cubes through 3D convolution. In addition, a spectral
channels 3D attention module (C3DAM) is proposed, which can extract key features of spectra.
Experiments showed that the proposed C3DAM can improve the recognition accuracy of the model
to 4.2%, while the size and parameters of the model only increase by 4.1% and 3.8%, respectively.
The HSI-3DResNet proposed in this study is superior to other methods with the overall accuracy of
97.47%. At the same time, the algorithm proposed in this paper was also verified on a public dataset.

Keywords: convolutional neural network; hyperspectral image recognition; low-temperature plasma

MSC: 68T07

1. Introduction

With the continuous increase of population, the contradiction between population and
food production is increasingly prominent, especially in developing countries. Although
global food security has been improved in recent years, many countries still suffer from
serious food security problems [1]. Especially since the outbreak of COVID-19, food
production has been greatly impacted, causing humanity to realize the importance of
ensuring food security once again [2]. So far, pesticides and fertilizers have become
important means to increase agricultural output. However, they also have harmful impacts
on ecosystems, food safety and human health. As one of the world’s three major food crops,
rice can provide complex carbohydrates, fiber, minerals, and vitamins. At present, most
rice was planted through the use of pesticides and fertilizers to ensure the yield, which
leads to the decline of rice quality. Therefore, a novel approach is needed to increase the
productivity and quality of rice.

Plasma is the fourth state of matter [3], consisting of electrons, ions, radicals, ground
state and excited atoms and molecules [4,5]. Low-temperature plasma (LTP), which can
be obtained at room temperature and atmospheric pressure, has been widely used in
agricultural application researches including treating seeds to promote germination and
plant growth. For plasma seed treatment [6–8], the atmospheric pressure plasma, which
contains large amounts of active components such as ozone, hydroxyl radical, nitric oxide,
nitrogen dioxide, nitrous acid and so on, can positively affect the surface properties of
seeds in a short treatment time, including etching the seed coat, and improving seed
surface wettability and the entry of water and oxygen, which are essential factors for seed
germination. In addition, in the process of plasma generation, the activity of some enzymes
in seeds can be enhanced. Thus, seed germination, plant growth and nutrients can be
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accordingly improved [9]. For rice planting, the use of LTP technology can produce higher-
quality rice. However, there is great lack of a relevant model for the effective identification
of plasma-treated rice. The combination of computer vision and spectroscopy can be
used in rice identification. Hyperspectral imaging (HSI) shows the spectral and spatial
image information at the same time, which is a fast, efficient, accurate and nondestructive
detection method. In this paper, the model based on HSI and 3D deep residual network
was developed for the effective identification of rice grown by plasma seed treatment.

Although HSI was originally developed for remote sensing, with the development of
technology, it has been applied to the detection of food including wheat grain hardness [10],
water content [11] and protein content [12], as well as other quality traits. In addition, HSI
has also been used for germination detection [13], and the prediction of alpha amylase
activity [14] and parasitic contamination [15]. Gao Z. et al. [16] used HSI to detect grape
leaf roll disease and showed that HSI technology has great potential in the non-destructive
detection of virus infection in grape plants during the asymptomatic period. In the study
of Wang H. et al. [17], HSI was used to detect tomatoes with early decay, showing that
100% of rotten tomatoes and 97.5% of healthy tomatoes could be identified by HSI. The
study of Hu N. et al. [18] showed that HSI could well predict the trace element content of
wheat including Ca, Mg, Mo and Zn. Khamsopha D. et al. [19] determined the content and
adulteration of cassava starch by HSI.

In recent years, the use of hyperspectral detection in rice classification has also been
studied. Combining the spectral and image spatial features, the seed data of six types of
rice are classified and the classification accuracy can reach up to 84% [20]. Kong et al. [21]
classified the HSI of four types of rice with the accuracy 90.67% using 12 selected character-
istic wavelengths by the K-nearest neighbor (KNN) method. Wang et al. [22] used HSI to
identify three types of rice seeds. The chalkiness, shape and spectral characteristics of rice
were considered, and the classification accuracy reached 94.45%. Liu et al. [23] classified
the HSI of three types of rice from the spectral information of a single seed using a support
vector machine model, and the classification accuracy of the model reached 95.78%. In the
study [24], a method of combining an artificial fish swarm algorithm and feature fusion
was proposed, and then support vector machine was used to classify five kinds of rice
seeds with the fused features. The classification accuracy of this method was as high as
99.44%. In the study [21], the author used HSI and random forest classifier to classify four
kinds of rice seeds, and the classification accuracy could reach 100%. Recently, researchers
have studied the classification of rice by different combinations of spectrum, texture, and
morphological features [20,25].

Due to the complex data structure of hyperspectral images, the traditional feature
extraction method (for example, [20–25]) requires high professional knowledge or expe-
rience and the high cost of feature extraction. Deep learning provides a good solution
for the feature extraction of hyperspectral images. In 2012, Krizhevsky et al. [26] used
GPU to train a CNN model for the classification task of the ImageNet dataset, and the
model achieved the classification accuracy of 62.5%, which was higher than other meth-
ods at that time. This research had a huge impact in the field of image classification and
target detection. With the development of deep learning, CNN [26], deep belief network
(DFN) [27], stacked auto encoder (SAE) [28,29], deep residual network (ResNet) [30] and
other deep learning network models are constantly being proposed. The deep learning
methods have been gradually introduced into the field of hyperspectral image classification
and achieved breakthrough progress. Ghamisi et al. [31] and Chen et al. [32] proposed a
model for processing spectral data based on standard 1D CNN. Zhao and Du [33] used 2D
CNN to extract spatially related features and proposed a classification method based on
HSI spectral–spatial features. Zhang et al. [34] and Yang et al. [35] combined the spectral
features extracted by 1D CNN and the spatial correlation features extracted by 2D CNN,
and then used the softmax classifier for the final classification. In some studies, the DensNet
model has been used to handle some HSI-related tasks. For example, Paoletti et al. [36]
implemented a deep dense CNN model, which can be used to classify the spectral–spatial
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features of HSI data. Wang et al. [37] used DensNet to analyze the spectral, spatial, and
spectral–spatial features of HSI data to achieve the classification. Fang et al. [38] proposed
an end-to-end 3D DenseNet to extract the spectral–spatial features of HSI to enhance the
classification effect.

The growth and quality of plasma-treated rice are different from that of ordinary rice,
and there is a lack of dataset and classification model for plasma-treated rice. Therefore,
this article is dedicated to solving these problems. The main novelties and contributions of
this paper are as follows.

(1) A hyperspectral image dataset of three kinds of rice was constructed. The dataset
contains a total of 21,708 samples of three groups.

(2) A spectral channels 3D attention module (C3DAM) is proposed, which can extract
key features more effectively and improve the recognition accuracy.

(3) The proposed model (HSI-3DResNet) can effectively identify the three groups of rice
with the average accuracy of 97.46%.

This paper is organized as follows. Section 2 illustrates the detailed structure of the
hyperspectral dataset of rice and the algorithm model. Section 3 provides evaluation and
analysis. Finally, the concluding remarks and future works are drawn in Section 4.

2. Dataset Description

The construction of a plasma rice dataset met the following challenges. First, we
conducted the treatment experiment of plasma on rice seeds and completed the field plant-
ing of the entire growth cycle of rice. Second, after harvesting, the original hyperspectral
images of the threshed rice were obtained. Third, HSI images had to be preprocessed,
including deleting useless background information and data correction.

2.1. Data Collection

The rice variety used for data collection was Nanjing 9108 (japonica), which was
planted in Taizhou City, Jiangsu Province, China with the longitude and latitude of E119.97
and N32.64. The planting period of this kind of rice is from May to November. The
experimental data were divided into three groups, namely group CK for local farms with
traditional planting methods (using pesticides and chemical fertilizers), group C with
only organic carbon fertilizer during planting, and group P (or plasma group) only with
plasma treatment. In the rice planting experiment, rice seeds were treated by arc discharge
with 455 W and using air as the reaction gas with the gas flow rate of 1.5 L/min and the
treatment time of 1.2 s. All the rice groups grew to natural maturity for harvest. The seed
treatment and rice planting process are shown in Figure 1. First, LTP technology was used
to treat rice seeds, and the growth process included several stages of seedling breeding,
transplanting, field management and rice harvest.

A total of 1 kg harvested rice samples were randomly selected in each group for
hyperspectral detections. HSIs of rice samples were collected using a visible-near-infrared
reflectance hyperspectral imaging system, as shown in Figure 2. The GaiaSorter HSI
system used in this study includes a uniform light source, spectral camera, electronically
controlled mobile platform, computer and control software, etc. The system is available
in three standard spectral bands, 400–1000, 900–1700 and 1000–2500 nm, and is equipped
with small conveyor belts for continuous small-batch measurements. The system uses
a bromine tungsten lamp as its light source, which emits uniform light through thermal
radiation. The light source adopts the trapezoidal structure design of four bulbs, and the
light intensity of the upper and lower bulbs is controlled and adjusted the with knobs, so
that the light uniformity is higher than 90% in the volume of 300× 20× 100 mm3. Figure 2a
shows the physical diagram of the GaiaSorter system. Figure 2b shows the structure
diagram including (1) the hyperspectral imager, (2) diffuse light source, (3) working distance
regulator, (4) electric mobile platform, (5) electric lifting platform and (6) computer position.
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In this study, we selected the standard spectral band of 400–1000 nm, with a total of
176 wavelength data. During the collection of rice hyperspectral image data, every 250 g
of rice was evenly placed on the blackboard, which was put into the HSI system for data
collection. The resolution of the HSI data collected in the experiment was 960 × 1440 × 176.
In the experiment, 15 pieces of original rice HSI data were collected, including 5 pieces
of CK, C and P data each. Figure 3(a1–c1) show the HIS data for group CK (a1), group C
(b1) and group P (c1). Here, the 1024 curves with different colors in each of Figure 3(a3–c3)
show the spectral curves in a 32× 32 area (i.e., each pixel has its individual spectral curve
marked by one color).
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Figure 3. Data of rice: the original calibrated image data and rice spectra of group CK (a1–a3),
group C (b1–b3) and group P (c1–c3). The original image data collection was illuminated with
halogen lamps.

Three-dimensional hyperspectral images of rice were obtained by linear scanning. It
can be represented by (x, y, λ), where x and y represent space dimensions and λ spectral
dimensions. Five HSI images were collected for each type of rice. In order to reduce the
influence of noise and illumination instability, it is necessary to correct the black and white
plates of hyperspectral images. The correction method is shown in Equation (1).

I =
I0 − B
W − B

× 100% (1)

where I and I0 are the spectral strength of images before and after correction, respectively,
and B and W are the spectral strength of the black and white board images, respectively.
Figure 3(a2–c2) show the calibrated HSI images of groups CK(a2), C(b2) and P(c2). In this
paper, we used the calibrated data as experimental data. Figure 3(a3–c3) show the spectra
of the three types of rice with 1024 spectral curves in each group. From Figure 3(a3–c3), it
can be seen that the spectral curve of the plasma group is obviously more compact than
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groups CK and C. In group CK, more spectral curves distribute in the region of less than
700 nm, while those of group C mainly distribute in the region of larger than 700 nm.
The differences between these spectra indicates that the identification and classification of
different groups of rice can be achieved by the different features of hyperspectral data.

2.2. Data Preprocessing

Figure 4 shows the three main steps of dataset construction in this study, which are
data collection, data selection and data augmentation. Step 1 is data collection, including
sample selection and hyperspectral image data collection, as described in Section 2.1. Step 2
is data selection. The rice image are concentrated in the range of 896 × 1280 pixels in the
middle of the HSI. The effective HSI data are selected for clipping and then divided into
segments with the size of 128 × 128 pixels. Therefore, each original hyperspectral image of
rice can be divided into 70 segments with 128 × 128 pixels. Step 3 is data augmentation.
Since the neural network model is prone to overfitting, it is necessary to perform some
data augmentation operations in the training phase in order to obtain a high-precision
CNN-based model [39]. Due to the high dimension of HSI data, it has high requirements
for computer equipment. Meanwhile, in order to increase the number of data samples,
the data cube needs to be cropped. Random cropping is one of the most effective data
augmentation methods. A slice randomly cut from the original training image was input
to the model during training, which enriched the diversity of the model’s training data.
Together with random flipping, random cropping and its variants were intensively applied
to the current research on HSI classification and recognition algorithms [40]. Through data
crop, the hyperspectral image data were randomly cropped into 25 hyperspectral images
of 32 × 32 pixels and the unusable data (whose rice pixels do not account for more than a
quarter of the data cube) were removed. Through the above three steps, a usable rice HSI
dataset with 21,708 data samples was constructed, including 7540 pieces of group CK, 7216
pieces of group C and 6952 pieces of group P, as shown in Table 1. The data is stored in mat
format with the shape of 32 × 32 × 176.
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Table 1. The number and proportion of each rice class in the dataset.

Category Number Proportion

CK 7540 34.734%
C 7216 33.241%
P 6952 32.025%

3. HSI Recognition Model Based on 3DResNet (HSI-3DResNet)
3.1. Spectral Channels 3D Attention Module (C3DAM)

Since the attention model was proposed, it has been widely used in deep learning. The
structure of the spectral channels 3D attention module (C3DAM) proposed in this paper is
shown in Figure 5, and it can be embedded into other backbone networks such as ResNet,
DenseNet, and the latest ConvNext to enhance the ability of extracting key features and
accordingly enhance the classification accuracy of the models. C3DAM is a computational
unit that can be built upon a transformation Ft mapping an input X ∈ RW×H×C to feature
maps X̃ ∈ RW×H×C, as shown in Equation (2). In the Ft map, there are convolution, batch
normalization (BN), sigmoid and max pool operations.

X̃ = Ft(X). (2)Mathematics 2023, 10, x FOR PEER REVIEW 8 of 19 
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In the study of this paper, rice image features (color, contour, shape, background and
so on) can be well extracted by 3D convolution. Due to different substances exhibiting
different spectra, the spectral characteristics of HSI data of rice are complex due to the
different groups of rice and the diversity of rice components. It is necessary to improve
the spectral feature extraction ability. In this study, a 1× 1× n 3D convolution kernel was
used to extract spatial features of HSI. U ∈ RH×W×C denotes the output of the convolution
operation and V denotes the learning set of the filter kernel. Then, U can be expressed as
Equation (3), where ∗ represents the convolution calculation.

U = V ∗ X (3)

Through the convolution calculation, the data features on the channel are extracted
so as to enhance the sensitivity of features in the subsequent process. In this study, the
1× 1× 3 convolution kernel was used. Through the batch normalization, sigmoid and max
pool operations, the normalized features were enhanced to obtain the weights maps, as
shown in Equation (4), where S is the weights maps, σ is the sigmoid function and δ is the
BN function.

S = Maxpool(δ(σ(U)). (4)
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After the weights maps were used to redistribute the weights of input X, the feature
maps X̃ with sensitive information enhancement were obtained, as shown in Equation (5),
where ⊗ is the multiplication.

X̃ = X⊗ S. (5)

3.2. Structure of HSI-3DResNet

The hyperspectral image includes two-dimensional spatial information and one-
dimensional spectral information, which form a 3D data cube. In order to better obtain the
spatial features and spectral features from HSI, 3D convolution, 3D batch normalization,
3D pooling operation and the Relu function are used in the proposed HSI-3DResNet.

The use of 3D convolution in the hyperspectral image data cube can perform 3D
convolution calculations in the spatial domain and the spectral domain at the same time,
so as to extract the spatial–spectral features of the data cube. The output of the convo-
lution calculation for the input IW×H×C and the 3D convolution kernel VP×Q×R(P ≤ W,
Q ≤ H, R ≤ C) is defined as:

Ox,y,z = b + ∑W ′

p=0 ∑H′

q=0 ∑C′

r=0 Vp,q,r Ix·Sx+p,y·Sy+q,z·Sz+r, (6)

where Ox,y,z represents the value of the ith element of output OW ′×H′×C′ , the position of
i is (x, y, z), z corresponds to the λ of HSI data in this paper, b represents the bias, and
(Sx, Sy, Sz) represents the size of stride in the 3D convolution. W ′ × H′ × C′ denotes the
size of output O, which is defined as:

W ′ =
⌊

W−P
Sx

⌋
+ 1

H′ =
⌊

H−Q
Sy

⌋
+ 1

C′ =
⌊

C−R
Sz

⌋
+ 1

, (7)

where b·c denotes the round-to-zero process. In general, stack multiple (maybe dozens or
hundreds) of 3D convolution kernels on the same layer to discover various types of spectral–
spatial features, and at the same time generate the same number of feature matrices.

In order to reduce the number of parameters of the neural network in the training
process and improve the generalization ability of the model, a pooling layer is usually
added to the network model. The 3D max pooling layer can be used for feature learning
in tasks such as action recognition and target detection in video, and it can also be used
for data feature learning in HSIs. The batch normalization is used after the convolution
layer, where it adjusts the distribution of data and normalizes the output of each layer to
a distribution with the mean of 0 and the variance of 1. This ensures the effectiveness of
the gradient. Suppose X = [X1, X2, . . . , Xi, . . . , Xn] is an input of a mini batch, where Xi
represents a piece of sample data, n is the batch size, and Y = [Y1, Y2, . . . , Yi, . . . , Yn] is the
output of 3D batch normalization; then, Yi is defined as:

Yi =
Xi − µB√

σ2
B + ε

·γi + βi, (8)

where γi and βi are learning ability parameters, ε is set to 1 × 10−5, µB is the mean value of
the mini batch and σ2

B is the variance of the mini batch, with the calculation formula shown
in Equations (9) and (10).

µB =
1
n ∑n

i=1 Xi, (9)

σ2
B =

1
n ∑n

i=1 (Xi − µB)
2 (10)
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In the convolutional neural network, as the number of layers of the network keeps
increasing, the problem of network degradation will occur in the process of training.
In order to solve this problem, He K. et al. proposed the ResNet network in 2015 [36].
ResNet introduced the residual learning framework into the network to establish the
shortcut connections between layers so as to improve the backpropagation ability of the
gradient during training, solve the problem of gradient disappearance, and thus improve
the performance of the model. The formulation F(X) = F(X) + X is the mapping relationship
of residual learning, as shown in Figure 6.
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Figure 6. Residual learning: a building block [30].

The basic block structure of HSI-3DResNet is shown in Figure 7. It includes two
3 × 3 × 3 convolutional layers and a C3DAM layer as well as two BNs and Relu operations.
In this study, the 3D convolution kernel, 3D pooling and 3D BN were used to replace
the original 2D parts, which enables the model to learn the spatial features and spectral
features at the same time and is more suitable for the 3D data cubes of HSIs. In addition,
the proposed C3DAM module based on an attention mechanism was added into the model,
allowing key features to be learned by the model to obtain a higher accuracy.
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The structure of HSI-3DResNet and ResNet is similar. Figure 8 shows the structure
of HSI-3DResNet with different layers, where (a) shows HSI-3DResNet-18 and (b) shows
HSI-3DResNet-34. The input of HSI-3DResNet is a 32 × 32 × 176 HSI data cube. Different
from ResNet, the input data of HSI-3DResNet first undergoes C3DAM to redistribute the
weights, and is then input into a convolution kernel size 5 × 5 × 5, filter 64, and stride
2 convolution layer. After that, the structure of HSI-3DResNet is similar to that of ResNet.
In HSI-3DResNet, we used 3D max pooling and 3D average pooling to replace the 2D max
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pooling and 2D average pooling in ResNet, and replaced the ResNet Basic block structure
with the HIS-3DResNet Basic block structure (shown in Figure 7).
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4. Results and Discussion
4.1. Run Environment

Because the deep neural network training process has many iterations and a large
number of matrix operations, which requires a large amount of computing resources, a
high-performance graphics processing unit (GPU) is indispensable. In this experiment,
NVIDIA GeForce RTX 3090 is used for model training, and its graphics memory is 24 GB.
The CPU model is an Intel(R) Core (TM) i9-10900K (3.70 GHz) and the memory size is
128 GB. The operating system was Ubuntu18.04 and the model was implemented using
Tensorflow2.4. The CUDA Toolkit 11.1 and CUDNN V8.0.4 were used for computation
acceleration. Anaconda3.6 and Python3.8 are respectively the development environment
and programming language for the model.

4.2. Evaluation Indicators

In this study, the following indicators were considered to evaluate the model. First
of all, overall accuracy (OA) and average accuracy (AA) are widely used in the classifi-
cation and identification tasks of HSI data [36]. However, they do not fully explain the
performance of the model. Ka is a common index used for consistency checking (i.e., the
prediction results of all classes are better) for HIS data and can be used for evaluating the
classification effects of HSI data. The closer Ka is to 1, the better the consistency of classifica-
tion. A confusion matrix, also known as an error matrix, is widely used in classification. It
can clearly describe the actual category and predict the categories of each row and column.
OA, AA and Ka are all calculated based on the confusion matrix.

OA =
TP + TN

TP + TN + FP + FN
, (11)

AA =
∑N

i=1
TPi

TPi+FNi

N
, (12)

Ka =
OA− pe

1− pe
, (13)

where N represents the classification quantity of the test sample, and TPi, FPi, TNi and FNi
represent the true positive (TP), false positive (FP), false negative (FN) and true negative
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(TN) sample of the ith class, respectively. The calculation formula of pe is shown in
Equation (14).

pe =
∑N

i=1 ai × bi

n× n
, (14)

where n represents the number of samples in the test sample, ai represents the actual
number of samples of the ith class in the test sample, and bi denotes the number of
prediction samples of the ith class in the test sample.

4.3. Public Datasets

To verify the validity of the model, not only the constructed rice dataset was used, but
also the public HSI dataset named Indian Pines (IP) was used. The IP images were captured
by the AVIRIS sensor at the IP agricultural test site in northwest Indiana. The spatial
resolution of the spectral image is 145 × 145. The available ground truths are divided into
16 categories. Table 2 shows the number of available samples for the IP HSI dataset.

Table 2. Number of available samples in the Indian Pines (IP) dataset.

No.
Indian Pines (IP)

Class Name Samples

Background 10,776
1 Alfalfa 46
2 Corn-notill 1428
3 Corn-min 830
4 Corn 237
5 Grass/Pasture 483
6 Grass/Tree 730
7 Grass/Pasture-mowed 28
8 Hay-windrowed 478
9 Oats 20
10 Soybeans-notill 972
11 Soybeans-min 2455
12 Soybeans-clean 593
13 Wheat 205
14 Woods 1265
15 Bldg-grass-tree-drives 386
16 Stone-steel-towers 93

4.4. Experiments’ Results

Before the model training started, 80% of the data in the dataset were randomly
selected as the training set and the remaining 20% of the data were used as the validation
set. The hyperparameter settings in the training process are shown in Table 3. Due to the
Adam optimizer having a strong optimization ability with adaptive moment estimation,
it allows a small learning rate. In addition, the proposed attention module C3DAM can
enhance the extraction ability of key features and find the gradient direction more accurately
during training, which also allows a small learning rate. Thus, the learning rate was set as
the fixed low value of 1 × 10−4.

Table 3. Hyperparameter table.

Hyperparameter
Value

Rice Dataset IP Dataset

Learning rate 0.0001 0.0001
Mini batch size 16 256

Epochs 100 100
Optimization Adam Adam
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In the model training process, standard cross-entropy [41] is used as the loss function
and it is defined as in Equation (15).

Loss = − 1
n ∑x

[
y× ln y′ + (1− y)× ln

(
1− y′

)]
, (15)

where y and y′ denote the expected and actual outputs, respectively.
The difference between HSI-3DResNet and 3DResNet is that C3DAM is added to

HSI-3DResNet to better learn the important features in the HSI data cube. The experiment
compared the recognition result of the four models of 3DResNet-18, HSI-3DResNet-18,
3DResNet-34 and HSI-3DResNet-34 on different datasets.

Table 4 shows the recognition results of the four models on the rice dataset and IP
dataset. By comparing OA, AA and Ka of different models, we found that HSI-3DResNet-34
obtained the best recognition effect for the two datasets. The OA of HSI-3DResNet-34 on
the rice dataset and IP dataset was the highest, reaching 97.46% and 99.95%, respectively. At
the same time, by comparing the recognition results of the models between HSI-3DResNet-
34 and 3DResNet-34 (or the models between HSI-3DResNet-18 and 3DResNet-18) on
different datasets, we found that adding the C3DAM module to the model can improve
the recognition performance of the model. The improvement was more prominent on the
rice dataset constructed in this paper. For example, after adding the C3DAM module, the
overall accuracy of HSI-3DResNet-34 on the rice dataset was 4.24% higher than that of the
model 3DResNet-34, and the overall accuracy of HSI-3DResNet-18 was 2.33% higher than
that of the model 3DResNet-18.

Table 4. The recognition results of 3DResNet-18, HSI-3DResNet-18, 3DResNet-34 and HSI-3DResNet-
34 on the rice dataset and IP dataset.

HSI-3DResNet-34 3DResNet-34 HSI-3DResNet-18 3DResNet-18

Rice
OA(%) 97.46 93.21 93.94 91.62
AA(%) 97.47 93.16 93.98 91.54
Ka(%) 94.19 89.79 90.91 87.41

IP
OA(%) 99.95 99.71 99.85 99.61
AA(%) 99.97 99.73 99.89 99.58
Ka(%) 99.94 99.67 99.83 99.56

In the model training, the model size and parameter quantities of the four models were
also compared, as shown in Figure 9. For example, the impacts of adding and not adding
the proposed C3DAM module on the model size and parameter quantities of 3DResNet
with 34 and 18 layers was compared, which were 440.1, 422.8, 231.1 and 220.6, respectively.
Their parameter quantities were 10.9, 10.5, 5.7 and 5.5 million in order. This shows that
the adding of the C3DAM module to 3DResNet-34 and 3DResNet-18 causes an increase
of model size by 4.1% and 4.8%, respectively, and an increase of parameter quantities by
3.8% and 3.6%, respectively, and accordingly the accuracy improved by 4.24% and 2.33%,
respectively. Without considering the C3DAM module, the model size and parameter
quantities of 3DResNet-34 were 2.0 and 1.9 times those of 3DResNet-18, respectively, while
when adding the C3DAM module, the model size and parameter quantities of 3DResNet-18
were only about half of 3DResNet-34 (without adding C3DAM module), but the accuracy
was 1.007 times that of 3DResNet-34, which shows the significant role of the proposed
C3DAM module.
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In the model testing, we randomly selected 4342 samples (80%) from the original
dataset as the test set including 1508 for group CK, 1443 for group C and 1391 for group
P. In Figure 10, the confusion matrix of the four models is calculated. The real category
(ordinate) is compared with the predicted category (abscissa) to describe the recognition
accuracy of the models. From Figure 10a, it can be seen that HSI-3DResNet-34 had the
highest individual recognition accuracy, with the accuracy of 96.883% for CK, 98.406% for
C and 97.124% for P. The individual accuracy of three groups of rice by HSI-3DResNet-34
was higher than that by 3DResNet-34. For plasma rice recognition, the accuracy of HSI-
3DResNet-18 was higher than 3DResNet-34, showing the accuracy improvement of the
C3DAM module.
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In the experiment, in addition to the above four models, the recognition results by
the 11 models were also compared, including the original ResNet-34, ResNet-18 and 1D
CNN, and some traditional machine learning methods such as XGBoost, support vector
machine (SVM), multiple linear regression (MLR) and random forest (RF). Table 5 shows
the recognition results of the 11 models on the public IP dataset and the rice dataset. It can
be seen that the proposed model had the best recognition effects (marked in bold) on both
the IP and the rice datasets, showing that our model has the highest OA, AA and Ka. At
the same time, it can also be found that compared with traditional machine learning, deep
learning has obvious advantages in the recognition task of HSI data.

Table 5. Classification results of different models in the IP dataset and the rice dataset.

Method
IP Dataset Rice Dataset

OA (%) AA (%) Ka (%) OA (%) AA (%) Ka (%)

HSI-3DResNet-34 99.95 99.97 99.94 97.46 97.47 94.19
HSI-3DResNet-18 99.85 99.89 99.83 93.94 93.98 90.91
3DResNet-34 99.71 99.73 99.67 93.21 93.16 89.79
3DResNet-18 99.61 99.58 99.56 91.62 91.54 87.41
ResNet-34 70.39 58.73 66.36 78.56 78.66 67.85
ResNet-18 56.41 67.91 51.47 71.00 71.32 56.62
CNN1D 73.36 52.69 58.11 62.07 62.23 43.20
SVM 62.19 23.68 38.55 60.27 60.22 40.33
RF 81.50 62.62 72.88 55.11 54.92 32.43
XGBoost 83.61 67.83 76.14 49.82 49.87 24.68
MLR 77.62 62.96 67.75 35.93 35.88 3.81

Figure 11 shows the recognition results of the IP dataset by different methods, where
(a) is the ground reference map and (b)–(l) are the recognition results of the 11 methods. It
is seen that the proposed method has the best recognition image, which is the closest to the
original ground reference map with the accuracy of 99.95%.

Figure 12 shows the classification results of the 11 models in the rice dataset. From
Figure 12 and Table 5, it can be seen that the OA, AA and Ka of HSI-3DResNet-34 were
the highest among all these models, with the OA of 97.46%, AA of 97.47% and Ka of
94.19%. MLR had the worst classification effect, less than 50%, indicating that MLR could
not learn many useful features in the dataset. Due to the 3D convolution kernel’s ability
to extract spatial and spectral features, it has a better learning ability for HSI data cubes.
In addition, by comparing HSI-3DResNet and 3DResNet, it can be seen that adding the
proposed C3DAM module can make the model learn more key features, so as to improve the
accuracy of the model but not cause the obvious increase in the model size and parameters,
which has been shown in Figure 9.
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Figure 11. Comparison of classification results on the Indian Pines (IP) dataset. (a) Ground-truth
map; (b) HSI-3DResNet-34 (99.95%); (c) HSI-3DResNet-18 (99.85%); (d) 3DResNet-34 (99.71%);
(e) 3DResNet-18 (99.61%); (f) ResNet-34 (70.39%); (g) ResNet-18 (56.41%); (h) CNN1D (73.36%);
(i) SVM (99.71%); (j) RF (81.50%); (k) XGBoost (83.61%); (l) MLR (77.62%).
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5. Conclusions

In this paper, plasma technology was used to treat rice seeds and a field plant experi-
ment on the treated rice seeds was conducted. Hyperspectral images of three kinds of rice
after harvest including plasma rice were collected and a HSI dataset of rice was constructed.
A ResNet-based HSI data classification model, HSI-3DResNet, was constructed, and 3D
convolution was used to extract spatial–spectral features. At the same time, a C3DAM
attention module suitable for HSI data cubes was proposed, so that the model can learn
more key spectral features, but the size of the model and the parameters will not increase
significantly. The model established in this paper has achieved a good classification effect
with the average accuracies of 97.47% on the rice dataset and 99.97% on the public IP
dataset. These results indicate that the identification and classification of plasma rice can be
effectively solved by constructing the HSI-3DResNet model. The model was also effectively
applied to a public HSI dataset. This study is of great significance to the identification of
LTP technology in agriculture.
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