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Abstract: Based on Green–Lindsay generalized thermoelasticity theory, this paper presents a new
refined higher-order time-derivative thermoelasticity model. Thinner one-dimensional skin tissue is
considered when its inner surface is free of traction and does not show any temperature increase. The
skin tissue’s bounding surface has been heated by ramp-type heating. The classical thermoelastic
theories are obtained from the present general formula. The governing equations of the present
model are obtained. To move the system into a space state, the Laplace transform is used. The inverse
of the Laplace transform is also used with Tzuo’s method to solve the problem. As a result, the field
quantities are obtained numerically, and the results of the current model are graphically represented
with a comparison to two different theories of thermoelasticity. The effects of various parameters
on thermomechanical waves through the skin tissue are analyzed. The theory notes a vibrational
behavior in heat transfer and a different effect on the parameters discussed in this article.

Keywords: Green–Lindsay theory; skin tissue; bio-thermoelasticity; ramp-type heating; Laplace
transform; blood perfusion
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1. Introduction

Many medical treatments depend on the biothermal response to transfer heat through
thermoelastic skin tissues, so understanding heat transfer is essential for both theoret-
ical and practical applications. One of the most important aims of studying skin bio-
thermoelasticity is to investigate the therapeutic effect of applying heat to the skin’s surface
to treat the target tissues without affecting the surrounding tissues. The investigation
of the bio-thermoelastic response of living tissue utilizes a new and efficient generalized
thermoelasticity model based on the Green–Lindsay (G–L) theory. The model presented
here will allow predictions of bio-thermoelastic tissue which is an important effect. Most
bio-heat transfer theories are created according to the classical Fourier’s law, which de-
scribes extremely fast thermal signal propagation. In recent literature, a variety of bio-heat
transfer theories have been developed for skin tissue, including Pennes’s theory [1], ther-
mal wave (TW) theory, and dual-phase-lag (DPL) theory [2]. The linear theory of coupled
thermoelasticity (CTE) was satisfactorily derived by Biot [3], who also proposed a theory
of irreversible thermodynamics. Lord and Shulman (L–S) [4], Green and Lindsay [5], and
others attempted to alter the CTE theory on various grounds to produce a wave-type heat
conduction equation to deal with this contradiction. Through an experiment, Mitra et al. [6]
investigated the wave-like response of heat transfer in biological tissues.
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Different investigators have demonstrated that each of the DPL and TW theories can
stimulate other non-physical properties. Antaki [7] used the DPL theory to explain the heat
conduction in dealing with meat which was explained with the TW theory. Liu and Lin [8]
presented an inverse analysis of bi-layer spherical tissue. Xu et al. [9–11] discussed the
application of bio-heat transfer models in the bio-thermomechanical effect of skin tissue.
Ng et al. [12] developed the boundary element method for the bio-heat transfer problems
within heated human skin. Kundu and Dewanjee [13] examined the non-Fourier and
Fourier thermal behaviors in single-layer, one-dimensional skin tissue. Shih et al. [14]
discussed the parabolic Pennes’ bioheat formula under oscillatory heat flux at the skin
tissue. Ghazizadeh et al. [15] used the fractional thermal wave (FTW) bio-heat transfer
formula to develop the non-Fourier behavior. In Ezzat and El-Karamany [16], two general
models of fractional heat conduction for non-homogeneous anisotropic elastic solids were
discussed. Jiang and Qi [17] discussed heat transfer in biological tissue utilizing the FTW
bio-heat transfer equation. Ezzat et al. [18] discussed the tissue behavior on the skin surface
utilized in the FTW bio-heat transfer equation. For a perfect conducting solid with a time-
fractional derivative in one dimension, Ezzat et al. [19] develop a mathematical model
of the equations of the two-temperature magneto-thermoelasticity theory. Utilizing the
fractional DPL theory, Kumar and Rai [20] explored the thermal response in living biological
tissues. In a medium containing a spherical cavity under two phases of G–L theory,
Kumar et al. [21] analyzed the impact of temperature-dependent thermal conductivity
on thermoelastic interactions. Chyr and Shynkarenko [22] formulated the corresponding
variational problem based on the G–L initial-boundary-value problem of thermoelasticity,
sufficient conditions for initial data regularity, and proved the uniqueness of its solution
and the existence of the generalized solution. Quintanilla [23] showed a modification of the
G–L theory and discussed some qualitative results of it.

A single-layer skin tissue exposed unexpectedly to heat source issues as well as three-
layer skin tissue has been discussed by Goudarzi and Azimi [24] in connection with a
hot water source. A triple-phase-lag (TPL) model was proposed by Kumar et al. [25]
to explain heat transfer in skin tissue with a finite domain with temperature-dependent
metabolic heat generation. To examine the bio-thermo-mechanics behavior in living tissue
and apply the model to a problem of a cancerous layer, Ezzat [26] used the fractional
model of the thermo-viscoelasticity theory. The FTW of the bio-heat transfer equation
is also utilized by Du et al. [27] to discuss the temperature and heat transfer mechanism
of living biological tissues with fixed thickness subjected to a short-pulse laser. Youssef
and Alghamdi [28] introduced a mathematical model of thermoelastic skin tissue utilizing
the DPL heat conduction law. Using the refined L–S heat conduction equation, Sobhy
and Zenkour [29] presented a mathematical model of thermoelastic on one-layer skin
tissue. The thermal reaction and response of skin tissue exposed to a steady heat flux as a
consequence of thermo-electrical shock on the bounding plane were studied by Youssef and
Salem [30]. Ezzat and Alabdulhadi [31] presented a mathematical model of generalized
thermo-viscoelasticity theory based on Pennes’ bioheat transfer equation with DPL to treat
skin tumors by local hyperthermia. Based on a TPL model, Zhang et al. [32,33] examined
the thermal response of skin tissue and the thermoelastic behaviors of biological tissue
under thermal shock. Bioheat transmission and heat caused by a mechanical response in
bi-layered human skin were investigated by Li et al. [34] using the Green–Naghdi model II
(G–N model II) of thermoelasticity. To give a quantitative and systematic analysis to solve
the nonlinear thermoelastic equation, Shakeriaski et al. [35] introduced the stress rate and
temperature rate to the G–L model’s governing equations. In the context of the refined
G–L theory of generalized thermoelasticity with strain rate, Sarkar et al. [36] published a
study on the reflection and spread of harmonic plane waves. Filopoulos et al. [37] derived
thermoelastic models for materials and provided a model to generalize G–L theory for
linear elastic materials with microstructure.

Due to the development and modifications in the theories of thermodynamics and
their uses in bio-mathematics, we developed a new modified model of the G–L theory of
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thermoelasticity [29,38–40]. The coupled thermoelastic system equations of differential
equations are obtained. The distributions of field quantities, such as temperature, stress,
displacement, and dilatation, are investigated by using the refined G–L bio-heat transfer
model. The effects due to the G–L relaxation times and other parameters on thermoelastic
behaviors are discussed. This study aims to present an improved model of the G–L
thermoelasticity theory, which is characterized by giving finite speeds of heat transfer and
applying it to biological tissues and knowing how applied convection affects tissues.

2. Governing Equations

The classical Fourier’s law [29,30,37] states connecting between heat flux vector qi and
temperature gradient θ,i by the equation

qi = −ktθ,i, ·····i = 1, 2, 3. (1)

Based on the coupling of the strain and temperature fields, the principle of local energy
balance [32] gives

− qi,i + Q = ρtct
∂θ

∂t
+ γtTb

∂e
∂t

, (2)

where Q is the heat source.
The CTE theory [3] is one of the fundamental theories that studies coupled thermoelas-

ticity in which we obtain the heat conduction equation by elimination of qi using Fourier’s
law as

kt∇2θ = ρtct
∂θ

∂t
+ γtTb

∂e
∂t
−Q, (3)

with equations of motion

µtui,jj + (λt + µt)uj,ji − γtθ,i + ρt fi = ρt
..
ui. (4)

Green and Lindsay [5] developed the energy equation and the equations of motion to
avoid the contradiction of infinite speeds found in the CTE theory by adding two relaxation
times for heat discouragement. The simple case of the G–L model is given by

kt∇2θ = ρtct

(
1 + τ1

∂

∂t

)
∂θ

∂t
+ γtTb

∂e
∂t
−Q, (5)

with equations of motion

µtui,jj + (λt + µt)uj,ji − γt

(
1 + τ2

∂

∂t

)
θ,i + ρt fi = ρt

..
ui, (6)

where τ1 is the first relaxation time, and τ2 is the second relaxation time that satisfies the
inequalities τ2 ≥ τ1 ≥ 0. The refined form of the heat conduction equation for the G–L
model is given by [41–44]

kt∇2θ = ρtct

(
1 + ∑N

n=1
τn

1
n!

∂n

∂tn

)
∂θ

∂t
+ γtTb

∂e
∂t
−Q, (7)

with equations of motion in general form

µtui,jj + (λt + µt)uj,ji − γt

(
1 + ∑N

n=1
τn

2
n!

∂n

∂tn

)
θ,i + ρt fi = ρt

..
ui. (8)

From this model, the CTE theory can be obtained by replacing the relaxation times
with zero in Equations (7) and (8). The simple case of G–L theory can also be obtained by
substituting N = 1 in the refined model.

To investigate the bio-thermoelasticity response of biological tissue, consider a one-
dimensional (1D) skin tissue layer in which the outer surface is subjected to thermal loading
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of ramp-type heating and is traction free, while the inner surface is traction free and has no
temperature change. As a result [28–34], the external heat source can be written as

Q = wbρbcb(Tb − T) + Qm + QL, (9)

and the heat conduction equation becomes

kt∇2θ = ρtct

(
1 + ∑N

n=1
τn

1
n!

∂n

∂tn

)
∂θ

∂t
+ γtTb

∂e
∂t

+ wbρbcbθ −Qm −QL, N ≥ 1, (10)

with a 1D equation of motion and no external influences

(λt + 2µt)
∂2u
∂x2 − γt

(
1 + ∑N

n=1
τn

2
n!

∂n

∂tn

)
∂θ

∂x
= ρt

∂2u
∂t2 . (11)

For the present 1D case, the stress–strain and temperature relation will be reduced to

σ = (λt + 2µt)e− γt

(
1 + ∑N

n=1
τn

2
n!

∂n

∂tn

)
θ, (12)

where
e =

∂u
∂x

. (13)

3. Mathematical Solution to the Problem

Considering the refined G–L model, Equations (10)–(12) may be expressed as

∂2u
∂x2 − c1

(
1 + ∑N

n=1
τn

2
n!

∂n

∂tn

)
∂θ

∂x
=

1
C2

P

∂2u
∂t2 , (14)

C2
T

∂2θ

∂x2 =

(
1 + ∑N

n=1
τn

1
n!

∂n

∂tn

)
∂θ

∂t
+ wbρcθ + η

∂2u
∂t∂x

−Q0, (15)

σ

λt + 2µt
=

∂u
∂x
− c1

(
1 + ∑N

n=1
τn

2
n!

∂n

∂tn

)
θ, (16)

where
c1 = γt

λt+2µt
, · · ·C2

P = λt+2µt
ρt

, · · ·C2
T = kt

ρtct
, · · · ρc =

ρbcb
ρtct

,

η = γtTb
ρtct

, · · ·Q0 = Qm
ρtct

, · · ·QL = 0.
(17)

The initial and boundary conditions for the problem will now be discussed. The initial
conditions of the problem under consideration are assumed to be homogeneous as

u(x, t)|t=0 =
∂nu(x, t)

∂tn

∣∣∣∣
t=0

= 0, θ(x, t)|t=0 =
∂nθ(x, t)

∂tn

∣∣∣∣
t=0

= 0, n ≥ 1. (18)

On both internal and external surfaces, the biological tissue is traction free. Thermal
loading is applied to the skin tissue’s external surface, while the inner surface remains
insulated without any heat transfer between the target biological tissue and the surrounding
tissue. Hence, the boundary conditions are expressed as

θ(0, t) = g(t),
∂θ(x, t)

∂x

∣∣∣∣
x=L

= 0, σ(0, t) = 0, σ(L, t) = 0, (19)

in which g(t) is the function of thermal loading applied to the skin tissue’s outer surface
x = 0 as shown in Figure 1. Second, we suppose that ramp-type heating is utilized to the
tissue’s plane x = 0 as
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g(t) = θ0

{
t
t0

if 0 < t < t0

1 if t ≥ t0
, (20)

where t0 > 0 is the parameter of ramp-type heating, and θ0 > 0 is a constant that denotes
the thermal loading.
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4. Laplace Transform Domain and Its Inversion

The Laplace transform is given by

−
f (x, s) =

∫ ∞

0
e−st f (x, t)dt. (21)

We constructed field equations in Laplace change space by applying the Laplace
transform on both sides of Equations (14)–(16) and using homogeneous initial conditions
(18) (

d2

dx2 − 2c2

)
−
u = c3

d
−
θ

dx
, (22)

(
d2

dx2 − 2c4

)
−
θ = 2c5

d
−
u

dx
−
−
Q1, (23)

−
σ

λt + 2µt
=

d
−
u

dx
− c3

−
θ , (24)

where
−
Q1 =

−
Q0
sC2

T
, · · · c2 = s2

2C2
P

, · · · c3 = c1

(
1 + ∑N

n=1
τn

2
n! sn

)
,

c4 = 1
2C2

T

[
wbρc + s

(
1 + ∑N

n=1
τn

1
n! sn

)]
, · · · c5 = ηs

2C2
T

.
(25)

It should be noted that the over bar image denotes the Laplace transform, and the
Laplace parameter is indicated by the small letter s.

Solving the system of equations that appeared in Equations (22) and (23) in the Laplace
domain to obtain

−
θ = ∑2

i=1

(
Aieξix + Bie−ξix

)
+
−
Q2, (26)

−
u = ∑2

i=1 βi

(
Aieξix − Bie−ξix

)
, (27)

where Ai and Bi are constant coefficients that vary with s, and
−
Q2 =

−
Q1/2c4. The parame-

ters ξi and βi are defined by

ξ1, ξ2 =
√

c3c5 + c2 + c4 ± ξ0,

ξ0 =
√
(c3c5 + c2)

2 + c4[c4 + 2(c3c5 − c2)],
(28)
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and

βi =
ξi
(
ξ2

i − 2c3c5 − 2c4
)

4c2c5
. (29)

Moreover, the dilatation in Equation (13) is given in the Laplace domain by

−
e = ∑2

i=1 βiξi

(
Aieξix + Bie−ξix

)
. (30)

Similarly, normal stress according to Equation (12) becomes

−
σ = ∑2

i=1 ζi

(
Aieξix + Bie−ξix

)
−
−
Q3, (31)

where
ζi = βiξi(λt + 2µt)− γt

(
1 + ∑N

n=1
τn

2
n! sn

)
,

−
Q3 = γt

(
1 + ∑N

n=1
τn

2
n! sn

)−
Q2.

(32)

The boundary conditions (19) in the Laplace transform domain are taken by

−
θ (x, s)

∣∣∣∣
x=0

=
θ0
(
1− e−t0s)

t0s2 =
−
Gs, (33)

∂
−
θ (x, s)

∂x

∣∣∣∣∣∣
x=L

= 0, ·····−σ(x, s)
∣∣∣∣
x=0,L

= 0. (34)

The solution to the overflowing arrangement of direct conditions provides the un-
known parameters Ai and Bi. By using Equations (26) and (27) and applying the above
boundary conditions, one obtains


1 1 1 1

ξ1eξ1L −ξ1e−ξ1L ξ2eξ2L −ξ2e−ξ2L

ζ1 ζ1 ζ2 ζ2

ζ1eξ1L ζ1e−ξ1L ζ2eξ2L ζ2e−ξ2L




A1

B1

A2

B2

 =



−
Gs −

−
Q2

0
−
Q3
−
Q3


. (35)

For the solution to be complete in the domain of the Laplace transform, the preceding
system of linear equations was solved to obtain the following parameters:

A1 =
ω2[ν1eL(ξ1+ξ2) − ν2eL(ξ1−ξ2)]− ξ2[2ζ2ω1e2ξ1L −

−
Q3(ζ1−ζ2)(e

L(2ξ1+ξ2) + eL(2ξ1−ξ2))]

(ζ1−ζ2)
(
ν1
(
eL(3ξ1−ξ2) − eL(ξ1+ξ2)

)
+ ν2

(
eL(ξ1−ξ2) − eL(3ξ1+ξ2)

)) , (36)

B1 =
−ω2[ν1eL(3ξ1−ξ2) − ν2eL(3ξ1+ξ2)] + ξ2[2ζ2ω1e2ξ1L −

−
Q3(ζ1−ζ2)(e

L(2ξ1+ξ2) + eL(2ξ1−ξ2))]

(ζ1−ζ2)
[
ν1
(
eL(3ξ1−ξ2) − eL(ξ1+ξ2)

)
+ ν2

(
eL(ξ1−ξ2) − eL(3ξ1+ξ2)

)] , (37)

A2 =
ω1[ν1eL(3ξ1−ξ2) + ν2eL(ξ1−ξ2)]− ξ1[2ζ1ω2e2ξ1L +

−
Q3(ζ1−ζ2)

(
e3ξ1L + eξ1L)]

(ζ1−ζ2)
[
ν1
(
eL(3ξ1−ξ2) − eL(ξ1+ξ2)

)
+ ν2

(
eL(ξ1−ξ2) − eL(3ξ1+ξ2)

)] , (38)

B2 =
−ω1[ν1eL(ξ1+ξ2) + ν2eL(3ξ1+ξ2)] + ξ1[2ζ1ω2e2ξ1L +

−
Q3(ζ1−ζ2)(e

3ξ1L + eξ1L)]

(ζ1−ζ2)
[
ν1
(
eL(3ξ1−ξ2) − eL(ξ1+ξ2)

)
+ ν2

(
eL(ξ1−ξ2) − eL(3ξ1+ξ2)

)] , (39)

where

ωi = (
−
Gs −

−
Q2)ζi −

−
Q3, ····i = 1, 2, ····ν1,2 = ξ1ζ2 ± ξ2ζ1. (40)
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The problem in the transform domain has now been fully solved. Analytically obtain-
ing the inverse transform in the time domain is relatively challenging due to the complexity
of the formulas in Equations (26) and (27). Therefore, deciding the effects on temperature,
displacement, and stress in the real-time domain, will be undertaken using the numerical
inverse Laplace transform technique. In the physical domain, we can use the Riemann-
sum approximation method to produce numerical results. By using the notable equation

(Tzou [45]), every function
−
f (x, s) in Laplace transform space is transformed into a physical

domain f (x, t) in this method by

f (x, t) =
e$t

t

[
1
2

Re
{−

f (x, $)

}
+ Re

{
∑M

m=0

(−
f
(

x, $ +
imπ

t

)
(−1)m

)}]
, (41)

where Re denotes a function’s real part, i =
√
−1, and $ ≈ 4.7/t [46].

5. Numerical Results

To obtain the numerical results for temperature θ, displacement u, dilatation e, and
stress σ resulting from the application of ramp-type heating, the thickness of the tissue is
taken at L = 1 mm. On the surface of the skin tissue, a step input thermal load of θ0 = 80 K
is applied rapidly, and the elastic constants are presented in Table A1.

5.1. Validation of Results

The present refined G–L theory is compared with the simple G–L theory as well as the
CTE theory. All of them are discussed in Figures 2–5. The ramp-type heating parameter is
taken by t0 = 9 s, the time t = 9.1 s, and the relaxation times are τ1 = 0.3 s and τ2 = 0.32 s,
satisfying τ2 ≥ τ1 ≥ 0.
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Figure 2. Two-dimensional plots of temperature θ distributions in different theories of thermoelasticity.

In Figure 2, the temperature θ distributions of all theories show a decrease with the
increase in the value of x. In addition, it is noticed that the behaviors of the CTE theory and
simple G–L theory are similar, while the refined G–L theory takes an oscillatory behavior.
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Figure 3. Two-dimensional plots of displacement u distributions in different theories of thermoelasticity.

In Figure 3, the displacement u distributions are shown along the x-axis. In all theories,
the displacement behaves incrementally as the value of x increases. It is also noted that the
three theories give displacement very close to each other and that the displacement curve
in the refined G–L theory is very close to the one in the simple G–L theory at the edges.
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Figure 4. Two-dimensional plots of dilatation e distributions in different theories of thermoelasticity.

In Figure 4, the distribution of the dilatation e of the three theorems is shown. It is
noted that e decreases as the value of x increases. Note also that the dilatation curve in CTE
theory is streamlined, while this behavior does not apply to its counterpart in simple G–L
theory and refined G–L theory. Where the simple theory fluctuates at the beginning of the
skin and then begins to regularize until the curve approaches the curve of the CTE theory,
the dilatation curve of the refined G–L theory does not regularize along the x-axis.

Figure 5 shows vanishing values of stress σ distributions in CTE, simple G–L, and
refined G–L theories at the edges of skin tissues and due to boundary conditions. In
addition, in the simple G–L theory, we see that the stress curve has a wave nature, especially
from the beginning of the skin to the middle, then the ripple decreases, and the waves
become smaller. The same is true in the refined G–L theory but with fewer waves and a
behavior that approaches the behavior of the stress curve in the CTE theory.
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5.2. Effect of Ramp-Type Heating Parameter

Three alternative values of the ramp-type heating parameter were chosen, and the
time was fixed by t = 9 s to represent the distributions of temperature θ, displacement
u, dilatation e, and stress σ in the three theories to determine their effects as shown in
Figures 6–9.
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Figure 6. Effect of ramp-type heating parameter t0 on temperature θ.

The effect of ramp-type heating parameter t0 on the temperature θ along the x-axis
of the skin tissue is shown in Figure 6, where the possible cases of the parameter were
studied (t < t0, t = t0 and t > t0). In the three theorems, at position x = 0, it is seen that
when t ≥ t0, it satisfies that θ(0, t) = θ0 = 80 K in Equation (20), and this comes from the
definition of the ramp-type heating function. It is seen that smaller values of the ramp-type
heating parameter give higher values of temperature θ in all theories. The temperature
waves of CTE and simple G–L theories have the same behavior. Once again, the refined
G–L theory takes an oscillatory behavior after x = 0.2.

In Figure 7, the effect of the ramp-type heating parameter t0 is shown on the displace-
ment u. It is clear that the effect of changing t0 is similar for all theories presented in the
above figure, and the displacement vanishes in all theories at x = 0.45. Before this point,
the displacement u increases as the ramp-type heating parameter t0 increases and vice
versa after these points.
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Figure 8. Effect of ramp-type heating parameter t0 on dilatation e.

The effect of the ramp-type heating parameter t0 on the dilatation e along the x-axis of
the skin tissue is shown in Figure 8. It is shown that the smaller values of t0 give greater
values for the dilatation curves in the three theories. The dilatation waves of simple G–L
and refined G–L theories have the oscillatory behaviors of e along the x-axis, and this is
more evident in the refined G–L theory than in the simple G–L theory.
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The impact of the ramp-type heating parameter t0 on the normal stress σ along x-axis
of the skin tissue is shown in Figure 9. In the CTE theory, positive stress is obtained when
t = t0 and negative stress when t0 > t. The stress curves take the same shape in the simple
G–L theory when t = t0 and t < t0 with the difference that in the first case the stress takes
more positive values than in the second, while when t > t0 the shape of the curve changes.
As for the refined G–L theory, the change of t0 does not affect the shape of the stress curve
and gives a lower value when t0 > t, while in the other two cases (t = t0 and t < t0) the
stress curves intersect at x = 0.43, and we obtain the highest curve for stress when t = t0,
and the opposite occurs after the intersection.

5.3. Effect of Green–Lindsay Relaxation Times
5.3.1. Effect of First Relaxation Time τ1

As shown in Figures 10–13, the second relaxation time was fixed at τ2 = 0.5 s, t =
t0 = 6 s, and four different values for the first relaxation time τ1 are used to investigate its
impacts.
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Figure 11. Effect of first relaxation time τ1 of G–L theory on displacement u.

Figure 10 shows the effect of the first relaxation time τ1 of the simple and refined G–L
theory on the temperature θ. In the simple G–L theory, the temperature curves approach
each other, and the values of the greater τ1 give a smaller value of the temperature θ.
However, in the refined G-L theory, all temperature curves start from the same point, and
then each curve takes on its different behavior; The smaller value of τ1 gives less ripple to
the temperature curves, and the heat curve resulting from the larger relaxation times is
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slower downward than the temperature curves resulting from the smaller relaxation times.
From this, we can say that the temperature distribution in the refined G–L theory is more
sensitive to the change in τ1 than in the simple G–L theory.

Figure 11 displays the impact of the first relaxation time τ1 of simple and refined G–L
thermoelasticity theories on the displacement u of the skin tissue. In this figure, the effect
of the variation of the first relaxation time almost vanishes in the displacement u curves as
the curves approach each other in simple G–L theory. In the refined theory, the different
values of the first relaxation time give different curves from each other. The displacement
wave oscillates due to the refined G–L theory with different amplitudes.
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ond time, as shown in Figures 14–17. 

Figure 12. Effect of first relaxation time τ1 of G–L theory on dilatation e.

Figure 12 shows the effect of the first relaxation time τ1 of the simple and refined G–L
theory on dilatation e of the skin tissue. According to this figure, the change in the values
of the first relaxation time causes little significant change in the dilatation behavior in the
simple G–L theory. However, in the refined G–L theory, the effect of the first relaxation
time τ1 on the dilatation is so great that the onset of the curves takes negative values.
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Figure 13. Effect of first relaxation time τ1 of G–L theory on normal stress σ.

Figure 13 shows the effect of the first relaxation time τ1 of the simple and refined G–L
theory on the normal stress σ. Once again, the stress wave starts to oscillate due to the
simple G–L theory, noting that the change in τ1 values do not change the shape of the curve
of this theory, and the effect is limited to the fact that smaller τ1 give higher stress and vice
versa. While the talk differs from the refined G–L theory, where the behavior of the waves



Mathematics 2023, 11, 1437 13 of 18

differs between each value and another, in this case the smallest value of the relaxation
time τ1 is the one that gives greater stress.

5.3.2. Effect of Second Relaxation Time τ2

To investigate the effect of the second relaxation time of G–L, we fixed the first relax-
ation time τ1 = 0.1 s, the time t = t0 = 4 s, and assigned four different values to the second
time, as shown in Figures 14–17.
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Figure 14. Effect of second relaxation time τ2 of G–L theory on temperature θ.

Figure 14 shows the effect of the second relaxation time τ2 of simple and refined G–L
theories on the temperature θ of the skin tissue. It is obvious that the temperature due
to the simple G–L theory is not sensitive to the variation of the second relaxation time τ2.
When we enlarge some portions, we notice that the temperature increases as τ2 decreases.
However, the temperature curves in the refined G–L theory take waves very close to each
other at τ2 = 0.15 s and τ2 = 0.20 s, but at τ2 = 0.25 s, the behavior is similar to the first two
cases with opposite directions, while the ripple of the curve decreases at the largest value
of τ2. This shows that the temperature curve in the refined G–L theory is very sensitive to
the variation of the τ2 values.
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Figure 15. Effect of second relaxation time τ2 of G–L theory on displacement u.

Figure 15 shows the effect of the second relaxation time τ2 of simple and refined G–L
theories on the displacement u of the skin tissue. In the simple G–L theory, the effect of
the change in the values of the second relaxation time on the displacement u curve is very
small, while the differences in displacement distributions are evident in the refined G–L



Mathematics 2023, 11, 1437 14 of 18

theory and at τ2 = 0.25 give a wavier curve. Note that all displacement curves in the
refined G–L theory end at the same value at the tip of the living tissue.
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Figure 16. Effect of second relaxation time τ2 of G–L theory on dilatation e.

Figure 16 shows the effect of the second relaxation time τ2 of simple and refined G–L
theories on the dilatation e of the skin tissue. In simple G–L theory, the change in the given
τ2 is still small, and the dilatation increases with the increase in the second relaxation time
τ2. However, the dilatation curves in the refined G–L theory take on a uniform behavior as
waves of equal wavelengths and different amplitudes. This shows that the dilatation curve
in the refined G–L theory is super responsive to the changes of the τ2 values.
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Figure 17. Effect of second relaxation time τ2 of G–L theory on normal stress σ.

Figure 17 shows the effect of the second relaxation time τ2 of simple and refined G–L
theories on the normal stress σ of the skin tissue. The stress waves maintain their shape
in the simple G–L theory, and the difference appears because the larger values of τ2 give
higher stress. From it and Figure 13, we notice the opposite effect of τ1 and τ2 in the stress
distribution in this theory. For the stress curves in the refined G–L theory, the response to
the change of τ2 is similar to the response of the dilatation distributions of the same model,
where the curve takes the form of waves with different amplitudes, and the ripple of the
curve increases with an increase in the value of τ2 and then decreases with the highest
given value of τ2.

To demonstrate the effect of the rate of blood perfusion, the temperature distributions
were presented in the CTE, simple G–L, and refined G–L theories as in Figure 18, τ1 = 0.3 s,
τ2 = 0.32 s, and t0 = 9 s were used. It was noticed that at time t = 10 s, the influence of the
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change in wb appears weak, while the difference appears clear when using a longer time
(t = 30 s), as the increase in the rate of blood perfusion gives less temperature.
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Figure 18. Effect of rate of blood perfusion parameter wb on temperature θ.

Figure 19 shows 3D plots of the temperature θ distribution along the x-axis of the
skin tissue due to different theories of thermoelasticity. To be accurate, the temperature
θ distribution in the CTE, simple G–L, and refined G–L theories was shown in three
dimensions concerning skin thickness and time changes from t = 8 s to t = 9 s with
t0 = 9 s. Through the three cases, it has been observed that the temperature distribution
is influenced by the passage of time, as the temperature gives its maximum value at the
maximum time, and it is consistent with the condition θ = 80 K if t = t0. It is also noticed
that the shorter time gives a faster ripple of the temperature curve in refined G–L theory,
while in the longer times, the curve ripple decreases, and the wave widens.
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6. Conclusions

This article presented the Green–Lindsay theory of thermoelasticity in a modified
form. It is applied to study the thermoelastic behavior of skin tissue in a one-dimensional
under-ramp-type heating. The effect of adding a fourth-order time derivative in addition
to the relaxation times of the G–L theory is taken into account. It has been demonstrated
that the change affects the distributions of temperature, displacement, dilatation, and stress
while preserving the boundary conditions of the problem.

The numerical results showed a decrease in the thermal behavior with the increase in
the thickness of the skin because the thermal diffusion of the skin tissue is very low, so the
CTE theory and the simple G–L theory took the same shape. The results due to the simple
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G–L theory were faster in heat dissipation, while those of the refined G–L theory took a
fluctuating behavior due to the addition of higher-order time derivatives. The displacement
due to the refined G–L theory was similar to those of other thermoelasticity theories, where
the displacement behavior increased with increasing the depth of the biological tissue. The
behavior of dilatation may be similar to that of the temperature. The behavior of dilatation
due to both simple and refined G–L theories is slightly oscillating at the beginning of the
skin’s thickness; then the curve becomes smoothy until the dilatation reaches its minimum
value at the edge of the skin tissue. Concerning our current theory, the stress resulting from
the application of ramp-type heating on the skin takes higher values compared to the rest
of the theories of thermoelasticity. This is due to the modification that we made in the stress
equation of the current model.

In addition, it is observed that the ramp-type heating parameter affects all three
theories (CTE, simple G–L, and refined G–L) in almost the same manner. The lower values
of this parameter give high temperature, dilatation, and displacement curves along the
tissue. The higher value of the ramp-type heating parameter gives negative stress in the
classical and simple theories. However, the effect of this parameter was preserved in the
shape of the stress curve of the refined G–L theory, and the change was a regular rise or fall
of the curve.

The first relaxation time brings about an appreciable change to the behavior of the
curves of all variables in the refined G–L theory, unlike in the simple G–L theory. In
addition, the effect of the second relaxation time was more evident in the refined theory
than in the simple one.

The effect of the change in blood perfusion on the temperature rates in the three
theories appears more clearly after the passage of more time, where the lower the blood
perfusion rate, the higher the temperature along the biological tissue. Finally, the change in
time had a clear effect on the refined G–L theory more than that in the CTE and simple G–L
theories, where the curve took a faster vibratory form with smaller times, and the waves
eased with time due to the increase in the difference between time and relaxation times.

Based on the previous results, it can be said that the current model of the refined
G–L theory could be useful in the applications of heat transfer through biological tissues,
for example, infrared therapy, which depends on the transfer of heat by waves, which
contributes to the treatment of many diseases, such as some skin problems such as acne,
eczema, and psoriasis, and maintains the freshness of the skin.
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Appendix A

Table A1. Complete list of parameters.

Symbol Definition Value/Units

t Time s
T Temperature K
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Table A1. Cont.

Symbol Definition Value/Units

Tb Blood temperature 310 K
θ T − Tb K
kt Coefficient of thermal conductivity of skin tissue 0.235 W/(m K)
ρt The mass density of the tissue 1190 kg/m3

ct Heat capacity of a unit mass of the tissue 3600 J/(K kg)
ekk Dilatation

λt, µt Lamé’s constant of the tissue λt = 8.27× 108 kg/(m s2)
µt = 3.446× 107 kg/(m s2)

αt Thermal expansion coefficient 1× 10−4(1/K)
γt (2µt + 3λt)αt
ui Displacement components
fi Components of the external body force vector per unit mass

τ1, τ2 Relaxation times of G–L s

wb
Rate of blood perfusion, which indicates the effectiveness of the

thermal energy transfer between the blood and the afflicted tissue 0.00187 1/s

ρb The mass density of the blood 1060 kg/m3

cb Specific heat capacity of the blood 3770 J/(K kg)
Qm The heat source of the metabolic generation of tissue cells 368.1 W/m3

QL External thermal load 0 W/m3

L The thickness of the biological tissue 1 mm

References
1. Pennes, H.H. Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Phys. 1948, 85, 5–34.

[CrossRef] [PubMed]
2. Tzou, D.Y. The generalized lagging response in small-scale and high-rate heating. Int. J. Heat Mass Transf. 1995, 38, 3231–3240.

[CrossRef]
3. Biot, M.A. Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 1956, 27, 240–253. [CrossRef]
4. Lord, H.W.; Shulman, Y. A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 1967, 15, 299–309. [CrossRef]
5. Green, A.E.; Lindsay, K.A. Thermoelasticity. J. Elast. 1972, 2, 1–7. [CrossRef]
6. Mitra, K.; Kumar, S.; Vedavarz, A.; Moallemi, M.K. Experimental evidence of hyperbolic heat conduction in processed meat.

ASME J. Heat Transf. 1995, 117, 568–573. [CrossRef]
7. Antaki, P.J. New interpretation of non-Fourier heat conduction in processed meat. ASME J. Heat Transf. 2005, 127, 189–193.

[CrossRef]
8. Liu, K.C.; Lin, C.T. Solution of an inverse heat conduction problem in a bi-layered spherical tissue. Numer. Heat Transf. Part A

Appl. 2010, 58, 802–818. [CrossRef]
9. Xu, F.; Lu, T.J.; Seffen, K.A. Biothermomechanical behavior of skin tissue. Acta Mech. Sincia 2008, 24, 1–23. [CrossRef]
10. Xu, F.; Lu, T.J.; Seffen, K.A.; Ng, E.Y.K. Mathematical modeling of skin bioheat transfer. Appl. Mech. Rev. 2009, 62, 50801–50835.

[CrossRef]
11. Xu, F.; Seffen, K.A.; Lu, T.J. Non-Fourier analysis of skin biothermomechanics. Int. J. Heat Mass Transf. 2008, 51, 2237–2259.

[CrossRef]
12. Ng, E.Y.K.; Tan, H.M.; Ooi, E.H. Prediction and parametric analysis of thermal profiles within heated human skin using boundary

element method. Philos. Trans. A 2010, 368, 655–678. [CrossRef] [PubMed]
13. Kundu, B.; Dewanjee, D. A new method for non-Fourier thermal response in a single layer skin tissue. Case Stud. Therm. Eng.

2015, 5, 79–88. [CrossRef]
14. Shih, T.C.; Yuan, P.; Lin, W.L.; Kou, H.S. Analytical analysis of the Pennes bioheat transfer equation with sinusoidal heat flux

condition on skin surface. Med. Eng. Phys. 2007, 29, 946–953. [CrossRef]
15. Ghazizadeh, H.R.; Azimi, A.; Maerefat, M. An inverse problem to estimate relaxation parameter and order of fractionality in

fractional single-phase-lag heat equation. Int. J. Heat Mass Transf. 2012, 55, 2095–2101. [CrossRef]
16. Ezzat, M.A.; El-Karamany, A.S. On fractional thermoelasticity. Math. Mech. Solids 2011, 16, 334–346. [CrossRef]
17. Jiang, X.Y.; Qi, H.T. Thermal wave model of bioheat transfer with modified Riemann-Liouville fractional derivative. J. Phys. A

Math. Theor. 2012, 45, 485101. [CrossRef]
18. Ezzat, M.A.; El-Bary, A.A.; Al-Sowayan, N.S. Tissue responses to fractional transient heating with sinusoidal heat flux condition

on skin surface. Anim. Sci. J. 2016, 87, 1304–1311. [CrossRef] [PubMed]
19. Ezzat, M.A.; El-Karamany, A.S.; El-Bary, A.A. Magneto-thermoelasticity with two fractional order heat transfer. J. Assoc. Arab

Univ. Basic Appl. Sci. 2016, 19, 70–79. [CrossRef]

http://doi.org/10.1152/jappl.1948.1.2.93
http://www.ncbi.nlm.nih.gov/pubmed/18887578
http://doi.org/10.1016/0017-9310(95)00052-B
http://doi.org/10.1063/1.1722351
http://doi.org/10.1016/0022-5096(67)90024-5
http://doi.org/10.1007/BF00045689
http://doi.org/10.1115/1.2822615
http://doi.org/10.1115/1.1844540
http://doi.org/10.1080/10407782.2010.523329
http://doi.org/10.1007/s10409-007-0128-8
http://doi.org/10.1115/1.3124646
http://doi.org/10.1016/j.ijheatmasstransfer.2007.10.024
http://doi.org/10.1098/rsta.2009.0224
http://www.ncbi.nlm.nih.gov/pubmed/20047944
http://doi.org/10.1016/j.csite.2015.02.001
http://doi.org/10.1016/j.medengphy.2006.10.008
http://doi.org/10.1016/j.ijheatmasstransfer.2011.12.012
http://doi.org/10.1177/1081286510397228
http://doi.org/10.1088/1751-8113/45/48/485101
http://doi.org/10.1111/asj.12568
http://www.ncbi.nlm.nih.gov/pubmed/26800333
http://doi.org/10.1016/j.jaubas.2014.06.009


Mathematics 2023, 11, 1437 18 of 18

20. Kumar, D.; Rai, K.N. Numerical simulation of time fractional dual-phase-lag model of heat transfer within skin tissue during
thermal therapy. J. Therm. Biol. 2017, 67, 49–58. [CrossRef]

21. Kumar, A.; Shivay, O.N.; Mukhopadhyay, S. Infinite speed behavior of two-temperature Green–Lindsay thermoelasticity theory
under temperature-dependent thermal conductivity. J. Appl. Math. Phys. 2019, 70, 26. [CrossRef]

22. Chyr, A.; Shynkarenko, H.A. Well-posedness of the Green–Lindsay variational problem of dynamic thermoelasticity. J. Math. Sci.
2017, 226, 11–27. [CrossRef]

23. Quintanilla, R. Some qualitative results for a modification of the Green–Lindsay thermoelasticity. Meccanica 2018, 53, 3607–3613.
[CrossRef]

24. Goudarzi, P.; Azimi, A. Numerical simulation of fractional non-Fourier heat conduction in skin tissue. J. Therm. Biol. 2019, 84,
274–284. [CrossRef] [PubMed]

25. Kumar, R.; Vashishth, A.K.; Ghangas, S. Phase-lag effects in skin tissue during transient heating. Int. J. Appl. Mech. Eng. 2019, 24,
603–623. [CrossRef]

26. Ezzat, M.A. Fractional thermo-viscoelastic response of biological tissue with variable thermal material properties. J. Therm. Stress.
2020, 43, 1120–1137. [CrossRef]

27. Du, B.; Xu, G.; Xue, D.; Wang, J. Fractional thermal wave bio-heat equation based analysis for living biological tissue with
non-Fourier Neumann boundary condition in laser pulse heating. Optik 2021, 247, 167811. [CrossRef]

28. Youssef, H.M.; Alghamdi, N.A. Modeling of one-dimensional thermoelastic dual-phase-lag skin tissue subjected to different
types of thermal loading. Sci. Rep. 2020, 10, 3399. [CrossRef]

29. Sobhy, M.; Zenkour, A.M. Refined Lord–Shulman theory for 1D response of skin tissue under ramp-type heat. Materials 2022, 15,
6292. [CrossRef] [PubMed]

30. Youssef, H.M.; Salem, R.A. The dual-phase-lag bioheat transfer of a skin tissue subjected to thermo-electrical shock. J. Eng. Therm.
Sci. 2022, 2, 114–123. [CrossRef]

31. Ezzat, M.A.; Alabdulhadi, M.H. Thermomechanical interactions in viscoelastic skin tissue under different theories. Indian J. Phys.
2023, 97, 47–60. [CrossRef]

32. Zhang, Q.; Sun, Y.; Yang, J. Bio-heat response of skin tissue based on three-phase-lag model. Sci. Rep. 2020, 10, 16421. [CrossRef]
[PubMed]

33. Zhang, Q.; Sun, Y.; Yang, J. Thermoelastic responses of biological tissue under thermal shock based on three phase lag model.
Case Stud. Therm. Eng. 2021, 28, 101376. [CrossRef]

34. Li, X.Y.; Li, C.L.; Xue, Z.N.; Tian, X. Analytical study of transient thermo-mechanical responses of dual-layer skin tissue with
variable thermal material properties. Int. J. Therm. Sci. 2018, 124, 459–466. [CrossRef]

35. Shakeriaski, F.; Ghodrat, M.; Escobedo-Diaz, J.; Behnia, M. Modified Green–Lindsay thermoelasticity wave propagation in elastic
materials under thermal shocks. J. Comput. Des. Eng. 2020, 8, 36–54. [CrossRef]

36. Sarkar, N.; De, S.; Sarkar, N. Modified Green–Lindsay model on the reflection and propagation of thermoelastic plane waves at an
isothermal stress-free surface. Indian J. Phys. 2020, 94, 1215–1225. [CrossRef]

37. Filopoulos, S.P.; Papathanasiou, T.K.; Markolefas, S.I.; Tsamasphyros, G.J. Generalized thermoelastic models for linear elastic
materials with micro-structure Part I: Enhanced Green–Lindsay model. J. Therm. Stress. 2014, 37, 624–641. [CrossRef]

38. Zenkour, A.M. Exact coupled solution for photothermal semiconducting beams using a refined multi-phase-lag theory. J. Opt.
Laser Technol. 2020, 128, 106233. [CrossRef]

39. Zenkour, A.M.; El-Mekawy, H.F. On a multi-phase-lag model of coupled thermoelasticity. Int. Commun. Heat Mass Transf. 2020,
116, 104722. [CrossRef]

40. Zenkour, A.M. On generalized three-phase-lag models in photo-thermoelasticity. Int. J. Appl. Mech. 2022, 14, 2250005. [CrossRef]
41. Zenkour, A.M.; Mashat, D.S.; Allehaibi, A.M. Thermoelastic coupling response of an unbounded solid with a cylindrical cavity

due to a moving heat source. Mathematics 2022, 10, 9. [CrossRef]
42. Kutbi, M.A.; Zenkour, A.M. Refined dual-phase-lag Green–Naghdi models for thermoelastic diffusion in an infinite medium.

Waves Random Complex Media 2022, 32, 947–967. [CrossRef]
43. Zenkour, A.M. Thermal diffusion of an unbounded solid with a spherical cavity via refined three-phase-lag Green–Naghdi

models. Indian J. Phys. 2022, 96, 1087–1104. [CrossRef]
44. Zenkour, A.M.; Mashat, D.S.; Allehaibi, A.M. Magneto-thermoelastic response in an unbounded medium containing a spherical

hole via multi-time-derivative thermoelasticity theories. Materials 2022, 15, 2432. [CrossRef] [PubMed]
45. Tzou, D.Y. Experimental support for the lagging behavior in heat propagation. J. Thermophys. Heat Transf. 1995, 9, 686–693.

[CrossRef]
46. Honig, G.; Hirdes, U. A method for the numerical inversion of the Laplace transform. J. Comput. Appl. Math. 1984, 10, 113–132.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.jtherbio.2017.05.001
http://doi.org/10.1007/s00033-018-1064-0
http://doi.org/10.1007/s10958-017-3515-0
http://doi.org/10.1007/s11012-018-0889-0
http://doi.org/10.1016/j.jtherbio.2019.05.021
http://www.ncbi.nlm.nih.gov/pubmed/31466765
http://doi.org/10.2478/ijame-2019-0038
http://doi.org/10.1080/01495739.2020.1770643
http://doi.org/10.1016/j.ijleo.2021.167811
http://doi.org/10.1038/s41598-020-60342-6
http://doi.org/10.3390/ma15186292
http://www.ncbi.nlm.nih.gov/pubmed/36143604
http://doi.org/10.21595/jets.2022.22945
http://doi.org/10.1007/s12648-021-02261-4
http://doi.org/10.1038/s41598-020-73590-3
http://www.ncbi.nlm.nih.gov/pubmed/33009474
http://doi.org/10.1016/j.csite.2021.101376
http://doi.org/10.1016/j.ijthermalsci.2017.11.002
http://doi.org/10.1093/jcde/qwaa061
http://doi.org/10.1007/s12648-019-01566-9
http://doi.org/10.1080/01495739.2014.885325
http://doi.org/10.1016/j.optlastec.2020.106233
http://doi.org/10.1016/j.icheatmasstransfer.2020.104722
http://doi.org/10.1142/S1758825122500053
http://doi.org/10.3390/math10010009
http://doi.org/10.1080/17455030.2020.1807073
http://doi.org/10.1007/s12648-021-02042-z
http://doi.org/10.3390/ma15072432
http://www.ncbi.nlm.nih.gov/pubmed/35407764
http://doi.org/10.2514/3.725
http://doi.org/10.1016/0377-0427(84)90075-X

	Introduction 
	Governing Equations 
	Mathematical Solution to the Problem 
	Laplace Transform Domain and Its Inversion 
	Numerical Results 
	Validation of Results 
	Effect of Ramp-Type Heating Parameter 
	Effect of Green–Lindsay Relaxation Times 
	Effect of First Relaxation Time 1  
	Effect of Second Relaxation Time 2  


	Conclusions 
	Appendix A
	References

