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Abstract: In this study, an intelligent control scheme is developed for induction motors (IMs).
The dynamics of IMs are unknown and are perturbed by the variation of rotor resistance and load
changes. The control system has two stages. In the identification stage, the group method of data-
handling (GMDH) neural network (NN) was designed for online modeling of the IM. In the control
stage, the GMDH-NN was applied to compensate for the impacts of disturbances and uncertainties.
The stability is shown by the Lyapunov approach. Simulations demonstrated the good accuracy of
the suggested new control approach under disturbances and unknown dynamics.

Keywords: neural control; group method of data-handling neural network; robust control; stability
analysis; induction motor; faulty conditions; fractional calculus; machine learning

1. Introduction

The use of IMs has been a routine practice in industrial applications.The main reason is
their simplicity, acceptable efficiency, good reliability, and low cost [1]. Various techniques
have been developed to control the IMs in the past few decades. One of the important
controllers is the field-oriented approach [2,3]. The other basic controller that is frequently
applied for IMs is the PI controller [4]. The model predictive control technique was studied
in [5], to investigate the performance of IMs at high and low speed. The other simple
technique that is used for IMs is the vector control approach [6]. These methods are
not robust under external disturbances and IM uncertainties and also depend on the
mathematical dynamics.

To tackle the uncertainties in the dynamics of IMs, the sliding-mode controller (SMC)
has been suggested in most studies [7]. The SMC is simple and robust. However, the
switching term leads to the chattering phenomena in the control signal. In [8], the robust
vector control method was designed for induction motors. In [9], the control method based
on the high-order SMC was suggested. In order to resolve the chattering issue, a boundary
layer scheme was developed in [10]. The vector control of the IM by the sliding mode
method was studied in [11]. The nonsingular terminal SMC by means of a mathematical
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model of the IM and the principles of field orientation control was studied in [12]. To
enhance the robustness, a disturbance rejection method on the basis of H∞ criteria was
studied in [13,14]. In [15], an adaptive controller was formulated for the speed control of
an IM, and its accuracy was studied in using the feedback linearization technique.

In most IM control schemes, it is presumed that the mathematical information of the
IM is known, and only the impact of the parametric uncertainties is investigated. To cope
with the perturbations of IMs, some NN-based controllers have been presented [16,17].
For example, in [18], the neural-network (NN)-based control method was applied to an
IM where the parameters of the NN were trained by the Levenberg–Marquardt algorithm
such that the accuracy of the vector method was increased. In [19], the speed controller
was constructed by a TSK-based fuzzy system. In [20], based on fuzzy systems (FSs), a
state feedback linearization technique was developed. An FS-based speed controller was
designed in [21], in which the suitable rules were extracted by NNs and a backpropagation
algorithm. In [22], an FS-based speed control scheme was constructed on the basis of the
backtracking search method. A controller based on the fuzzy SMC was presented in [23], in
which a fuzzy NN was suggested for the estimation of the nonlinearities. In [24], the speed
control of an IM was investigated with respect to a particle swarm optimization algorithm.
The fuzzy indirect control of an IM was studied in [25].

When standardized form regressions reached a dead end due to the complexity of the
computations and the problem of linear dependence, in 1996, Ivakhnenko introduced a
technique for constructing a highly simple polynomial called the GMDH algorithm or data
organization method. This method is ideal for complex systems with an uncertain structure.
Ivakhnenko’s algorithm is an exploratory method that extracts knowledge from the nature
of the data and, as in regression analysis, is not based on a fixed theoretical foundation.
A major problem in modeling complex systems in which the behavioral process and data
structure are unclear is the issue of bias about the model structure. The main idea of the
GMDH algorithm is to design a complex optimal model that only designs the model based
on data and information and does not have any theoretical background on how the data
work. This is done only on the basis of discovering a relationship between the input and
output data of the system. Therefore, the GMDH algorithm builds a self-regulating model
that has the ability to solve problems such as modeling, prediction, diagnosis, and control
problems [26].

GMDH-NNs have been widely used in various applications. For example, in [27],
a new voltage regulation system was designed, and a GMDH-NN was used for the es-
timation of the dynamics of the converters. In [28], a landslide mapping technique was
presented by the use of GMDH-NNs, and it was shown that the GMDH-NNs resulted
in better accuracy than the conventional approaches. In [29], a GMDH-NN was used to
forecast the penetration rate in tunnel-boring machines, and by comparison with various
regression methods, the capability of the GMDH-NN was studied. In [30], GMDH-NNs
were used in a modeling problem, and their accuracy was examined with respect to other
NNs. Furthermore, GMDH-NNs have been used in estimation problems such as the esti-
mation of the wear rate of diamond wire [31], the capacity approximation of ferrocement
members [32], blood pressure estimation [33], flood flow estimation [34], and the estimation
of the compressibility of natural gas [35], among many others. In the most of the above
applications, GMDH-NNs were used in an off-line optimization scheme, and the online
control applications of GMDH-NNs have been seldom studied. In this study, some online
learning rules are presented for GMDH-NNs in an online control application.

In the past few decades, fractional-order controllers have attracted increasing attention.
It has been revealed that the fractional-order controllers result in a good performance in
contrast to the integer-order ones [36]. However, the fractional-order controllers for IMs
have rarely been studied. For instance, in [37], an observer was constructed using the
integral SMC for the IMs. The fractional SMC was also investigated in [38]. The fractional-
order PI control method was investigated in [39], and its efficiency was analyzed with
respect to the traditional PI controller. In [40], it was practically proven that the fractional-
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order PID gives better accuracy with respect to the integer-order one. In [41], the rotor
skin effect was modeled by fractional-order calculus. In [42], the application of IMs in
robotic systems was investigated, and a fractional controller tuned by the particle swarm
optimization method was proposed. In [43], the performance of the fractional- and integer-
order proportional/integral controllers was compared by applying them to an IM. In [44],
the fractional sliding mode strategy was studied for IMs, and its effectiveness was shown
by a practical implementation. A fractional PI control system was designed in [45] for
IMs on the basis of the Pareto-based optimization algorithm. The vibration of IMs with
fractional PID control systems was studied in [46]. The robust neural-based control of IMs
was investigated in [47].

The main contributions of the designed controller are as follows:

• A new fractional-order intelligent control approach is introduced using the proposed
GMDH-NN;

• The IM dynamics are unknown and are disturbed by different faults, such as the
variation of the unknown load torque and uncertain rotor resistance;

• The closed-loop stability was investigated, and a compensator was constructed to
eradicate the impacts of IM perturbations;

• Adaptive learning rules are presented for GMDH-NNs.

2. Problem Formulation
2.1. System Dynamics

The IM dynamics are [48]:
dω
dt = µφrisq −

npTr
J

dφr
dt = − 1

τr
φr +

Msr
τr

isq
disd
dt = β

τr
φrd + βωφrq − 1

τ1
isd + ωsisd

disq
dt = β

τr
φrq − βωφrd − 1

τ1
isq −ωsisd +

1
L1

Vsq

(1)

where φr represents the rotor flux, (φrd/φrq) is the rotor flux, (irq/isq) is the stator current,
and Vsq indicates the stator voltage. ωs/ω denotes the angular frequency/rotor speed. Tr
shows is load torque. Other parameters are as follows:

τr =
Lr
Rr

; L1 = Ls − Msr
2

Lr
; R1 = Rs + Rr

(
Msr
Lr

)2
;

β = Msr
Lr L1

; µ = n2
p

(
Msr
JLr

)
; τ1 = L1

R1

(2)

where J denotes the moment of inertia, Msr shows the mutual inductance, np indicates the
quantity of pole pairs, and (Rs, Rr)/(Ls, Lr) are the resistances/inductances.

2.2. A General View of the Proposed Controller

The problem was to design a speed controller for IMs. The dynamics of IMs are
considered completely uncertain. GMDH-NNs were used to estimate the dynamics of
IMs, and based on the estimated model, a new fractional-order controller was designed.
From (1), we can write:

ẋ1 = f1(¯
x)

ẋ2 = f2(¯
x)

ẋ3 = f3(¯
x)

ẋ4 = f4(¯
x) + 1

L1
u

(3)
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where,
f1(¯

x) = µφrisq −
npTr

J ,
f2(¯

x) = − 1
τr

φr +
Msr
τr

isd

f3(¯
x) = β

τr
φr − 1

τ1
isd + ωsisq,

f4(¯
x) = −βωφr − 1

τ1
isq −ωsisd

u = Vsq, x1 = ω, x2 = φr, x3 = isd,
x4 = isq,

¯
x = [x1, ..., x4]

T

(4)

The control aim was to plan a signal u in such a way that the output y = x1 tracks the
reference signal r. The suggested diagram is given in Figure 1. The term Dq

t e/Iq
t e denotes

the fractional-order derivative/integral based on the Caputo approach [49]:

Dq
t e(t) =

1
Γ(m− q)

∫ t

0
(t− τ)m−q−1 dm

dτm e(τ)dτ (5)

Iq
t ∆e(t) =

1
Γ(q)

∫ t

0
(t− τ)q−1e(τ)dτ (6)

where m = 1 and 0 < q < 1.
The time derivative of ẇ in (1) yields:

ÿ = µx4 f2(x) + µx2 f4(x) +
µx2

L1
u (7)

where y denotes the output (see ω in (1)) and the other parameters are defined in (2) and (4).
By considering (7), the control signal u based on the feedback linearization method can be
designed as follows:

u =
L1

µx2
(−µx4 f2(x)− µx2 f4(x) + r̈− λ1 ė− λ2e) (8)

where λi, i = 1, 2 are constants and e = r− y. Considering Equation (8) and by the use of
a learnable GMDH-NN, to achieve a stable controller, the control signal is suggested as
follows:

u = r̈− λ1 ė− λ2e− uc (9)

where uc is the output of the GMDH(2). The parameters of the compensator GMDH(2) were
tuned in such a way that e = r− y was minimized. To tune the parameters of the GMDH(2)
based on the error e, the output derivative regarding the control signal is required (dy

/
du).

The term dy
/

du is obtained from online modeling of the system by the GMDH(1).

Figure 1. Control diagram.
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3. Proposed GMDH Neural Network
3.1. Structure

In this section, the proposed neural networks structure is illustrated. It has been shown
that GMDH-NNs result in better accuracy in contrast to other conventional NNs such as
multi-layer perceptrons [50]. GMDH neural networks have a better nonlinear nature and
are more proper for the estimation of the complicated nonlinear functions. The structure of
the proposed GMDH neural network with four inputs is shown in Figure 2. The vector
of the parameters in the GMDH(1) and GMDH(2) are denoted by w1j and w2j, j = 1, 2, 3,
respectively. The outputs of the GMDH(1) and GMDH(2) are obtained as follows:

Step 1: The vectors of the inputs for the GMDH(1) and GMDH(2) are [u(t), u(t− 1), y(t),
y(t− 1)]T and [r(t), e(t), Dq

t e(t), Iq
t e(t)]T , respectively. One of the characteristics of

the suggested controller is that it uses the minimum information of the system.
To identify the dynamics of the IM, only the input–output datasets are used. It
should be noted that by the use of the GMDH(1), we wanted to obtain the control
direction;

Step 2: Compute the outputs of the hidden layers for the GMDH(1) and GMDH(2) as
follows:

o11 = f 11(h11), o12 = f 11(h12)
o21 = f 21(h21), o22 = f 21(h22)

(10)

where f 11/ f 21 denotes the activation function in the first layer for the
GMDH(1)/GMDH(2), which is defined as follows:

f 11(h) = f 21(h) =
1− exp(−h)
1 + exp(−h)

(11)

The other parameters h11, h12, h21, and h22 are computed as follows:

h11 = w1T
1 ζ11, h11 = w1T

2 ζ12
h21 = w2T

1 ζ21, h21 = w2T
2 ζ22

(12)

where,
ζ11 =[
u(t), u2(t), u(t)u(t− 1), u(t− 1), u2(t− 1)

]T ,
ζ12 =[
y(t− 1), y2(t− 1), y(t− 1)y(t− 2), y(t− 2), y2(t− 2)

]T

(13)

ζ21 =[
r(t), r2(t), r(t)e(t), e(t), e2(t)

]T ,
ζ22 =[

Dq
t e(t),

(
Dq

t e(t)
)2

, Dq
t e(t)Iq

t e(t), Iq
t e(t),

(
Iq
t e(t)

)2
]T

;

(14)

Step 3: Compute the outputs of the GMDH(1) and GMDH(2) as follows:

Y1 = f 12(h13),
Y2 = f 22(h23)

(15)

where Y1 and Y2 are the output of the GMDH(1) and GMDH(2), respectively, and:

f 12(h13) = h13
f 22(h23) = Ēsign

(
eT Pb

)
[1 + exp(h23)]

(16)

h13 = w1T
3 ζ13, h23 = w2T

3 ζ23 (17)

ζ13 =
[
o11, o12

1, o11o12, o12, o12
2
]T

ζ23 =
[
o21, o22

1, o21o22, o22, o22
2
]T (18)
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where Ē is the designable constant parameter. The value of Ē is determined consid-
ering the above bound of the uncertainties. eT Pb is defined in (44)–(46).

Figure 2. The proposed GMDH neural network.

3.2. Learning of the GMDH(1)

The parameters of the GMDH(1) are updated such that (19) is minimized:

J1 =
1
2
(y−Y1)

2 (19)

where y is the system output and Y1 represents the output of the GMDH(1). The adaptation
laws are as follows:

w11(t + 1) = w11(t)− η
∂J1

∂w11

w12(t + 1) = w12(t)− η
∂J1

∂w12

w13(t + 1) = w13(t)− η
∂J1

∂w13

(20)

where η is the adaptation rate. ∂J1
∂w1i

, i = 1, 2, 3 is computed as follows:

∂J1
∂w13

=
∂J1

∂Y1

∂Y1

∂h13

∂h13

∂w13
= −(y−Y1)ζ13

(21)

∂J1
∂w12

= ∂J1
∂Y1

∂Y1
∂o12

∂o12
∂h12

∂h12
∂w12

= −(y−Y1)×
(w133o11 + w134 + 2w135o12)

∂ f 11
∂h12

ζ12

(22)

∂J1
∂w11

= ∂J1
∂Y1

∂Y1
∂o11

∂o11
∂h11

∂h11
∂w11

= −(y−Y1)×
(w131 + 2w132o11 + w133o12)

∂ f 11
∂h11

ζ11

(23)

where w13j, j = 1, . . . , 5 denotes the j− th element of the vector w13 and ∂ f 11
∂h1i

, i = 1, 2 is:

∂ f 11

∂h1i
=

2 exp(−h1i)

1 + exp(−h1i)
, i = 1, 2 (24)
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To show the fact that the tuning rules (20) minimize the cost function (19), it is proven
that the difference of (19) is negative. Then,

∆J1(t) = J1(t + 1)− J1(t) (25)

Consider the following definition:

e(t + 1) = e(t) + ∆e(t) ∼= e(t)

+
[

∂e
∂w11

]T
∆w11 +

[
∂e

∂w12

]T
∆w12 +

[
∂e

∂w13

]T
∆w13

(26)

where,
e = y−Y1 (27)

From (20), it can be concluded that:

∆w1i(t) = −η
∂e

∂w1i
e(t), i = 1, 2, 3 (28)

∆J1(t) in (25) can be rewritten as:

∆J1(t) = 1
2 (e(t + 1)− e(t))(e(t + 1) + e(t))

= 1
2 ∆e(t)(2e(t) + ∆e(t))

(29)

By substituting ∆e(t) from (26), we have:

∆J1(t) = 1
2

([
∂e

∂w11

]T
∆w11 +

[
∂e

∂w12

]T
∆w12 +

[
∂e

∂w13

]T
∆w13

)
·(

2e(t) +
[

∂e
∂w11

]T
∆w11 +

[
∂e

∂w12

]T
∆w12 +

[
∂e

∂w13

]T
∆w13

) (30)

Equation (30) is rewritten as:

∆J1(t) = −
1
2

e2(t)

(
η

3

∑
i=1

[
∂e

∂w1i

]T ∂e
∂w1i

)
·
(
−2 + η

3

∑
i=1

[
∂e

∂w1i

]T ∂e
∂w1i

)
(31)

Then, ∆J1(t) < 0, if:

η <
2

3
∑

i=1

[
∂e

∂w1i

]T
∂e

∂w1i

(32)

3.3. Learning of the GMDH(2)

The parameters of the GMDH(2) are adjusted such that (33) is minimized.

J2 =
1
2
(r− y)2 (33)

where r indicates the reference and y shows the output. The adaptation laws for the
parameters w21, w22, and w23 are obtained as follows:

w21(t + 1) = w21(t)− η
∂J2

∂w21

w22(t + 1) = w22(t)− η
∂J2

∂w22

w23(t + 1) = w23(t)− η
∂J2

∂w23

(34)
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where η is the adaptation rate. The term ∂J2
∂w23

is determined as follows:

∂J2
∂w23

= ∂J2
∂y

∂y
∂u

∂u
∂Y2

∂Y2
∂h23

∂h23
∂w23

= −(r− y) ∂y
∂u

∂ f 23
∂h23

ζ23
(35)

where,
∂ f 23

∂h23
= Ēsign

(
eT Pb

)
exp(h23) (36)

The term ∂y
∂u in (35) is estimated by ∂Y1

∂u , where:

∂Y1
∂u = ∂Y1

∂h13

∂h13
∂o1

∂o1
∂h11

∂h11
∂u

= (w131 + 2w132o11 + w133o12)×
∂ f 11
∂h11

(w111 + 2w112u(t) + w113o12u(t− 1))
(37)

where w13j and w11j, j = 1, . . . , 5, represent the j− th element in the vectors w13 and w11,
respectively. w13 and w11 in (37) are the parameters of the GMDH(1). Similar to (35), the
terms ∂J2

∂w22
and ∂J2

∂w21
are determined as follows:

∂J2
∂w22

= ∂J2
∂y

∂y
∂u

∂u
∂Y2

∂Y2
∂o22

∂o22
∂w22

= −(r− y) ∂y
∂u

∂ f 23
∂h23
×

(w233o21 + w234 + 2w235o22)
∂ f 21
∂h22

ζ22

(38)

∂J2
∂w21

= ∂J2
∂y

∂y
∂u

∂u
∂Y2

∂Y2
∂o21

∂o21
∂w21

= −(r− y) ∂y
∂u

∂ f 23
∂h23
×

(w231 + 2w232o21 + w233o22)
∂ f 21
∂h21

ζ21

(39)

4. Stability Analysis

The dynamics in (7) is rewritten as:

ÿ = F + Gu (40)

where,
F = µx4 f2(x) + µx2 f4(x), G =

µx2

L1
(41)

Then, by considering the proposed control signal, the error becomes:

ë = F + (G− 1)u− λ1 ė− λ2e−Y2 (42)

From (42), we have:
ė = Ae + bE− b Y2 (43)

where,

=
[

ė e
]T , A =

[
1 0
−λ1 −λ2

]
b =

[
0
1

]
, E = F + (G− 1)u

(44)

For the stability investigation, the Lyapunov function (45) is considered:

V =
1
2

eT Pe (45)

where P satisfies:
AT P + PA = −Q (46)
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where Q is the arbitrary positive-definite function. The time derivative of V in (45) yields:

V̇ = −eTQe + eT PbE− eT Pb Y2 (47)

From (47), we can write:

V̇ ≤ −eTQe +
∣∣∣eT Pb

∣∣∣|E| − ∣∣∣eT Pb
∣∣∣sign

(
eT Pb

)
Y2 (48)

From (48), we have:

V̇ ≤ −eTQe +
∣∣∣eT Pb

∣∣∣(|E| − sign
(

eT Pb
)

Y2

)
(49)

From the fact that Y2 = Ēsign
(
eT Pb

)
[1 + exp(h23)] > |E|, V̇ in (49) becomes:

V̇ ≤ −eTQe (50)

Then, from (50), the closed-loop stability is proven.

Remark 1. Although the upper bound of uncertainty can be conservatively considered big enough,
by taking into account the characteristics of the controlled plant, the upper bound of uncertainty
can be better specified. Furthermore, the upper bounds of the signals can be controlled by the use of
saturation.

Remark 2. In comparison with other conventional controllers such as PID [51], the SMC [52],
and the model-based predictive controller [53], the suggested approach has a stability guarantee and
robustness property against perturbations. It has an adaptive scheme, and it is also not dependent
on the mathematical dynamics of IMs. It should be noted that, since the inputs of the GMDH(2) are
the error, fractional derivative, and integral of the error, then it has also the property of conventional
PIDs.

Remark 3. The suggested controller is not dependent on the mathematical model of IMs. The
required information is identified online (note that the GMDH(1) is used to extract the control
direction). Furthermore, a compensator (GMDH(2)) is updated online to guarantee stability and
robustness.

5. Simulation

To verify the efficiency, an IM was considered as 1.5 kW with a power supply of
(380–220 V) for the cage rotor. Other mechanical constraints and conditions are described
in Tables 1 and 2. The free parameters of GMDH-NNs were optimized online. The other
parameters as mentioned in Table 2 were chosen based on the general information of the
IM such as the upper/lower bounds of the uncertainties. The learning rate was selected
small enough to have a smooth adaptation.

The tracking effectiveness and tracking error under the normal condition (unknown
dynamics with nominal load torque (5 Nm) and normal rotor resistance) are displayed in
Figures 3 and 4. The quadrature and direct components of the stator current are shown in
Figures 5 and 6. Figure 7 gives the control signal. It is obvious that the presented control
scenario gives the desired accuracy.
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Table 1. The simulation parameters.

Parameter Value Units

Rs 1.20 Ω
Lr 0.1569 H

TrN 5 Nm
- 1480 rpm

Msr 0.15 H
Ls 0.1555 H
np 2 -
J 0.013 kg m2

Rr 1.1 Ω

Table 2. The control parameters.

λ1, λ2 q η Ē E

see (9) see (Figure 1) see (20) and (34) see (16) see (16)
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Figure 3. Trajectory of the rotor speed in the normal condition.
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Figure 4. Rotor speed tracking error in the normal condition.
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Figure 5. Stator current (isd) in the normal condition.
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Figure 6. Stator current ((isq)) in the normal condition.
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Figure 7. Control signal in the normal condition.

To examine the efficiency with respect to faulty conditions, the variation of the rotor
resistance was considered as R = RN + RN(− exp(−1.5t) + 1), where RN indicates the
nominal value of R. Furthermore, the load torque was also time variable, and it was
changed at t = 20 s (see Figure 8). The rotor speed and tracking error are displayed in
Figures 9 and 10. Figures 11 and 12 represent the stator currents. Figure 13 shows the
control signal. The results showed that the designed control scenario had perfect accuracy
under faulty conditions, as well as the dynamics’ perturbation. It is worth mentioning that,
in addition to the aforementioned disturbances, the IM dynamics were presumed to be
completely uncertain.
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Figure 8. Load torque in the faulty condition.
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Figure 9. Rotor speed in the faulty condition.
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Figure 10. Rotor speed tracking error in the faulty condition.
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Figure 11. Stator current in the faulty condition (d-component).
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Figure 12. Stator current in the faulty condition (q-component).
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Figure 13. Control signal in the faulty condition.

The tracking effectiveness of the suggested technique was analyzed with respect to
other well-known techniques such as: the adaptive SMC (ASMC) [54], the fault-tolerant
adaptive control (FTAC) approach [48], field-oriented control (FOC), as well as the adaptive
type-2 fuzzy SMC (AST2FC) [55]. The output trajectories are shown in Figure 14. Table 3
shows a comparison of the root-mean-squared errors (RMSEs) and the integral of the
squared error (ISE). To compute the RMSE, the squares of the tracking error were saved,
and at the end of the simulation, the root mean squareof the saved data was computed.
The results indicated that the values of the RMSE and ISE for the suggested approach were
meaningfully less than the other approaches. Furthermore, in Table 4, it is shown that
the fractional-order controllerdid not strongly affect the accuracy. The results of Table 4,
and the trajectories of the output regulation in Figures 3 and 9 demonstrate the desired
efficiency of the designed controller.
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Figure 14. Output trajectory with various controllers.

Furthermore, the effectiveness of the proposed compensator was examined in three
cases. In Case 1, the compensator was eliminated. In Case 2, multi-layer perceptron
(MLP) was used as the compensator. In Case 3, the proposed GMDH was employed as
the compensator. In Case 4, the type-1 fuzzy system (T1FS) was used as the compensator.
Table 5 shows the values of the RMSE for different cases, which showed that the proposed
compensator on the basis of the GMDH improved the tracking performance.

Remark 4. The suggested control scenario was not dependent on the system’s mathematical
information. Furthermore, the stability was ensured by the proposed compensator. Then, the designed
controller could be used in many cases of nonlinear plants. To show this property, the designed
control scheme was applied to nonlinear systems with the following unknown dynamics [56]:

Dαx1 = 10(x2 − x1) + u1
Dαx2 = 40x1 − x1x3 + u2
Dαx3 = −4x2

1 − 2.5x3 + u3

(51)

where the initial states were x1(0) = 11, x2(0) = 21, and x3(0) = 31 and the control signals were
considered as ui = ṙ− 20ei − uci , in which, r = 0 and ei = xi. The performance is depicted in
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Figure 15. From Figure 15, we see that the suggested controller had the desired accuracy in spite of
the unmown dynamics.
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Figure 15. The tracking performance.

Table 3. RMSE and ISE comparisons.

FOC [48] FTAC [48] AST2FC [55] ASMC [54] Proposed
Controller

RMSE 45.11 40.55 41.52 36.34 12.8085
ISE 4.5178 × 104 3.87124 × 104 3.78101 × 104 3.1427 × 104 1.1972 × 104

Table 4. Comparison of the RMSE for different values of the fractional orders.

q 0.5 0.7 0.8 0.9 0.95

RMSE 12.8284 12.8278 12.8217 12.8085 12.8203

Table 5. Comparison of the RMSE for different compensators.

Without Compensator MLP T1FS GMDH

w 696.8100 13.3709 13.10 12.8085

Remark 5. The simulations were carried with MATLAB 2018a and an x64-based processor with
CPU @2.60 GHz, RAM 8 GB Intel(R) Core(TM) i7-4720HQ. The fractional-order operator was
simulated by the use of the Simulink block “nid”, presented by Duarter Valerio [57].

Remark 6. The designed controller does not depend on the mathematical dynamics of the IM.
However, an online scheme by the use of GMDH-NNs is suggested for modeling. Furthermore, the
main perturbations in the practical application of IMs are supported by the designed compensator.
The capability of the designed controller in a real environment was shown by various simulations,
considering dynamic uncertainties and disturbances. The authors will implement the designed
controller on a real IM in their future studies. The main drawbacks of the designed scheme are that
the input delay and actuator faults are not considered. For future studies, the controller can be
extended for other classes of nonlinear systems with more robustness against faults and disturbances.

6. Conclusions

In this study, an intelligent control method was introduced for the speed control of IMs.
The IM dynamics were considered to be uncertain and also perturbed by changes in the
rotor resistance and load torque. The stability was analyzed using the Lyapunov theorem.
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The designed controller was applied to an IM in both nominal and faulty scenarios. The
simulation findings revealed that the suggested control scheme had perfect accuracy with
respect to disturbances and perturbed dynamics. Furthermore, to examine the effectiveness
in the other case of nonlinear systems, one more simulation was considered by controlling
a chaotic system with unknown dynamics. The results demonstrated that the introduced
approach had good accuracy in spite of its simplicity.
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