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Abstract: Federated Learning (FL) can combine multiple clients for training and keep client data local,
which is a good way to protect data privacy. There are many excellent FL algorithms. However, most
of these can only process data with regular structures, such as images and videos. They cannot process
non-Euclidean spatial data, that is, irregular data. To address this problem, we propose a Federated
Learning-Based Graph Convolutional Network (FedGCN). First, we propose a Graph Convolutional
Network (GCN) as a local model of FL. Based on the classical graph convolutional neural network,
TopK pooling layers and full connection layers are added to this model to improve the feature
extraction ability. Furthermore, to prevent pooling layers from losing information, cross-layer fusion
is used in the GCN, giving FL an excellent ability to process non-Euclidean spatial data. Second, in
this paper, a federated aggregation algorithm based on an online adjustable attention mechanism is
proposed. The trainable parameter ρ is introduced into the attention mechanism. The aggregation
method assigns the corresponding attention coefficient to each local model, which reduces the damage
caused by the inefficient local model parameters to the global model and improves the fault tolerance
and accuracy of the FL algorithm. Finally, we conduct experiments on six non-Euclidean spatial
datasets to verify that the proposed algorithm not only has good accuracy but also has a certain degree
of generality. The proposed algorithm can also perform well in different graph neural networks.

Keywords: federated learning; graph convolutional neural network; non-Euclidean spatial data;
attention mechanism

MSC: 68T07

1. Introduction

Federated learning [1–3] is a particular type of distributed machine learning. Figure 1
shows the framework of federated learning. FL enables multiple clients to perform joint
training under the premise of ensuring that data are not shared. Only local model training
parameters are shared in the training process. A client is no longer a single individual,
and the client can thoroughly learn the training experience from others. This approach
provides a possible solution to data island problems. McMahan et al. [4] proposed the
Federated Average (FedAvg) algorithm. They were the first to propose a relatively com-
plete federated learning framework based on deep learning. The framework takes full
account of the common Non-Independently Identically Distributed (Non-IID) data and
communications costs in FL. FedAvg evaluates its performance on five different models
and four datasets. The combination of FL [5–7] and Deep Learning [8–12] has opened a
new world of research.
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Figure 1. Algorithm framework of federated learning.

At present, many variants of FedAvg and even new FL frameworks appeared to
solve various challenges faced by federated learning. Yang et al. [13] proposed a logical
regression method of center-based vertical federated learning, which solved the logical
regression in vertical federated learning. Hartmann et al. [14] proposed a federated sup-
port vector machine in 2019, which optimizes and protects parameters by updating blocks
of local modules and hashing attributes. Liu et al. [15] proposed a federated decision
tree model, which uses local participants to transmit the ranking of model parameters to
replace the original federated learning process of constantly uploading model parameters.
Peng et al. [16] proposed an Unsupervised Federated learning Domain Adaptation (UFDA)
method, which solves the phenomenon of negative transfer caused by domain irrelevance.
Yurochkin et al. [17] proposed to apply a Bayesian network to federated learning, and they
developed and studied a probabilistic federated learning framework, with special emphasis
on training an aggregation neural network model, matching estimated local model parame-
ters between data sources, in order to build a global network and improve the accuracy of
the aggregation model in each client. Nadiger et al. [18] proposed federated reinforcement
learning and proposed a federated reinforcement technology aimed at a long personal-
ization time. Its main goal is to improve the personalization time. Fei Chen et al. [19]
proposed a federated meta-learning framework, known as Federated Meta-learning (Fed-
Meta). Experiments on the same dataset show that the communication cost of FedMeta is
2.82–4.33 times lower than that of FedAvg, and its convergence speed is faster. Compared
with FedAvg, which uses the same number of local training iterations for all clients in
each round of global model updates, FedProx [20] allows different local training iterations
in different clients according to the available system resources of the client, mainly to
solve the problem of heterogeneity in federated learning that FedAvg has not dealt with,
and provides stronger robustness. The datasets used in these excellent federated learning
algorithms are commonly used in Euclidean space and can process daily data such as
image, video, and speech recognition [21,22].

However, in real life, there are a large number of data in non-Euclidean space that
contain complex interdependent graph nodes, which cannot be effectively processed by
conventional federated learning and deep learning. Still, there are many non-Euclidean
spatial data in real life, and these data contain complex graph node relationships that cannot
be effectively handled by conventional federated learning and deep learning. Therefore,
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GCNs, which can process non-Euclidean spatial data, have become another hot research
direction in artificial intelligence. The GCN proposed by Kipf [23] is the semi-supervised
learning of graph structure data. The method does not require all nodes to have corre-
sponding labels for node tasks. Hamilton [24] et al. proposed an inductive GCN (Graph
Sample and Aggregate, GraphSage) that can be applied to dynamic graph data. GraphSage
is not the embedded training for each node alone. However, it aggregates all the samplings
from each node’s neighbors of a certain number (for example, calculating the mean of all
sampled neighborhood eigenvectors). Unlike the graph convolution based on the spatial
domain of GraphSage, the GCN proposed by Kipf et al. uses the first-order approximation
of ChebNet [25] to determine the convolution structure. Veli Kovi et al. [26] applied the
attention mechanism to graph convolutional layers. The attention mechanism allows the
model to process input information of different scales, focusing on the most relevant part of
the input information. After experiments, these Graph Neural Network (GNN) algorithms
achieved excellent performance in many tasks, such as node classification, edge prediction,
and graph classification. However, the design of a GNN is mainly based on empirical
intuition, heuristics, or experimental trials. Although it shows an excellent non-Euclidean
spatial data processing ability, there is no corresponding theoretical understanding of the
nature and limitations of GNNs. Xu [27] proposed a theoretical framework for analyzing
the powerful expressive ability of GNNs and described the performance of different GNN
variants in extracting features. Di [28] proposed a multi-graph convolutional neural net-
work model to predict the traffic at a station and observe the bicycle sharing system from
the graph’s perspective. To endow the graph neural network with privacy security, Mei [29]
used the federated average algorithm to train the improved graph neural network, which
hides the specific information of nodes. Zhang [30] added attention to the spatio-temporal
graph neural network. They also added differential privacy protection to the adjacency
matrix of the graph so as to train through the federated average algorithm.

In order to address some of the above problems, this paper proposes a Federated
Learning Framework-Based Graph Convolutional Network (FedGCN). The framework uses
a graph convolutional neural network to replace the deep convolutional neural network
used in the classical FL framework. Moreover, FedGCN aggregates local model parameters
using the attention mechanism. Overall, this paper makes the following contributions.

(1) The FL capabilities in processing non-Euclidean spatial data are enhanced. First,
based on the ability of the GCN to process non-Euclidean spatial data, this paper proposes
a GCN to build local models for federated learning clients. The difference between the
GCN proposed in this paper and the classical GCN is the fact that TopK graph pooling
layers and full connection layers are added to extract node features. Afterwards, to prevent
the loss of important information, a cross-layer fusion mechanism is adopted to fuse the
features extracted from all layers.

(2) Then, to prevent the loss of important information, a cross-layer fusion mechanism
is adopted to fuse the features extracted from all layers.

(3) The fault tolerance of FL aggregation and the accuracy of the global model are
improved. Each local model is assigned the same weight according to the average aggrega-
tion algorithm. In this case, the aggregated global model cannot absorb the local model’s
effective training experience well. This paper proposes a federated aggregation algorithm
based on an attention mechanism that can be adjusted online. In order to make better use of
the GCN in Contribution 1 for distributed training, this paper uses the federated learning
mechanism to jointly train several local GCN models, so that the federated learning can not
only work in the regular data, but also obtain a global model with a high generalization
performance by learning non-Euclidean spatial data.

(4) In order to finely process the local model parameters, including the errors contained
in the data itself, an attention mechanism is introduced to replace the previous average
mechanism to obtain federated weights. Different from the attention mechanism with fixed
parameters, this paper uses a trainable parameter ρ to continuously adjust the aggregation
weight. This trainable parameter ρ is trained by a simple perceptron. It provides appropriate
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attention weights for each client’s model parameters, and these weights are applied to
parameters in every layer so as to accurately obtain the optimal global model using the
training parameters of each local model.

The overall framework of this paper is as follows. The first section introduces the
research status of relevant technologies. The second section briefly introduces the classical
federated average learning algorithm and GCNs. In the third section, federated learning
based on a graph convolutional neural network is presented in detail. The fourth section
verifies the proposed algorithm’s effectiveness through experiments on six non-Euclidean
spatial datasets. The fifth section is the conclusion of the paper.

To some extent, the processing of graph data, i.e., the traditional GNN, suffers from cer-
tain defects. For example, the undersampling of graph data has the problem of insufficient
feature extraction. Junhyun Lee et al. [31,32] proposed a graph pooling method based on
self-attention. The Self-Attention Graph Pooling (SAGPool) of graph convolution allows
the pooling method to consider two node features and graph topology at the same time.
Its structure features hierarchical pooling, a consideration of node features and a graph
topology, reasonable complexity, and end-to-end learning. In federated learning, graph
data also need to be processed. Shaoxiong Ji et al. [33] showed that a novel layer-by-layer
attention joint optimization can measure the importance of selected content for modeling
clients and speed up the learning process. The proposed attention aggregation method
minimizes server use. The weighted distance between the model and the client model
iteratively updates the parameters between the server model and the client model while fo-
cusing on the distance. Chuan Chen et al. [34] proposed a general federated graph learning
framework, i.e., Federated Graph Learning (FedGL), which can collaboratively store graph
data in different clients to train high-quality graph models while protecting data privacy,
coping with heterogeneity between clients. Considering the complementarity of graph
data, we propose to discover and exploit global self-supervised information. The process of
global self-monitoring discovery and use enables each customer’s information to flow and
be shared in a privacy-preserving manner, thereby mitigating heterogeneity and exploiting
complementarity. Finally, extensive experimental results on node classification tasks show
that FedGL significantly outperforms centralized methods, simple joint methods, and local
methods, fully validating the effectiveness of FedGL. Han Xie et al. [35–37] proposed a
Graph Clustering Federated Learning (GCFL) framework to dynamically find clusters of
local systems according to the gradients of GNNs, and theoretically demonstrate that such
clusters can reduce the disparity between the structure and features of graphs owned by
local systems. Qualitatively, the techniques developed using GCFL allow multiple data
owners to hold structures and feature non-IID graphs to collaboratively train powerful
graph classification neural networks without direct data sharing.

2. Preliminary

Our work is based on graph convolutional neural networks and federated average
algorithms (FedAvg). This section begins with a brief overview of FedAvgs, including the
local model update, the communication strategy, and global model aggregation, and then
introduces classical graph convolutional neural networks.

2.1. Basic Federated Learning

As a pioneering work in federated learning, the primary training method of FedAvg
has become the default method of federated learning. In each round of communication,
the client downloads the initial model parameters from the global model and trains the
local model through their respective local data. Parameters are then sent back to the
terminal server. The local model parameters uploaded are aggregated on the terminal
server to obtain a new global model. Only the model parameters are transmitted during
the communication between the local model and the global model. Federated Average
(FedAvg), the most classic algorithm in federated learning algorithms, is the most widely
used algorithm at this stage. The algorithm in this article is also based on the improvement
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of this algorithm. The basic idea of FedAvg comes from a distributed learning system
composed of a parameter server and multiple local clients. Specifically, suppose there is
a federated system model, which includes a parameter server and K clients participat-
ing in federated learning. At the beginning of the Tth communication, the parameter
server distributes the current global model parameters ωt to local models ωk

t of each fed-
erated learning client, and each local model k ∈ K then calculates the gradient once,
gk(1)

t = ∇ωk
t

∑(xi ,yi)∈Dk
`(ωk

t , (xi, yi)), where Dk is the dataset that has nk = |Dk| data on

the client k, ell is the loss function, and ∇ωk
t

represents the gradient symbol of ωk
t . The ter-

minal server collects all gradients and applies the weighted average method to update
the parameters. In this updating mode, each participant is treated equally. However, not
every local participant’s performance is the same. There are pros and cons, and the average
will damage the performance of the global model. The errors come from many aspects,
such as random errors caused by model instability, systematic errors caused by machine
performance, flawed models, or noise in the data. Although the average value of countless
measurements will inevitably tend to approach the global solution, it is impossible to make
numerous measurements in practice. The average update aggregation method cannot
assign reasonable weights to models with different errors. At this time, it is necessary to
process each client differently, taking fully into account the noise of datasets participating
in training in different clients.

2.2. Graph Convolutional Networks

Artificial intelligence algorithms have been completely “embedded” in daily life, han-
dling various tasks, image classification, video processing, speech recognition, and natural
language understanding. The data in these tasks are usually in Euclidean space. How-
ever, real life also contains a large amount of data in non-Euclidean space, that is, data
with irregular structures, and these data contain complex and interdependent graph node
relationships, which conventional artificial intelligence algorithms cannot handle effec-
tively. Therefore, for non-Euclidean spatial data, graph convolutional neural networks have
become another hot research direction in artificial intelligence. They are widely used in
life. Many graph convolutional neural networks for processing graph data have appeared
in recent years, and they are widely used in various fields, such as chemical molecules,
physics, social sciences, knowledge graphs, recommendation systems, and neuroscience.
Similar to Convolutional Neural Networks (CNNs) and Multilayer Perceptrons (MLPs),
Graph Neural Networks (GCNs) are also trained continuously. Each node on different
layers can learn new feature representations, and these new features then pass classifiers
to yield output results.

3. Proposed Method

This section first introduces the proposed graph convolutional neural network with a
cross-layer fusion structure as the local federated learning model. A federated aggregation
algorithm based on an attention mechanism is then proposed to generate an efficient global
model. Figure 2 is the federated learning system framework proposed in this paper.
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Figure 2. The federated learning framework proposed in this paper.

3.1. The Graph Convolutional Neural Network Architecture

To give the FedGCN the ability to process non-Euclidean spatial data, this section
proposes a graph convolutional neural network as a local model of the federated learning
client. The GCN is mainly divided into three parts: a convolutional graph layer, a graph
pooling layer, and a fully connected layer. The graph convolution layer aggregates the
features of the node and its neighbor nodes through the graph convolution operation.
The graph convolution layer extracts the effective features of the non-Euclidean spatial data;
the graph pooling layer executes the graph pooling operation and selects the best values of
various features after the graph convolution layer as representatives to represent new node
features. The graph convolution layer output’s feature dimension is effectively reduced,
as subsequent graph convolution operations or fully connected layer classification provide
high-quality parameters. In the fully connected layer, after several graph convolution
and graph pooling operations, more efficient features are obtained. Unlike the classic
graph convolutional neural network, which only relies on the SoftMax function to output
classification results, three fully connected layers are used here to complete the task of
graph classification. The specific process is shown in Figure 3.

Non-Euclidean 

spatial data

(Input)

Classification 

(Output)
GCN1

pooling1

Full connected layer

FC1 FC2 FC3

GCN2

pooling2

GCN3

pooling3

Layer1 Layer2 Layer3

Figure 3. The graph convolutional neural network proposed in this paper.
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3.2. The Graph Convolutional Neural Network Architecture

Assuming that there are k clients in total in federated learning, the local undirected
graph structure data owned by the ith clients is Gk(V, E, A)i ∈ k. The set of nodes in
the graph structure Gi is vi ∈ V, the edge set between nodes is ei, j = (vi, vj) ∈ E, A
is a symmetric matrix containing only 0 or 1, which represents the adjacency matrix of
the graph and defines the interconnection relationship between nodes, and the feature
on the vi node is xi ∈ X. The graph convolutional layer is defined first. Equation (1)
is used to aggregate neighbor node information and extract highly generalized effective
node features.

Hl+1 = σ(D̃−
1
2 ÃD̃−

1
2 HlW l) (1)

where W l is the layer l weight parameter that can be trained, and Ã = A + I represents
the addition of the identity matrix to the original adjacency matrix to contain its node
information. H0 represents the initial input data characteristics, and D̃ is the degree matrix,
where D̃(i,i) = ∑j Ã(i,j).

3.2.1. Graph Pooling Layer

A large number of effective features are extracted from the above graph convolutional
layer. However, the aggregation collects adjacent node features, and the features may be
similar or repeated. It leads to information redundancy and increases computing costs.
In order to obtain highly generalized node features, a typical pooling operation in ordinary
convolutional neural networks is required. Therefore, we add the graph pool layers to
the GCN. The graph pooling layer adaptively selects the node features after the graph
convolution operation to form a new but smaller graph.

First, all node features are projected into one-dimensional data through a trainable
variable P. Moreover, the TopK pooling operation is performed according to the generated
one-dimensional data to select the node with the highest score. Equation (2) shows the
pooling operation. 

yi =
xl

i pl

‖pl‖
in = topn(yi, n)
xl∗

i = (xl
i � tanh(yi))in

A∗ = Ai_n,i_n

(2)

where ‖ � ‖ represents the 2 norms, yi represents the one-dimensional vector output of xl
i

after the trainable parameter ρ, topn(�) selects the index i_n of the highest score from the
given input vector, and � represents the element-wise multiplication of the corresponding
position of the vector, assigning the corresponding weight tanh(yi) to xl

i . This paper
also use a simple multi-layer perceptron to train. The tanh function enables the trainable
parameter p to be trained by back propagation. In the absence of tanh, the projection vector
p will produce a discrete output and cannot be trained by back propagation.

3.2.2. Fully Connected Layers

After the previous three groups of graph convolution and graph pooling operations,
effective and robust summary features are obtained. However, the feature matrix is not
convenient for predicting classification tasks, so a classifier is needed to classify or predict
these features to output the final result. As a result, this paper sets three fully connected
layers at the end of the network structure. Before inputting the extracted features into
the fully connected layer, some preprocessing needs to be performed on the features,
that is, cross-layer fusion and dimensional changes. (1) As the graph pooling operation
will reduce the number of nodes, some useful information will inevitably be lost, so the
cross-layer aggregation of features is necessary. This operation can extract the feature of
different processing scales (different graph convolutional layers and graph pooling layers).
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In addition, for graphs with a small number of nodes, the information can be effectively
preserved. Otherwise, these small graphs’ nodes might be quickly discarded. (2) To
input high-dimensional feature data into the fully connected layer, this paper flattened the
features. This operation saves the final graph node features at a fixed size (the same as the
number of neurons in the fully connected layer). The details are shown in Equation (3).{

vl = ( 1
Nl ΣNl

i=1zl
i)‖(MAX(zl

i)
Nl

i=1)

Vf c = ΣL
l=1vl (3)

A traditional CNN will perform a single average pooling or a maximum pooling
operation before inputting the features extracted by convolutions into the fully connected
layer. Unlike a traditional CNN, our method uses Equation (3) to splice two pooling
results together. That is, ‖ represents the concatenate operation. First, average pooling
and maximum pooling are performed on the node to obtain feature zl

i after the graph
convolution and graph pooling operations of each layer, respectively, and the two results
are concatenated. After these steps are completed, the results obtained from each layer
are summed to achieve the effect of cross-layer fusion. In Equation (3), Nl represents the
number of nodes, MAX(·) represents the maximum pooling operation, and Vf c is the
feature finally input to the fully connected layer.

3.3. The Training of GCN

The graphic convolutional neural network training is composed of three parts: a
non-linear activation function, a loss function, and an optimizer. The following is a de-
tailed introduction.

3.3.1. The Activation Function

The input operations of each layer of the graph convolutional neural network, namely,
the node features and the corresponding weight matrix, are linear. This paper applies the
GCN to the graph structure classification task. This type of classification task is non-linear.
Therefore, the non-linear activation function is the critical factor that determines whether
the GCN in this paper is effective. This paper uses the ReLU activation function and
sigmoid function in different parts of the network. The ReLU activation function acts on
the graph convolutional layer, the graph pooling layer, and the first two fully connected
layers. The sigmoid function is used in the final fully connected layer to output the final
classification result, as shown in Figure 4.

sigmoid(x) =
1

1 + e−x (4)

ReLU(x) = max(0, x) (5)

From Figure 4 and Equation (4), it is not difficult to see that the output value range
of the sigmoid function is between 0 and 1. It has good symmetry and is convenient for
derivation. It can output smoother values for classification tasks. However, the sigmoid
function’s partial derivative will disappear when the input value is very large or very small,
so the sigmoid is only used in the last fully connected layer to output the classification
results. The ReLU activation function is used in the middle layer of the graph convolutional
neural network to prevent the gradient from disappearing.
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Figure 4. Schematic diagram of the activation function.

3.3.2. The Loss Function

The loss function is an important indicator for guiding and evaluating model training.
A good loss function can accurately quantify the deviation between the estimated value
and the actual label. Assuming that the data of the kth client contains the feature x and the
label y, namely, Dk(x, y); the labels have C categories, namely, y = [y1, y2, ...yc]; the labels
are coded by one-hot representation; and only one digit is used for effective representation.
In this paper, the GCN model is denoted as G, and the node feature X is input into the
model to obtain the output G(X). The cross-entropy loss function used in this paper is
shown in Equation (5).

lk(yk
i , G(xk

i )) = −Σnk
i=1[y

k
i logG(xk

i ) + (1− yk
i )log(1− G(xk

i ))] (6)

where nk represents the amount of data owned by the kth client, and lk represents the
corresponding loss function.
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Compared with a simple loss function such as the mean squared error, the cross-
entropy loss function can better adjust weights. When the absolute error (the deviation
between the predicted value and the true value, that is, y− y

′
) is very large, the model

converges very slowly or does not converge at all. Figure 5 shows the relationship of
the absolute error and gradient between the cross-entropy loss function and the Mean
Squared Error (MSE) loss function during the training process. Suppose there is a set
of data (x, y) : y = sigmoid(θ × x + b), where x = 1, y = 1, θ is constantly changing,
and b is always fixed at 0.2. When ω changes, the absolute error and the gradient of ω are
recorded. The absolute error abs_ error is the abscissa, and the gradient is the ordinate. It
can be clearly seen in Figure 5 that the absolute error in the cross-entropy loss function is
proportional to the gradient. That is, the smaller the absolute error, the smaller the gradient.
As the absolute error in the mean square error loss function increases, the gradient is
distorted, which will cause the model to fail to converge. Based on these advantages, this
paper uses the cross-entropy loss function.

Figure 5. The relationship between the training gradient and the absolute error.

3.3.3. Optimizer

The previous section defines the loss function to continuously evaluate the current
model’s pros and cons during the training process. That is, the smaller the loss function,
the better the model is in general. However, if there is no tool to find the optimal solution
of model parameters, no matter how good the loss function is, it cannot play its role.
The optimizer adjusts model parameters to minimize the loss function. Stochastic Gradient
Descent (SGD) is currently the most commonly used optimizer for neural networks or other
machine learning algorithms; it is shown in Equation (7):

θ̃ = θ − η · ∇lk(yk, G(θ, xk)) (7)

where θ represents the parameter to be optimized, θ̃ represents the updated θ parameter,
łk(·) represents the loss function, ∇ represents the gradient, and η represents the learning
rate or step size, which limits the speed of network learning. The SGD algorithm only
calculates the gradient of a small part of the sample in each iteration, so the learning speed
is faster each time. SGD only uses a small sample to represent all samples to update θ,
so it is easy to converge to the local optimum. Adam [38] is an optimization method
that can adaptively adjust the learning rate to adapt to various parameters, effectively
preventing the training parameters from being trapped in the local optimum. It is shown in
Equations (8) and (9) is the parameter update equation.
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{
mt = γ1mt−1 + (1− γ1)gt

vt = γ2vt−1 + (1− γ2)g2
t

(8)


m̃t =

mt
1−γt

1

ṽt =
vt

1−γt
2

θ̃ = θ − η · m̃t√
ṽt+ε

(9)

where m is the first-order moment estimation of the gradient, that is, the mean value of
the gradient. v is the second-order moment estimation of the gradient, namely, the biased
variance of the gradient. g is the gradient, and t represents the number of iterations of
current learning. g2

t = gt
⊙

gt, and
⊙

represents the element-wise multiplication of the
corresponding position of vectors. γ1, γ2 ∈ [0, 1) is a set of hyperparameters, according to
the actual experience provided in the paper [31]. Here, γ1 = 0.9 and γ2 = 0.99. m̃t and ṽt
are the mean and biased variance of the corrected gradient. As the moment estimation of
the gradient does not require additional memory, it will not increase the pressure on the
memory. Moreover, after Adam has been biased and corrected, each iterative learning rate
has a certain range, making the parameters relatively stable.

Figure 6 shows the changes of four mainstream optimizer loss functions when the
second-generation GCN model is trained with 1000 epochs on the Cora dataset. It can
be clearly seen that the Adam optimizer has the best effect in reducing loss. When SGD,
with or without momentum, is applied to graph data and graph neural network models,
they both fail. Because of Adam’s advantages mentioned above, this article uses Adam as
the network model’s optimizer.
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Figure 6. The performance of the Adam optimizer in the loss function.

3.4. The Federated Aggregation Based on Attention Mechanisms

Sections 3.1 and 3.2 introduce the GCN model structure and its training method used
by a single client of the federated learning system in this paper. The GCN gives FL the
ability to process non-Euclidean spatial data. The federated learning system can jointly
train multiple graph convolutional neural networks without sharing data. Because of this
characteristic of FL, it can fully extract the training experience of each local GCN model in
the training process, and finally train an efficient global model. However, the traditional
federated average algorithm, similar to FedAvg, cannot evaluate the merits and defects
of each local model well but makes unified average processing, which is rough and may
lead to unsatisfactory training results of the global model. Therefore, this chapter proposes
an attention mechanism to develop attention weights that can be adjusted online for each
local model. By aggregating each local model according to this weight, the influence of
potential noise can be reduced. These noises may come from the data of each client, or from
the model itself, and so on. The contents of this chapter are as follows.
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The federated learning system based on the graph convolutional neural network
proposed in this chapter includes K federated learning participants and a terminal server.
The federated learning client processes its own graph data by training a local graph convo-
lutional neural network (defined in Section 3.1). Afterwards, the relevant parameters are
merged into the terminal server, and after continuous iterative training, a network model
with excellent performance is finally obtained. Federated learning is mainly divided into
two parts: (1) client local model training; (2) terminal server fusing local model parameters.
The model training and parameter uploading and downloading modes of FedGCN are
similar to those of FedAvg. The algorithm pseudocode of FedGCN is shown in Algorithm 1.

Algorithm 1 FedGCN.
Input: B is the minimum batch size of the local model (min batch size). E is the number of
iterations of the local model. α is the learning rate. m is the number of clients participating
in federated learning. pk is the dataset index of the kth client.
Output: Global weights θG

l,t+1
Global model optimization://the number K of participants in FL, datasets Dk,the fraction
of clients C
1: Initialize the global model parameter θglobal

2: for each round t→ 1, 2, . . . do
3: St = (random set of max(C · K, 1) clients)
4: for each client kεSt in parallel do
5: receive the local loss θk

t+1 and operate the attention mechanism att(.)(Equation (11))
6: calculate the confidence βl

k (Equation (12))
7: Information fusion: update global weights θG

l,t+1 = ∑K
K=1 θl,t

k (Equation (13))

8: Information distribution: pass θl,t
k back to the local model

9: end for
10: end for
Local participant updates://local model parameters θlocal

k ,datasets Dk
11: batches = (data Dk split into batches of size B)
12: Download the global model optimization parameter θt

g to initialize θlocal
k

13: for each local epoch i from 1→ E do
14: for batch b in batches do
15: θ = θ − α∇`(θ; b)
16: return θ,∇`(θ; b) to step3
17: end for

The following parts focus on the aggregation mode of each partial model in the
terminal server. The most important part of federated learning is the federated optimization
of the terminal server, which aggregates client models during the federated optimization
process. The existing federated learning adopts the average aggregation method without
considering each local model’s characteristics in order to further increase the accuracy
of federated learning on non-Euclidean spatial data. This section proposes a federated
aggregation method based on the attention mechanism, which can be adjusted online.
The global model uses optimal parameters learned from each local model’s individual
training experience to generate an optimal global model. The algorithm pseudocode of
FedGCN is shown in Algorithm 1.

The parameters uploaded by the local model to the terminal server are only weights
of the training parameters in the graph convolutional neural network. Before federated
learning, the clients are randomly selected, shown in Equation (10).

n_ f ed = max(C · K, 1) (10)

where n_ f ed is the number of clients in federated learning. There are K clients in federated
learning. The proportion of clients in each round of calculation is C. If the amount of data
on the client is known, the clients with a larger amount of data are preferred to participate
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in federated learning. It is a simple reward mechanism. When starting training, clients
initialize the local model parameters θl

k. The local model parameters are then uploaded to
the terminal server to initialize the global model. (The global model GCN_ G has the same
structure as the graph convolutional neural network built in Section 3.1.) After the global
model and the local model have been initialized, in order to aggregate an excellent global
model on the terminal server, each client needs to be evaluated to obtain model confidence
βk = {β0

k, β1
k, . . . , βl

k} (βk is initialized to 1/K) in each layer of the GCN constructed in this
article. That is, the attention mechanism is performed on the kth local graph convolutional
neural network model GCN_ Lk. After this operation, the parameter confidence of each
layer of GCN_ Lk is output through a SoftMax function, which is used to aggregate the
global model and other local models.

To dig deeper into the relationship between the global model GCN_ G and each local
model, this paper uses an attention mechanism with a trainable parameter pl

k. The at-
tention mechanism is a single-layer perceptron neural network, the importance of the
local GCN_ L to the global GCN_ G is quantified in mathematical form, and at the same
time, the federated aggregation can adjust the aggregation strategy online according to pl

k,
as shown in Equation (11).

al
∗ = att(θl

k, θl) = pl
k[θ

l
k‖θ

l ] (11)

where att(·) represents the calculation function of the attention mechanism, θl
k represents

the trainable parameter of the kth local GCN_ Lk of the lth layer, and θl represents the
trainable parameter of the global GCN_ G of the lth layer. The symbol ‖ represents the
matrix concatenate operation. The attention coefficient obtained by the function att(·) may
have a large difference in value. In order to make the coefficients easy to be used in the
parameters of each layer without affecting the convergence speed because of a possible
parameter transform in order of magnitude, the SoftMax function is used to standardize
the attention coefficient, as shown in Equation (12).

βl
k = So f tMax(att(θl

k, θl)) =
exp(al

k)

Σk∈Kexp(al
k)

(12)

where βl
k represents the parameter confidence of the lth layer of the kth local graph convo-

lutional network, and the SoftMax function can ensure that the confidence sum is 1, that is,
ΣK

k=1βl
k = 1. After obtaining the parameter confidence of each local model by Equation (12),

the terminal server needs to update the global GCN_ G model parameters according to
these confidences and local GCN_ Lk model parameters, as shown in Equation (13).

θl,t+1
G = ΣK

k=1βl,t
k θl,t

k (13)

where βl,t
k represents the attention weight coefficient assigned to the kth participant model

at time t, and θl,t+1
G represents the first layer parameter of the global model aggregated at

time t + 1. θl,t
k represents the parameters of the local model.

4. Experiment and Discussion

This section performs graph classification tasks on nine public graph structure datasets,
D&D, ENZYMES, IMDB-BINARY, REDDIT, PROTEINS, GITHUB-STARGAZERS, COL-
LAB, IMDB-MULTI, NCI1, to verify the method proposed in this chapter and compare
it with conventional graph convolutional neural networks. The most remarkable com-
mon datasets have a regular spatial structure, such as MINST and CIFAR, which can be
represented by a matrix, and a traditional convolution neural network is handled more
efficiently. However, many data in life do not have regular spatial structures, such as
recommendation systems, molecular structures, and so on. The connections of each node
in these maps are different and have irregular structures. For these irregular data objects,
the graph convolution is better than the traditional convolution neural network in dealing
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with these irregular structure data. Therefore, we use six public datasets, all of which
are datasets with irregular spatial structures, to prove the accuracy and versatility of the
federated learning framework proposed in this paper in dealing with non-Euclidean spatial
data classification.

It is worth mentioning that clients in federated learning need to conduct synchronous
training and update parameters on different clients in principle. In order to simulate this
federated learning setting, the experimental part of this paper adopts serial training for each
client and uploads its parameters to the terminal server after each training is completed.
In the training process, the number of training iterations local_ ep of the local model is set
as 10, and the batch size local_ bs of the local model’s training data is set as 60. The learning
rate lr defaults to 0.005. In this article, the same local model is set for each local client,
but different attention weights are assigned to aggregate them.

4.1. The Dataset Introduction

[1] D&D extracts 1178 high-resolution proteins in a subset of a protein database. Each
graph represents a protein. The nodes in the graph are amino acids. If the distance between
the two nodes is less than 6 angstroms (1 angstrom equals 0.1 Nano), then one edge is used
to connect them. The task is to classify proteins as enzymes or non-enzymes.

[2] ENZYMES is a protein tertiary structure dataset composed of 600 enzymes from
the BRENDA enzyme database. The task is to classify each enzyme into six categories
correctly. This category is classified according to the type of enzyme reaction.

[3] PROTEINS is also a protein dataset. The nodes represent the secondary structure
elements of proteins, and the edges represent the biological significance between different
types of proteins. The task is to determine whether a protein is an enzyme or not.

[4] COLLAB is a subset of a scientific collaboration dataset. A researcher corresponds
to a node, and an edge corresponds to the cooperative relationship between researchers.
The task is to determine whether a researcher studies high-energy physics, condensed
matter physics, or astrophysics.

[5] REDDIT-BINARY is a balanced dataset, where each graph corresponds to an online
comment post, and the node corresponds to the user. If one node responds to another
node’s comment, there is an edge between the two nodes. The task is to determine whether
the graph belongs to a question–answer forum or a discussion-based forum.

[6] GITHUB-STARGAZERS contains a diagram representing the relationship network
of GitHub users. These users are divided into the popular machine learning knowledge
base, and the other is the web development knowledge base.

[7] IMDB-BINARY is a movie collaboration dataset where we collected actor/actress
and genre information of different movies on IMDB.

[8] IMDB-MULTI is multi-class version of IMDB-BINARY and contains a balanced set
of ego-networks derived from Comedy, Romance, and Sci-Fi genres.

[9] NCI1 represents one balanced subsets of data sets of chemical compounds screened
for activity against non-small cell lung cancer.

Before applying these data to federated learning training, the dataset is divided into
N sub-datasets according to the number of federated learning clients N. 1

10 of graphs is
used as the test set. The rest is the training set. If graphs are not divisible by 10, it is
rounded up. The experimental part of this paper divides the dataset into three clients,
according to McMahan et al. [1]. Each client receives NG × 9

10 ×
1
3 samples. Datasets

Statistics summarize from the Field, Graphs, Classes, Average Nodes and Average Edges
to Table 1:
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Table 1. Datasets Statistics.

Datasets Field Graphs Classes Average Nodes Average Edges

D&D Bioinformatics 1178 2 284.32 715.66
ENZYMES Bioinformatics 600 66 32.63 62.14
PROTEINS Bioinformatics 1113 2 39.06 72.82
COLLAB Social networks 5000 3 74.49 2457.78

REDDIT-BINARY Social networks 2000 2 429.63 497.75
GITHUB-STARGAZERS Social networks 12,725 2 113.79 234.64

IMDB-BINARY Social networks 1000 2 19.77 96.53
IMDB-MULTI Social networks 1500 3 13 65.94

NCI1 Small molecules 4110 2 29.87 32.30

4.2. Evaluation Method

This paper uses accuracy to evaluate FedGCN. True Positive (TP) represents a positive
sample that is correctly predicted by the model. False Positive (FP) represents a positive
sample that is predicted to be negative by the model. False Negative (FN) represents a
negative sample that is predicted to be positive by the model. True Negative (TN) represents
a negative sample that is predicted to be negative by the model. The equations for accuracy
and recall are shown in Equation (14) below:

Accuracy =
TP

TP + FP
(14)

The accuracy rates mentioned in this article are all calculated by this formula. The qual-
ity of the evaluation index lies in whether it can intuitively reflect the performance of the
algorithm. It is often necessary to design different evaluation indicators in different tasks,
and sometimes multiple indicators are needed to reflect the objective situation in collaboration.

4.3. Validation Experiment of FedGCN Attention Mechanism

In this section, the FedGCN proposed in this paper and the classical FedAvg algorithm
are used to carry out comparative experiments on six datasets. The local models of the
FedAvg and the FedGCN are the graph convolutional neural networks built in Section 3.1.
The hyperparameters and the training method of FedGCN are consistent with FedAvg,
to verify the effectiveness of the aggregation algorithm with the attention mechanism in
the FedGCN.

As the FedGCN evaluates each of the local model’s parameters through the attention
mechanism, the corresponding confidence coefficient is obtained to aggregate the parame-
ters to generate the global model. The global model can then extract the training experience
of optimal local models in this way. As shown in Figure 7, the accuracy of the FedGCN on
different datasets is higher than that of FedAvg. It verifies the effectiveness of the FedGCN.
Compared with the FedAvg algorithm, the attention-based parameter aggregation method
does an excellent job of evaluating each local model to be uploaded to the terminal server
and formulating the corresponding confidence subsequently. Finally, the new global model
is aggregated by the dot product of the local model parameters’ confidence. This method
can well reduce the influence of inferior local model parameters and improve the fault
tolerance and accuracy of FedGCN.

4.4. FedGCN Accuracy Verification Experiment

In order to verify that the algorithm FedGCN proposed in this paper has excellent
accuracy, experiments were carried out on various non-Euclidean spatial datasets. Figure 7
shows the performance comparison of FedGCN, GCN, and GIN models. The FedGCN
local model is constructed in Section 3.1, and the GCN also corresponds to the graph convo-
lutional neural network constructed in Section 3.1. Experiments verified the effectiveness
of the FedGCN in processing non-Euclidean spatial data. Moreover, compared with the
classical GCN model, the GCN constructed in this paper, by adding a TopK pooling layer,
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a full connection layer, and a cross-layer fusion module, has better accuracy and stability.
The experimental analysis is mainly based on each algorithm’s accuracy performance on
various datasets (the accuracy is obtained by testing on the test dataset after each round
of communication).
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Figure 7. Accuracy experiment of the FedGCN algorithm on six datasets.

Figure 8 shows the accuracy experiments of the three models on the six datasets—
COLLAB, REDDIT, ENZYMES, PROTEINS, D&D, and GITHUB-STARGAZERS (epochs
corresponding to FedGCN are the communications rounds between the local model and
the global model). It can be clearly seen that FedGCN has a high accuracy rate regardless
of the dataset. It is obvious that FedGCN has high accuracy with respect to any dataset,
and the training process is relatively stable compared with the other two GCN models.
There is no significant sign of decline in accuracy. The accuracy of the GCN model is also
relatively higher compared to the newer GIN algorithm. FedGCN adds a TopK pooling
layer, a full connection layer, and cross-layer fusion, which can well extract node features,
obtain relatively superior local model parameters, and prepare for global aggregation.
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Figure 8. Accuracy experiment of FedGCN algorithm on six datasets.

Furthermore, the aggregation algorithm proposed in this paper, which is based on
the attention mechanism, can improve the fault tolerance of the FedGCN. The attention
mechanism for local model parameters is introduced, thus improving the influence of
excellent parameters on the global model and reducing the poor local model’s effects.
The combination of the GCN and the aggregation algorithm, which is also based on the
attention mechanism, improves the FedGCN’s ability to process non-Euclidean space data,
thus improving the accuracy. We have made a summary comparison, and the specific
results are as follows Table 2:
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Table 2. Federated learning global model accuracy at different iterations (%).

Model FedGCN GCN GIN
Communication Rounds Epoch

Dataset 10 20 100 100 100

COLLAB 68.60 73.00 75.89 67.31 70.27
REDDIT 91.22 91.89 94.17 91.94 90.00

ENZYMES 32.40 42.78 91.85 77.17 50.37
PROTEINS 68.47 75.67 81.08 80.34 69.46

D&D 95.28 98.68 99.90 80.05 92.37
GITHUB 68.97 69.71 73.05 69.84 69.99

The number of training iterations of a conventional GCN epoch is equivalent to
the multiplication of the number of local model training epochs localep and the num-
ber of communications with the global model rounds, namely, Epochs = localep ×
CommunicationsRounds, where ≡ represents an equivalent symbol. The number of it-
erations of FedGCN’s local model localep is 10. CommunicationsRounds is 100, and it
is not difficult to see in Figure 7 that the accuracy of FedGCN on the graph dataset has
reached a relatively high level. In the 10th communication round, the accuracy of the global
GCN model in the FedGCN framework is similar to that of the conventional GCN model
with intensive training. When the accuracy of the conventional GCN model stabilizes,
FedGCN can continue to improve accuracy by increasing communication rounds, which
fully demonstrates the superiority of the federated learning method proposed in this paper.
Note that the accuracy of the GCN constructed in this paper shows better accuracy in each
dataset in most cases.

From the overall view of Figure 9, the FedGCN algorithm proposed in this paper has
obvious advantages in dealing with four kinds of data sets. Furthermore, the difference
between FedGCN and other algorithms in the four images mainly lies in the different local
models used and different aggregation methods, and the accuracy of FedGCN in the four
test sets is at a high level, indicating that this paper organically combines TopK pooling
layer and cross-layer fusion mechanism, and the GCN model built makes federation learn-
ing have higher accuracy and has certain advantages compared with ordinary FedAvg
algorithm. This advantage exists even over FedProx. The federated learning framework
formed by combining the attention aggregation algorithm with the GCN model built in this
paper also has higher accuracy than the new GCFL algorithm. Although GCFLPLUS which
improved GCFL based on observation sequences of gradients improves the performance of
GCFL, it still can not exceed FedGCN. The graph convolution neural network built in this
paper adds TopK graph pooling layer and full connection layer on the basis of the classical
model to fully extract node features. Then, in order to prevent the loss of important infor-
mation, a cross-layer fusion mechanism is proposed, which integrates the features extracted
by all the layers before the full connection layer. In order to improve the fault tolerance of
federated learning aggregation, and then improve the accuracy of the global model. In this
paper, a federated aggregation algorithm that can be adjusted online is proposed. Based
on the attention mechanism, this algorithm provides the corresponding attention weight
for each client model parameter, and this weight is applied to the parameters of each layer
in order to accurately use the training parameters of each local model to get the optimal
global model.
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Figure 9. Comparison of the accuracy of federated learning algorithms.

The advantages of FedGCN can also be clearly seen from Table 3. The table lists
the average accuracy of the global model obtained by each algorithm after 100 rounds
of communication on different data sets and the highest accuracy in 100 rounds. To a
certain extent, the average accuracy can show that FedGCN has a higher accuracy in
most communication rounds, and the highest accuracy can represent the best processing
performance of FedGCN. These processes benefit from the fact that FedGCN has a good
local model, which can not only fully extract the features of the graph structure data,
but also fine processing for each client to customize the aggregation weights suitable for
each local model.
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Table 3. Comparison of the accuracy of federated learning global models (%).

Dataset Accuracy Model
FedGCN FedAvg FedProx GCFL GCFLPLUS

IMDB-BINARY Average 82 72 72 73 74
Best 88 74 74 77 79

IMDB-MULTI Average 77 76 76 77 77
Best 84 76 77 83 80

NCI1 Average 50 45 42 44 42
Best 53 46 44 48 47

PROTEINS Average 82 61 61 61 63
Best 88 63 63 68 67

As shown in Figure 10, the FedGCN was used to test the PROTEINS dataset on
different graph convolution models. The graph convolution model includes SAGE [25]
GIN [28], MINCUT [33], and the GCN model built in this paper. The blue bars in Figure 9
represent the GCN with the FedGCN settings. The orange bars represent the pure GCN. It
can be seen in the figure that the highest accuracy rate of the FedGCN after 100 rounds of
communication is higher than that of the GCN model obtained by 100 epochs of iterative
training, which shows that the federated learning framework proposed in this paper
is effective for graph convolution. The neural network model has a certain versatility
and is convenient for embedding in other models, so a variety of graph convolutional
neural networks could be combined to process various types of non-Euclidean spatial data.
Because FedGCN processes local model parameters more finely through an aggregation
algorithm based on an attention mechanism, the aggregation algorithm assigns appropriate
weights to each local model parameter, and the fault tolerance of local model aggregation
is improved.
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Figure 10. The generality of the FedGCN framework.

5. Conclusions

Federal learning was conceived to provide solutions for isolated data islands, a char-
acteristic of the big data era. However, many problems in this field have arisen. This paper
focuses on the following two problems: the accuracy of federated learning algorithms
decreases when handling noise data, and federated average algorithms being too rough
for the client side. At present, there are few federated learning algorithms that process
non-Euclidean spatial data. In view of the fact that the existing federated learning algo-
rithms seldom have the ability to process such data, federated learning based on a graph
convolution neural network is proposed in this paper.
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In this paper, a graph convolution neural network is constructed as a local model of
a client. On the basis of a classical graph convolution neural network, a pool layer and a
full connection layer of a TopK graph are added, and this not only improves the feature
extraction ability of the local model, but also reduces the amount of calculation required, so
the network can output classification results more smoothly. This paper also proposes a
cross-layer fusion method to prevent the loss of graph node features. Afterwards, in order
to give the federated learning algorithm the ability to process non-Euclidean spatial data,
the GCN model constructed in this paper is combined with federated learning. Finally,
aimed at the defect that the federated average aggregation algorithm cannot distinguish
the parameters of a local model with poor performance, a federated average aggregation
algorithm based on an attention mechanism is proposed. The algorithm uses a perceptron
neural network as an attention mechanism, which fully considers the importance of each
local model parameter participating in federated learning and establishes a corresponding
concern coefficient for it, in order to reduce the interference with the model aggregation.

Although the algorithm proposed in this paper can improve problems caused by the
average aggregation of the classical federated learning algorithm, there are still issues to be
addressed:

[1] Communication cost. The two federated learning frameworks proposed in this
paper have improved the local model, leaving a large number of calculations in the client,
so as to ensure the effectiveness of upload parameters and finally reduce the number of
communications and the communication costs. In the future, model compression can be
introduced to further improve the efficiency of this algorithm.

[2] Privacy protection. This paper adopts a privacy protection method that is consistent
with the classical FedAvg; that is, the privacy is protected by transmitting the parameters of
the model while keeping the original data local. However, this level of privacy protection
cannot meet higher-level requirements. More secure privacy protection technologies can be
explored to enable federated learning in the future.
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Nomenclature
Formula symbols and meanings (The order sort appears in this paper)

ωt Represents the current global model parameters
ωk

t Represents the local model of each federated learning client
ell Represents the loss function
∇ωk

t
Represents the gradient symbol of ωk

t
l Represents the number of layers

Ã = A + I
Represents the addition of the identity matrix to the original adjacency matrix to
contain its node information

H0 Represents the initial input data characteristics
D̃ Represents the degree matrix
W l Represents the layer l weight parameter that can be trained
‖ � ‖ Represents the 2 norms
yi Represents the one-dimensional vector output of xl

i after the trainable parameter ρ

topn(�) Represent selects the index i_n of the highest score from the given input vector
� Represents the element-wise multiplication of the corresponding position of the vector
Nl Represents the number of nodes
MAX(·) Represents the maximum pooling operation
Vf c Represent the feature finally input to the fully connected layer
nk Represents the amount of data owned by the kth
lk Represents the corresponding loss function
θ Represents the parameter to be optimized
θ̃ Represents the updated θ parameter
łk(·) Represents the loss function
∇ Represents the gradient
η Represents the learning rate or step size
m Represent the first-order moment estimation of the gradient
v Represent the second-order moment estimation of the gradient
m̃t Represent the mean of the corrected gradient
ṽt Represent the corrected gradient has a partial variance
n_ f ed Represent the number of clients in federated learning
θl

k Represent the clients initialize of the local model parameters
att(·) Represents the calculation function of the attention mechanism

θl Represents the trainable parameter of the global GCN_G of the lth layer

βl
k

Represents the parameter confidence of the lth layer of the kth local Graph
convolutional network

βl,t
k Represents the attention weight coefficient assigned to the kth participant model at time t

θl,t+1
G Represents the lth layer parameter of the global model aggregated at time t + 1

θl,t
k Represents the parameters of the local model

Abbreviations
Abbreviations and meanings(The order sort appears in this paper)

FEDGCN Federated Learning-Based Graph Convolutional Network
GCN Graph Convolutional Network
FedAvg Federated Average
Non-IID Non-Independently Identically Distributed
GNN Graph Neural Network
UFDA Unsupervised Federated learning Domain Adaptation
FedMeta Federated Meta-Learning
GraphSage Graph Sample and Aggregate
FedProx Federated Learning proximal term
CNN Convolutional Neural Network
MLP Multilayer Perceptron
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